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Abstract
We present a discrete mechanical model to study plant development. Themethod is built up of mass points,
springs andhingesmimicking the plant cell wall’smicrostructure. Tomodel plastic growth the resting lengths
of springs are adjusted; when springs exceed a threshold length, new mass points, springs and hinges, are
added. We formulate a stiffness tensor for the springs and hinges as a function of the fourth rank tensor
of elasticity and the geometry of the mesh. This allows us to approximate the material law as a generalized
orthotropicHooke’s law, and controlmaterial properties during growth. Thematerial properties of themodel
are illustrated innumerical simulations forfinite strain andplastic growth. To solve the equationsofmotionof
mass points we assume elastostatics and use Verlet integration. The method is demonstrated in simulations
when anisotropic growth causes emergent residual strain fields in cell walls and a bending of bulk tissue. The
method can be used in multilevel models to study plant development, for example by coupling it to models
for cytoskeletal, hormonal and gene regulatory processes.

Introduction
Plant development is a complex process, it self-organizes using hormonal, gene regulatory and mechanical
processes that act onmultiple length- and time-scales and are linked via feedback loops. For instance, active
and passive transport of hormones affects gene expression, but is also controlled by it: e.g. the hormone
auxin [1] affects the expressionof its own transport proteins [2], while also theexpressionof those transporters
regulates the distribution of auxin [3]. Moreover, gene regulatory and hormonal processes govern the plant’s
mechanical processes [4,5], such as the cell wall’s expansive growth, rupture, and cell division. However, also
mechanical determinants feed back on genetical and hormonal processes [6, 7]. For instance, auxin guides
root growth [8, 9], while a bending of the root also causes changes in auxin patterning [10, 11].

It is difficult to understand the consequences of such feedback loops from experiments alone. This is
because experimental measurements are typically limited in their spatial and temporal scope, as well as in
the number of processes that can be studied simultaneously. Mathematical modeling has been shown to be
a valuable tool to study complex biological systems compassed of processes happening on different time-
and length- scales and involving feedback loops [12,13]. As a consequence, joint experimental andmodeling
approaches have led to important insights in plant development [8, 10, 14, 15].

It is important for mathematical models for plant growth to include elastic properties, because plants are
sensingmechanical clues and are responding to them [16]. For instance, during cell division when a new cell
wall is built, it is oriented such that it optimally resists tensile stress [17]. Also plant cells reinforce their wall
by adding newmicrofibrils in the orientation of the highest stress [18].

It is challenging to develop suchmodels for plant growthmechanics since plant tissue is a complexmate-
rial that can be highly anisotropic and undergoes both elastic and plastic deformations during development.
Plant cells are typically under a high turgor pressure, while being encased in stiff cell walls that resist this
pressure [19]. Dynamical regulation (genetically and hormonally controlled) of the cell wall’s stiffness allows
plastic growth [20], as well as themore extensive cell wall remodelling that is for example necessary for lateral
root emergence [21].
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The most established way to model the mechanics of plant development is in terms of continuum me-
chanics [22–26]. The application of continuous mechanical models has resulted in important insights, for
example the demonstration that mechanical signals together with auxin patterning synergystically regulate
plant shootmorphogenesis [15,27]. Amain advantage of the continuummechanics approach is thatmaterial
properties of the tissue are implicitly maintained during deformation, which is important since stress- and
strain fields are relevant for plant morphogenesis [17, 27]. However, continuous methods have also theoreti-
cal and practical limitations. The plant’s cell wall is inherently discrete, consisting of networks of crosslinked
fibrils. Mechanical processes on this scale, such as stiffening, loosening or rupture of fibrils are important
for plant development (e.g. during lateral root formation), but are difficult to access locally with continu-
ous models. Technically, it is a challenging problem to implement a continuum mechanics approach in a
computationally efficient manner.

Discrete mechanical modeling offers an interesting alternative to continuummechanics. A discrete me-
chanical model canmimic the microstructure of the plant’s cell wall, while being more easy to implement in
a computationally efficient way. However, a main drawback of discrete mechanical models is that material
properties are most often not well defined: typically relations between discrete mass points are described,
yet the stress-strain relation is not explicitly formulated [28]. Furthermore, deformations, e.g. due to growth,
change the geometry of themesh, thus causingundesired changes inmaterial properties. In this paperwede-
velop a discrete mechanical model to study plant development that is aimed at alleviating these limitations.
We formulate a stiffness tensor for the mass point’s springs and hinges in terms of a generalized orthotropic
Hooke’s law and the geometry of themesh. Furthermore, wedevelop a remeshingmethod to control themass
point density and material properties during growth. Our model enables the incorporation of experimental
data on elastic properties of plant cell walls. Finally, given the discrete nature of the model we can affect the
stiffness of cell wall components in a localized manner.

We demonstrate the model in simulations on anisotropic tissue growth. The model allows us to study
strainfields and tissuebending that emergedue to anisotropic growth. Themethodcanbe coupled to existing
models for hormone and gene regulatory networks and thus provides a valuable building block formultilevel
models of plant development. The advantage of computational and numerical simplicity make our model
an attractive method for researchers studying development of tissues involving growthmechanics of turgoid
cells.

Methods

Main assumptions
First, we explain our main working assumptions: reduction of dimensionality, and usage of a simplified ma-
terial law, before we explain the setting up of the model.

Reduction of dimensionality: plane stress assumption

Plant tissues are inherently three-dimensional. However, for many important research questions it is often
reasonable to approximate plant tissue using simplified two-dimensional (2D) models. For instance, it has
been shown in a 2D model that root bending may cause maxima in local auxin production [10]. Indeed,
previous models for plant growth have used a 2D approximation, for instance the vertex- and hybrid vertex-
midline models of Fozard et al. [29, 30] and Merks et al. [31]. A 2D approximation using the plane stress
assumption is often made in shell models for plant tissue [27, 32]. The rationale behind this simplification
comes from the observation that the cell walls of the outer cell layer (epidermis) of plant tissue is typically
stiffer than its inner ones, andbasically acts as a “tension-stressed skin” [33,34]. Herewemakeuseof theplane
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stress assumption to build a mechanical growth model for plant tissue. We will illustrate the model later in
two applications in which the plane assumption can be justified by different arguments. In one application
we consider a root in which anisotropic unidirectional growth happen. In this system one can argue that
a rotational symmetry of the root allows the 2D approximation. We also illustrate the model in a setup in
which asymmetric bidirectional growth happens in a thin sheet of tissue, similar to a leaf. In this setup the
we assume the leaf to be very thin to justify the plane stress assumption.

Simplifiedmaterial properties

Elastic properties of amaterial are formulated in terms of constitutive relations, equations that connect stress
and strain. Constitutive relations of plant tissues are complex, as these tissues are typically anisotropic, and
consist of distinct cell layers with divergent mechanical properties [35]. Furthermore, these properties are
changing dynamically. For example, it has been shown that the stiffness of cell walls of Arabidopsis thaliana
varies over one order of magnitude depending on the growth phase [36]. The material properties of plant
tissuehasbeenmeasured in experiments tobenonlinear. For exampleusing atomic forcemicroscopy [37,38].
However, wearenot aimingon formulating aquantitativematerial relation, butwant to capture only themain
features to develop amethod for qualitative applications. Therefore we use in ourmodel a linear relationship
between stress and strain and neglect higher order terms.

Elastic model
Here we describe the setup of the discrete elastic model. We start with illustrating the mesh of the model
which is built up by mass points, springs and hinges. For the springs and hinges we formulate a stiffness
tensor in terms of the geometry of the mesh and the elasticity tensor. Then we explain how we describe
elastic anisotropy and turgor pressure. Next we formulate an approximate material law. Finally we explain
how we calculate the forces on mass points.

Mesh

We use a square lattice, where every mass point has four (if not at the border) neighboring mass points con-
nected by springs (Figure 1A). A unit cell in this crystal lattice is shown in Figure 1B. In addition to springs to

Figure 1. (A) Mechanical mesh. Dots indicate mass points. Springs are indicated as lines. Dotted contour
indicates inset for subfigure. (B) Unit cell. Springs are indicated by zigzagging lines on straight lines.
Zigzagging lines on curved lines connecting horizontal and vertical springs indicate hinges.

direct neighbors, there are hinges in each corner of a unit cell. The rationale for choosing this layout of mass
points, springs and hinges is as follows. Plant tissues such as the root tip or hypocotyl are often anisotropic,
and this anisotropy is caused by the presence of polarized cells. In these polarized cell types there are two
principal cellulose fiber directions, one along the growth direction, and one perpendicular to it [39]. In con-
trast, someplant tissues are isotropic, containing apolar cells inwhich the cellulose fibermesh is disoriented.
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Since we are interested inmodeling plant tissues consisting of polarized cells, we choose a quadratic unit cell
to mimic the two principal fiber directions of polar plant cells.

Coupling to a continuousmaterial law

The elastic properties of our model are determined by the geometry of the lattice unit cell and the stiffness
of the springs and hinges. Here we will formulate these microscopic properties in the continuum limit from
the macroscopic elastic properties of a linear elastic material.

The elastic energy densityΨ of a linear elastic material [40] is given by

Ψ= 1

2

∑
i j kl

Ci j klεi jεkl , (1)

where Ci j kl are elements of the elasticity tensor, and εi j are components of the small strain tensor ε. For an
isotropic material the above simplifies to

Ψ= 1

2

(
λ

(∑
k
εkk

)2

+2µ
∑
i j
ε2

i j

)
, (2)

where λ and µ are the Lamé coefficients. The elements σi j of Cauchy’s stress tensor σ can be obtained (as-
suming constant temperature) by differentiatingΨwith respect to components from the strain tensor [41]

σi j = ∂Ψ

∂εi j
. (3)

SubstitutingΨwith Eq.2 we obtain the generalized Hooke’s law

σi j =λ
(∑

k
εkk

)
δi j +2µεi j , (4)

where δi j is the Kronecker delta.

To formulate a stiffness tensor for springs and hinges in terms of Lamé coefficients, we will take the fol-
lowing approach. First a description of the elastic energy density for the discrete model in terms of Lamé
coefficients and the geometry of the mesh is found. Then we will do the same as above, find the elements of
the stress tensor by differentiating the elastic energy density with respect to strain elements. Finally, we will
compare the elastic energy density and stress tensor descriptions of our model to Eq.4 and Eq.1.

For the elastic potential of a spring in the x-direction we use (1/2)k(x0/y0)∆x2, with spring stiffness k,
and ∆x = x − x0 the change of length of a horizontal spring, where x is the actual length, and x0 is its resting
length (similar terminology for the y-direction). Wewill use the potential (1/2)k∆x∆y to account for the Pois-
son effect (compare e.g. component σy y =Cy y xxεy y in Eq.4). Shear is described by means of four hinges per
unit cell in terms of the potential (1/8)κ∆D2 for each hinge, with κ the hinge stiffness, and ∆D the change of
length of a diagonal in the unit cell. Figure 2 depicts a parallelogramwhich is used to formulate shear in terms
of diagonals in a unit cell. Similarly to Eq.2 we write the elastic energy density Ψ̃ of the discrete mechanical
model as

Ψ̃= E

A
= 1

2A

[
k

(
h∆x2 +h−1∆y2 +2∆x∆y

)+κ(
h∆x2 +h−1∆y2 +2∆D2)] , with: h ..= x0/y0, (5)

where E is the elastic energy of an unit cell, and A is its surface area. One horizontal spring is shared between
two unit cells, whereas each unit cell contains two horizontal springs. Therefore, the net longitudinal strain
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Figure 2. Illustration of parallelogram used to describe shear. To calculate forces on point i , which
results from one horizontal and vertical spring and one hinge, the position of three mass points (i ,1,2) is
used. We construct a parallelogram from these points (note thick dotted lines) to define shear.

of a single unit cell can be described as the deformation of a single spring εxx = ∆x/x0. Total shear of a unit
cell is defined [40] as τ ..= tanϕ (compare Figure 2), and the components of the shear strain tensor (without
growth) are εx y = εy x

..= (1/2)τ. With growth (x0 6= y0) we find with same arguments as in [40]

2∆D2 = 2s̃2D2
0τ

2 = 4s̃2D2
0(ε2

x y +ε2
y x ), with: s̃ ..= s

1+ s2 , and: s ..= max(x0, y0)

min(x0, y0)
, (6)

where D0 =
√

x2
0 + y2

0 is the length of a diagonal of an undeformed unit cell. We rewrite Ψ̃ in terms of strain

Ψ̃= 1

2A
[k(hx2

0ε
2
xx +h−1 y2

0ε
2
y y +2x0εxx y0εy y )+

κ
(
hx2

0ε
2
xx +h−1 y2

0ε
2
y y +4s̃2 (

x2
0 + y2

0

)(
ε2

x y +ε2
y x

))
]

(7)

To get the elements of the stress tensor we differentiate Ψ̃with respect to strain. We approximate

σi j = ∂Ψ̃

∂εi j
= E ′

A
− A′E

A2 ≈ E ′

A
(for small strain – see Appendix A [42]), (8)

and compare the resulting expressions with Eqs.4 and 1 to get expressions for k and κ

Cxxxx =λ+2µ =̂ (k +κ)hx2
0/A → (k +κ)=̂(

λ+2µ
)

h−1 A/x2
0 (9a)

Cy y y y =λ+2µ =̂ (k +κ)h−1 y2
0 /A → (k +κ)=̂(

λ+2µ
)

h A/y2
0 (9b)

Cxx y y =Cy y xx =λ =̂kx0 y0/A → k=̂ (λ) A/x0 y0 (9c)

Cx y x y =Cy x y x = 2µ =̂κ4s̃2 (
x2

0 + y2
0

)
/A → κ=̂(

2µ
)

A/
(
(x2

0 + y2
0 )4s̃2) . (9d)

The stiffness tensor of the discrete mechanical model C̃i j kl can now be written in terms of Lamé coefficients
and geometric properties of an unit cell (we replace k and κ)

C̃xxxx
..= (

λ+2µ
)

h−1 A/x2
0 (10a)

C̃y y y y
..= (

λ+2µ
)

h A/y2
0 (10b)

C̃xx y y = C̃y y xx
..= (λ) A/x0 y0 (10c)

C̃x y x y = C̃y x y x
..= (

2µ
)

A/
(
(x2

0 + y2
0 )4s̃2) (10d)

other components ..= 0. (10e)
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Finally, Ψ̃ can be expressed similarly to Eq.1 as

Ψ̃= 1

2

∑
i j kl

C̃i j klεi jεkl , (11)

Anisotropy

In many plant tissues, cells are mechanically anisotropic. This is partly because of tissue specific polarized
orientation of cellulose microfibrils in their cell walls [35]. The plant’s control of elastic cell wall properties
plays a crucial part in plant morphogenesis. To model it generic and detailed bio-mechanical and chemical
models havebeendeveloped [43,44]. However, in this paperwedonotmodel these physiologically important
feedback loops, and account for anisotropy by defining two Young’s moduli, one for the x-direction Yx , and
one for the y-direction Yy . In plane stress Lamé coefficients are connected to Young’s moduli and Poisson’s
ratio ν [45] via

λx = Yxν

1−ν2 , µx = Yx

2(1+ν)
(12a)

λy =
Yyν

1−ν2 , µy =
Yy

2(1+ν)
. (12b)

We define the shear modulus µ as the mean of the shear moduli of the isotropic materials characterized
by either Young’s modulus (Yx ,ν) and (Yy ,ν)

2µ ..=µx +µy
..= Yx +Yy

2(1+ν)
. (13)

We rewrite the stiffness tensor C̃i j kl (Equation 10) for the anisotropic model

C̃xxxx = (
λx +2µx

)
h−1 A/x2

0 (14a)

C̃y y y y =
(
λy +2µy

)
h A/y2

0 (14b)
C̃xx y y = (λx ) A/x0 y0 (14c)
C̃y y xx = (

λy
)

A/x0 y0 (14d)

C̃x y x y = C̃y x y x = (
µx +µy

)
A/

(
(x2

0 + y2
0 )4s̃2) . (14e)

Constitutive relations

In the derivations presented above the small strain tensor ε was used to derive the properties of the springs
andhinges. However, the small strain tensor is not invariant to rigid body rotations, and is thus not suitable to
describe afinite elasticmaterial [46]. In continuummechanicswewouldneed to apply apolar decomposition
first, to cancel out rigid body rotations and obtain the Biot strain tensor. However, in our case, we do this
implicitly, because we define strain in terms of relative length changes of springs, and angles between them.
Thus, in our model we are approximating the Biot strain tensor e (also called nominal strain) [47]. Biot strain
is part of the Seth-Hill strain family [48], and a commonly used finite strain tensor.

With this we can approximate the elastic constitutive material relations for our anisotropic model as a
generalized orthotropic Hooke’s law

σxx

σy y

σx y

σy x

=


2µx +λx λx 0 0

λy 2µy +λy 0 0
0 0 µx +µy 0
0 0 0 µx +µy




exx

ey y

ex y

ey x

 . (15)
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Turgor pressure

Assuming that turgor pressure pt is constant across the tissue, i.e. all cells are equally turgid, the hydrostatic
potential Ehp caused by pt is

Ehp =−At pt , (16)

with At being the surface area of the tissue.

Calculation of forces
In the following sections the calculation of the forces acting on the mass points will be explained. The forces
will be used to compute the motion of the mass points.

Elastic forces

Elastic force on a mass point i (compare Figure 2) f e
i is the negative gradient of the elastic energy E with

respect to i (note: i is an index, i is position vector of mass point i )

f e
i =−∇i E(ekl (i )) =∑

kl
−∂(AΨ̃)

∂ekl

∂ekl

∂i
≈−A

∑
kl

∑
no

C̃klnoeno
∂ekl

∂i
(see Appendix B [42]). (17)

We expand it to (note that ex y = ey x = (1/2)τ)

f e
i =− (

C̃xxxx exx + C̃xx y y ey y
)

A
∂exx

∂i
(18a)

− (
C̃y y y y ey y + C̃y y xx exx

)
A
∂ey y

∂i
(18b)

− (
C̃x y x yτ

)
A
∂ex y

∂i
. (18c)

To solve Eq.18 we need to specify A and ei j with respect to an individual mass point i , and get the deriva-
tives ∂ei j /∂i . Let us start with terms 18a,18b.

As can be seen fromFigure 1A, amass point inside themesh is connected to four neighboringmass points
and thus part of four unit cells (compare Figure 1B). A mass point at the boundary is part of two unit cells,
and a point in the corner of only one unit cell. Therefore themean surface area of the unit squares connected
to the mass point i is used as variable A in terms 18a and 18b. These terms are calculated for all springs
connected to mass point i. Thereby exx is the strain of one respective spring (similar in the y-direction). To
calculate the force due to the Poisson effect, we use the strain in the “other direction”, e.g. ey y for a spring in x
direction (see term C̃xx y y ey y ), the mean ey y strain of the adjacent springs in y-direction. Accordingly, we use
themean resting lengths of the adjacent springs in the y-direction to compute y0 in C̃xx y y . The derivatives of
the direct strain elements with respect to coordinates of i are

∂exx

∂i
=− x

x0 ‖x‖ (19a)

∂ey y

∂i
=− y

y0
∥∥y

∥∥ . (19b)

The term 18c is computed as follows:
the total shear force at a single mass point is described by its N adjacent hinges (N = 4 for amass point in the
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medium, N = 2 for amass point at the boundary of themesh, and N = 1 for a point in the corner of themesh).
We define total shear strain at a single mass point τ as the mean of it’s N adjacent “hinge shear strains”

τ ..= 1

N

N∑
n=1

τn . (20)

We use Figure 2 to illustrate how we calculate hinge shear strain τn for a hinge n. We use the springs in the x-
and y-direction (see Figure 2) to define vectors: xn

..= 1− i , y n
..= 2− i and use them to define τn

τn
..= tanϕ= tan(arcsin(an)) = an√

1−a2
n

,with: an
..= xn · y n

‖xn‖
∥∥y n

∥∥ . (21)

To calculate forces due to hinge shear strains in term 18c, we use the properties of the respective hinges:
for the surface area of a unit cell we use An

..= ∥∥xn × y n

∥∥ (compare surface area of parallelogram in Figure 2).
We also use respective springs in x- and y-direction of each hinge, to replace (x2

0 + y2
0 ) and s̃ in Equation 10d

with the corresponding hinge properties (x2
0(n) + y2

0(n)) and s̃n . With this we rewrite (see Appendix C [42]) the
shear force acting at a mass point i (term 18c) as a sum over the adjacent hinges

−(
C̃x y x yτ

)
A
∂ex y

∂i
=

−µ
N

N∑
n=1

 A2
n(

x2
0(n) + y2

0(n)

)
4s̃2

n

τn
(
1+τ2

n

)√
1−a2

n

(
an

(
y n∥∥y n

∥∥2 + xn

‖xn‖2

)
− (xn + y n)

‖xn‖
∥∥y n

∥∥
) .

(22)

Forces due to turgor pressure

At in Eq. 16 is a planar non-self-intersecting polygon with vertices described by the position of mass points
at the border of the tissue (x1, y1), ..., (xn , yn) (vertices listed counterclockwise), thus At is given [49] by

At = 1

2

(∣∣∣∣x0 x1

y0 y1

∣∣∣∣+ ∣∣∣∣x1 x2

y1 y2

∣∣∣∣+·· ·+
∣∣∣∣xn−2 xn−1

yn−2 yn−1

∣∣∣∣+ ∣∣∣∣xn−1 x0

yn−1 y0

∣∣∣∣) . (23)

The “turgor force” f t
i acting at amasspoint i (if at theborder of themedium), due to pt is thenegative gradient

of the hydrostatic potential Ehp with respect to i

f t
i =−∇i Ehp (i )

(16,23)= pt

2

[
yi+1 − yi−1

−xi+1 +xi−1

]
. (24)

Viscous forces

We use a viscous force acting on every mass point to find the equilibrium configuration of the mesh

f d
i =−η d

dγ
i , (25)

whereη is thedamping constant, andγ is thedimensionless integration timeof the elasticity part of themodel
(see following section “Elastostatics” and “Numerical Methods”).
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Elastostatics
The motion of the mass points is described by Newton’s law of motion

f i = f e
i + f d

i + f t
i = m

d 2

dγ2 i , (26)

where parameter m is the mass of a mass point.

We make the common assumption [32] that deformations happen at mechanical equilibrium. This can
be understood from the fact that the plant’s growth processes aremuch slower than its elastic response to ex-
ternal forces. By solving Eq. 26 until mechanical equilibrium ( f i = 0) we find the steady state configuration of
the lattice. Note that themass of amass point m and the viscosity η have no physical relevance in thismodel,
as they do not affect the equilibrium configuration of themesh. These parameters only fulfill numerical roles
(convergence rate and precision).

Plastic growth
Irreversible plant growth arises through the elongation of cell-walls of individual cells. This process involves
cell wall loosening, expansion of the cell, and addition of new cell wall material restoring original cell wall
stiffness [50]. During growth parts of the tissue are stretched or compressed to ensure a continuous tissue.
Therefore, if an anisotropy in growth rates of cells is present in the medium, a process called “differential
growth”, internal stresses “residual stresses” and “residual strains” are build up in the tissue [51].

In the present paper we will apply our model to study basic effects of anisotropic growth such as emer-
gence of residual strains and bulk deformation. To model growth the resting length of springs is adjusted

d

d t

[
x0

y0

](
t ,position

)= [
krate

x
krate

y

](
t ,position

)[x0

y0

](
t ,position

)
, (27)

where t is the simulation time, and krate
x (t ) is the growth rate of a spring in the x-direction (similar terminology

for the y-direction). This approach is similar to an evolvingmetric in thematerialmanifold [52], andhas been
used before continuous mechanical growth models for plant tissue [32]. Note that the rate of change of the
resting configuration is a complex function of other physical processes, Boudon et al. for instance formulated
a strain-driven growth rate tensor [53]. Here we simply impose such growth functions to illustrate the elastic
properties of our model during asymmetric growth.

Note that this approach allows growth in two principal directions; however, can not describe a plastic
shear growth.

Remeshing

Themass point density is affected by the growth process. Therefore, when springs exceed a threshold length
of

p
2× (initial spring length), we add new mass points, springs and hinges to mimic the deposition of new

cell wall material accompanying the later stages of cell expansion. We do this via the algorithm depicted in
Figure 3. This figure shows that “loose mass points” can emerge in the medium during growth, points that
have only three instead of four neighbors. Wewill see later in the results section that such loose points emerge
when anisotropic growth causes local remeshing. However, we still calculate four hinge strains (see Eq.21) for
such a loose point. For this an auxiliary point (see Figure 4) is assumed (onwhich no forces act). We calculate
vector y using the loose mass point’s coordinates and the coordinates of the auxiliary point (similar for x
when a loose end is pointing sideways). As resting distance y0 the resting distance of the left neighbor is used
(similar, when a loose end is pointing sideways x0 of the upper neighbor is used).
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Figure 3. Illustration of remeshing algorithm. Dots: mass points, lines: springs.
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Figure 4. Illustration of usage of auxiliary point to calculate hinge strain for a loosemass point. The
auxiliary point (white dot) is located in themiddle of a spring between next-next neighbors Filled dots: mass
points, black lines: springs.

Numerical methods
We solved the equations of ourmodel by combining explicit Euler integration for the growth equation Eq. 27,
and Verlet integration [54] to solve the equations for the motion of the mass points Eqs. 26.

The position of a mass point i at integration time γ+hγ is computed with

i (γ+hγ) = 2i (γ)− i (γ−hγ)+ d 2

dγ2 i (γ)× (hγ)2, (28)

where hγ= 0.01 is the dimensionless Verlet integration time step and γ is the integration time. For the initial
time step

i (0+hγ) = i (0)+ 1

2

d 2

dγ2 i (0)× (hγ)2 (29)

is used. The acceleration of a mass point i is found for each time step with

d 2

dγ2 i (γ) = f i (γ)

m
, (30)

wherem = 1µg is themassof amasspoint. The velocity of amasspoint (to calculate the viscous force) inEq.25
is computed with

d

dγ
i (γ) = i (γ)− i (γ−hγ)

hγ
. (31)

For Euler integration of the growth equation (Eq.27) we used an integration time step of ht = 1 mi n. The
resting distances of springs connected to a mass point after a growth step are computed with[

x0

y0

]
(t +ht ) =

(
1+ht

[
krate

x
krate

y

]
(t )

)[
x0

y0

]
(t ) , (32)

where t is the simulation time in minutes.

We solve the model as follows: from each time integration step of the growth model (Eq.27) a new set of
resting distances of springs is obtained, which is passed on to the elasticity part of the model, where forces
are computed (Eqs. 18,24,25), and the equations for the motion of the mass points (Eqs. 26) are solved, until
the sum of forces on every mass point is below the convergence threshold thr = 0.05µN .

In this study we used model setups of initially rectangular meshes of various lengths. As initial resting
lengths of springs 1 µm was used. To compute viscous forces (Eq. 25) η= 1 N ×hγ/µm was used as a damp-
ing constant. Several boundary conditions were used. For simulations shown in the results section a free
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floatingmedium (no degree of freedom is restrained, all mass pointsmove freely) is used. In this setup a rigid
body translation and rotation can occur; however, to display themodel a linear transformationwas employed
(display in moving frame of reference) to cancel these out rigid body motions. In addition, in simulations to
characterize thematerial properties of themodel we either fix all boundaries of themodel, or restrain points
on specific boundaries to move on a line.

We set the parameter values of the model to connect it to experimental data on the model plant Ara-
bidopsis thaliana. In experiments on roots, in which a rapid local growth was induced, a maximal relative
elemental growth rate of one third per hour has been measured [55]. This corresponds to a maximal growth
rate kr ate

max = ln(4/3)/60 mi n−1 ≈ 0.0048 mi n−1, which we use as an upper boundary. In addition, we used as
material properties Young’s moduli in the range of [20;80] MPa ·m, similar to reported experimental data on
cell walls [56] and previous modeling work [27]. We varied turgor pressure in a range of [0;1] MPa ·m, corre-
sponding to values measured on the root [57]. There are to our knowledge no precise measurements of the
Poisson ratio ν of the primary cell wall. However, it is established that the primary plant cell wall is a par-
tially compressible material (ν< 0.5) [58]. Previousmodeling work [27] assumed ν= 0.2. We vary ν in a range
of [0.1;0.5] for simulations characterizing the model’s material properties, and use ν= 0.2 for the illustration
of the full model (Figures 9,10).

Results

Effect of finite strain onmaterial properties
Here we characterize how finite strain and plastic growth affects the material properties of our model in nu-
merical simulations. We start with illustrating the effect of finite strain onmaterial properties in an isotropic
setup without turgor pressure. We set elastic parameters in the model to Yx = Yy = 20 MPa ·m; ν= 0.1. Note
that we use for efficient elastic properties (what we measure) a super- or sub-script “eff”, for instance Yeff for
the efficient Young’s modulus. We show the results in Figure 5. In subfigure A,top we illustrate the setup of
the direct stress experiment. We applied uniform, direct stress to the upper boundary of themodel, while the
bottom of the model was kept fixed on a horizontal line. Figure 5A, middle shows a stress-strain plot of the
direct-stress experiment (black line) and as a comparison the theoretical behavior of amaterial which follows
Hooke’s law (red line). We see that for small stress themodel’s behavior converges to the theoretical value. For
increasing stress however, the model stiffens, and a higher direct stress is required to stretch the model. Fig-
ure 5A, bottom shows the effective Young’smodulus and Poisson ratio against the strain (εy y ). We see that the
effective Young’s modulus (solid line) increases linearly with increasing strain (with slope ≈ 2 MPa ·m/10%),
while the Poisson ratio maintains its theoretical value (dotted line). Note that with the highest direct strain
value of 5% applied in the result section of this paper (compare Figures 9,10), the effective Young’s modu-
lus is ≈ 10% larger than that for a theoretical isotropic Hooke’s material (without turgor). The linear increase
in the stiffness of our simulated plant tissue is likely a result of our approximation to disregard the deriva-
tive of surface area A against strain (in Eq.8), which results in an error scaling linearly with direct strain (see
Appendix A [42]).

Next, we tested the shear properties of the model. In Figure 5B, top we illustrate the setup of this exper-
iment. We applied shear stress Sx y and Sy x of same strength. Figure 5B, middle shows a stress-strain plot
of the shear-stress experiment (black line) and as a comparison the theoretical behavior of a material which
follows Hooke’s law (red line). We see that for smaller stress themodel’s behavior converges to the theoretical
value. For increasing stress however, again the model stiffens. Figure 5B, bottom shows the effective shear
modulus µmodel against the strain (εy y ). We see that the effective shear modulus increases non-linearly with
increasing strain. For a substantial total shear strain of τ= 10 % the effective shearmodulus stiffens 1 % com-
pared to the theoretical value. Note that for the highest total shear strain of 5% which we chose as largest
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Figure 5. Illustration of material properties (isotropic, without turgor pressure). Top: Setups. Contours
indicate undeformed (dotted) and deformedmedium. Big arrows in (A) and (B) indicate applied stress. (A)
Direct stress experiment. Top: Setup. Medium is fixed at the bottom (black block), such that points at
lower border can only move horizontally. Middle: stress-strain plot. Bottom: ratio between the effective and
theoretical values (Yeff/Y , νeff/ν) as a function of εy y . (B) Pure shear stress experiment. Top: Setup. Black
blocks indicate walls through which shear stress is applied. Middle: stress-strain plot. Bottom: ratio
between effective shear modulus µeff and theoretical µ as a function of τ. (C) Isotropy experiment. Top:
Setup. Contour indicates fixed boundary of medium. Arrow symbolizes rotating force. Middle:
displacement of center point for different strengths of force vs angle of force vector α. Length of
undeformed squared medium 100µm.

strain value in this paper, the model’s effective shear modulus is ≈ 0.3% larger than that following from the
theoretical isotropic Hooke’smaterial (without turgor). This non-linear increase in the shear stiffness is likely
also a result from our approximation to disregard the derivative of A with respect to strain. We showed in
AppendixA [42] that with respect to shear this approximation causes an error which scales quadratically with
shear strain.

Next the isotropy of our model in an experiment illustrated in Figure 5C, top was measured. The rotating
force, whose amplitude increases every rotation, was applied at the center point of a simulated tissue whose
boundaries are fixed. To rule out boundary effects, we compared results of a medium of double the side
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length, and found qualitatively similar results (data not shown). Figure 5C, middle depicts the displacement
of the center point against the strength and the angle of the applied force. It reveals that that for forces smaller
than 10 N the relative error of the mass point’s trajectory are smaller than 2%. However, it also shows that
larger forces on the center mass point cause a substantial artificial anisotropy (error larger than 4%) in the
model. Amaximal strength of 14 N was applied in this study to the center point, which results in a substantial
deformation gradient in the model. Note that this strength of force, if applied at all the boundary points,
would correspond to ahydrostatic pressureof 14 MPa·m which is onemagnitude larger as the turgorpressure
typicallymeasured inArabidopsis thaliana [57]. FromFigure 5C, bottomweshow thedeviation from isotropic
behavior against the strength and the angle of the applied force. We see that for forces smaller than 12 N the
error is smaller than 4 %, and that for stronger forces the error substantially increases. In the simulations in
the results section of this paper such localized strong forces do not occur, and thus we think that the model
approximates the generalized Hooke’s law well.

Effect of turgor pressure onmaterial properties
We also studied the effect of finite strain on material properties in presence of turgor pressure. Before we
present the simulation results, let us analyze what we expect to measure.

Analytical predictions

Shear modulus is defined (compare Eq. 2) as

2µeff ..= ∂2Ψ̃

∂τ2 , (33)

with µeff being the effective shear modulus (note difference to µ, the parameter). Taking into account the
hydrostatic potential of an unit surface element in the elastic energy density (adding Eq. 16 for an unit cell to
the energy density), we get

µeff
(16)= µ−pt

∂2 A

2∂τ2
(39b)= µ+pt 2x0 y0 =µ+2pt . (34)

Note that x0 and y0 are unit lengths (x0 = y0 = 1). Thus, we expect to measure in simulations that the effec-
tive shear modulus is increased by twice the turgor pressure. Let us make a prediction based on the easiest
example. If we disable the hinges in the model (set µ= 0), then we expect to measure as the model’s effective
shear modulus µeff = 2×pt .

Let’s now try to make predictions on how turgor pressure affects the effective Young’s modulus (Yeff) of
the model (again: note the difference to the parameter Y ). The effective Young’s modulus is defined as

Yeff
..= ∂2Ψ̃

∂ε2
y y

, (35)

Yeff
(E q. 4)= (2µeff+λeff)−λeffνeff

(E q. 34)= 2µ+λeff(1−νeff)+4pt ,

where λeff and νeff are the effective Lame’ coefficients. Let’s assume that νeff ≈ ν and λeff ≈λ (we will see later
in simulations that this is reasonable). With this we get

Yeff ≈ Y +4pt (36)

Thus we expect that the effective Young’s modulus of the model is approximately 4×pt stiffer than without
the added turgor pressure.
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Numerical simulations

Now, let’s look at the simulation results, and compare it to our predictions. As described above, we first sim-
plified the system, and performed shear experiments on the model without the hinges, thus setting parame-
ter µ= 0, and making turgor pressure pt solely responsible for resisting shearing forces. We measure in sim-
ulations for effective shear modulus due to turgor pressure: µeff = 2×pt , for instance: (pt = 1 MPa · m, (Sx y +
Sy x ) = 0.1 MPa · m) resulted in τ = 5.00%, and thus µeff = (0.1/0.05)MPa · m = 2.00 MPa · m. This precisely
fits our analytical arguments in Eq.34. Next, we performed the shear experiment in presence of turgor pres-
sure (see Figure 6A).We see that, as expected from the above arguments, themodel’s effective apparent shear
modulus increases approximately linearly with increasing turgor pressure. However, we observe a larger stiff-
ening effect than expected: for pt = 0.25 MPa ·m we see an increase of≈ 0.6 MPa ·m (instead of 0.5 MPa ·m),
and for pt = 1 MPa ·m we see an increase of ≈ 2.73 MPa ·m (instead of 2.0 MPa ·m). This is stiffening is
probably due to the prestrain caused by turgor.

In Figure 6B we show the results of the direct stress experiments in the presence of turgor pressure. We
see that turgor pressure causes an increase in the model’s effective Young’s modulus. The effective Young’s
modulus increases linearly with increasing turgor pressure, by ≈ 4×pt (see Figure 6A, bottom). For example
we measure for a turgor pressure of 0.25 MPa ·m and total strain of 1% an increase of the effective Young’s
modulus 0.9 MPa ·m. For a turgor pressure of 1.00 MPa ·m and total strain of 4% we measure an increase
of the effective Young’s modulus 3.5 MPa ·m. Here we see a smaller stiffening effect than expected from our
theoretical arguments. We see from Figure 6A, bottom that the effective Poisson’s ratio νeff is affected very
little by turgor pressure.

Finally, we studied how turgor pressure affects the model’s isotropy. The results are illustrated in Fig-
ure 6C. We added the turgor pressure to the medium first, fixed the boundaries of the medium, and then
performed a similar experiment as in Figure 5C (paper) (but with different pt ). Here we varied the strength of
the turgor pressure, and kept the strength of the rotating force constant. Notably, we applied a strong rotating
force of 14 N for which without turgor a substantial deviation from isotropy was observed. We can see from
Figure 6C, middle that the displacement of the central mass point substantially decreases for higher turgor
pressure. We can understand this from the results above, which demonstrated that the stiffness of themodel
increases with larger turgor pressure. In a stiffer medium we expect a smaller strain, and thus also a smaller
deformation gradient.

Effect of anisotropy onmaterial properties
Herewe showhowanisotropy affects thematerial properties of ourmodel. For thisweperformed simulations
in amodel with: Yx = 20 MPa ·m;ν= 0.2; pt = 0.5 MPa ·m, and different Yy = c ·Yx , where we used c to control
the fiber anisotropy. Results of these experiments are shown in Figure 7. In Figure 7A we show results of a
direct stress experiment (similar to Figure 6A), in which we stretched the model in y-direction for different
levels of anisotropy c. Figure 7A,middle shows that for smaller strain themodel (black lines) converges to the
theoretical value of a material which follows an orthotropic Hooke’s law (red lines). Whereas Figure 7, right
reveals that the stiffening effect of the turgor pressure (compare Figure 6A, bottom) is decreased for larger c.
This can partly be explained by the decreased prestrain (for higher Yy ) due to the turgor pressure: for c = 1
prestrain is ey y = 2%, for c = 2 prestrain is ey y = 1%, and for c = 4 prestrain is ey y = 0.4%. In Figure 7Awe found
that this causes an increase of the effective Young’smodulus in y-direction Y eff

y : for c = 4 of 1%, for c = 2 of 2%,
and for c = 1 of 4% Moreover, it is also shown that higher anisotropy c decreases the turgor pressure caused
dependency on the effective Poisson ratio eeffy y . This may also be caused by the reduced stiffening due to pre-
strain in anisotropic conditions. So far, direct stress experiments were performed in only a single direction,
as for isotropic tissues similar results would result from applying stress in the perpendicular direction. In
contrast, for an anisotropic tissuemodel we need to apply stress experiments in both directions. In Figure 7B
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Figure 6. Material properties as function of turgor pressure. Top: Setups. Contours indicate undeformed
(dotted) and deformedmedium. Big arrows in (A) and (B) indicate applied stress. Blue arrows indicate
turgor pressure. (A) Shear stress experiment. Top: Setup. Contours indicate undeformed (dotted) and
deformedmedium. Black blocks indicate walls through which shear stress is applied (all identical). Middle:
stress-strain plots for different strengths of turgor pressure. Bottom: ratio between effective and theoretical
shear modulus µeff/µ as a function of τ. (B) Direct stress experiment. Top: Setup. Medium is fixed at the
bottom (black block), such that points at lower border can move horizontally, but not vertically. Middle:
stress-strain plots for different strengths of turgor pressure. ratio between effective and theoretical Young’s
modulus and Poisson ratio (Yeff/Y , νeff/ν) as a function of εy y . (C) Isotropy experiment. Top: Setup. Arrow
in the center symbolizes rotating force. Middle: displacement of center point for different turgor pressure
and same strength of force (14µN ) vs angle of force vector α. Length of undeformed squared
medium 100µm.

we show results of a direct stress experiment where stretch was applied in x-direction (compare Figure 7B,
left). We see that the stress-strain plots coincide for different anisotropy ratios c (Figure 7B, middle). Conse-
quently the plots Y eff

x against exx (Figure 7B, right) are also very similar and again converge to the theoretical
orthotropic Hooke’s law for small strains. We see also from (Figure 7B, right) that the effective Poisson ra-
tio νeffx decreases with higher s. We can again explain this with the decrease in prestrain ey y due to a higher
stiffness of Y eff

y caused by anisotropy.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2019. ; https://doi.org/10.1101/459412doi: bioRxiv preprint 

https://doi.org/10.1101/459412
http://creativecommons.org/licenses/by-nc/4.0/


17

Figure 7. Material properties as a function of elastic anisotropy. Left: Fine lines indicate fiber direction,
where Yy = c ×Yx . See Figure 6 for further explanation of setup illustrations. (A) Direct stress experiment -
stress in vertical direction. Left: Setup. Middle: stress-strain plots for different anisotropy ratios c. Right:
ratio between effective and theoretical Young’s modulus and Poisson ratio (Y eff

y /Y , νeffy /ν) as a function
of εy y . (B) Direct stress experiment - stress in horizontal direction. similar to subfigure (A). (C) Pure
shear stress experiment. Left: Setup. Middle: stress-strain plots for different anisotropy ratios c. Bottom:
ratio between effective and theoretical shear modulus µeff/µ as a function of τ. (D) Isotropy experiment.
Top: Setup. Arrow symbolizes rotating force. Middle: displacement of center point for anisotropy ratios c
and same strength of force (14µN ) vs angle of force vector α. Length of undeformed squared
medium 100µm. pt = 0.5 MPa ·m.
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Next we performed the shear stress experiment on the model with different anisotropy s (Figure 7C). We
see from the stress-strain plots in Figure 7C, middle that for small strain the effective shear modulus for dif-
ferent c (black lines) converges to the theoretical value of a orthotropic Hooke’s law (red lines). Additionally,
we see for the shear modulus (Figure 7C, right) that a higher anisotropy c reduces the turgor pressure caused
stiffening (compare to Figure 6B, bottom).

Finally we studied how well the anisotropy is described in the model by repeating the “rotating-force”
experiment for a constant force strength of 14 N (compare Figure 6C) inmodels with different anisotropy ra-
tios c. We plot the recorded trajectories (black lines) of the center point against theoretically expected ellipses
(red lines). We constructed the ellipses using the initial position of the center point as the origin of the coor-
dinate system, maximal displacement of the center point in x- and in y-direction (xp,max , yp,max ) as vertices,
and plotted for each s the ellipse:

x2
p /x2

p,max + y2
p /y2

p,max = 1,

where xp and yp are the x- and y-coordinate of the center mass point. We see that the recorded trajectories
match the assumed theoretical elliptic trajectories well.

Effect of plastic growth onmaterial properties
Above we demonstrated how the model’s material properties are affected by finite strain. Here we illustrate
how plastic growth affects the material properties of the model. First similar experiments as shown above
were performed, applying direct or shear stresswhile letting themediumgrowuniformly. We show the results
inFigure8A-C. It canbe seen fromFigure8AandB that theeffectiveYoung’smodulusYeff andPoisson ratioνeff

Figure 8. Material properties during growth. Fine lines indicate different system sizes (for different metric
terms h and s). (A) Direct stress experiment - growth in y-direction. Top: Setup. Medium is fixed at the
bottom (black block), such that points at lower border can move only horizontally. Black arrows indicate
direct stress. Bottom: relative error of effective Young’s modulus and Poisson’s ratio as a function of h−1. (B)
Direct stress experiment - growth in x-direction. similar to subfigure (A). (C) Pure shear stress
experiment. Top: Setup. Black blocks indicate walls through which shear stress is applied. White arrows
indicate shear stress (all same strength). Bottom: error of effective shear modulus as a function of s. (D)
Isotropy experiment. Top: Setup. Contour indicates fixed boundary of medium (for h = 1.4). Arrow
symbolizes rotating force. Bottom: error of trajectories for different h relative to displacement for α= 0,
and h = 1.0. Length of initial (h = 1.0) squared medium 100µm.
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are affected little by plastic growth, for an increase from h = 1 (or h−1 = 1) to the maximal value of
p

2 (when
remeshing happens) changes in these material properties are less than 0.01%. However, from Figure 8C we
can see that the effective shearmodulus is affected substantially by plastic growth, it changes≈ 6%, when s is
increased from 1 to the maximal value of

p
2. Moreover, the isotropy experiment (compare to Figure 5C) was

repeated in amediumwhichwefirst let grow in horizontal direction. We show the relative error of trajectories
of the center mass point (to which the rotating force is applied) for different values of h, and a strong local
force of 10 N (compare Figure 5C). We find that the maximal change in metric of the unit cells due to growth
causes a maximal relative error of ≈ 7% (compared to ideal circular trajectory).

We can conclude that growth causes a change in the metric of unit cells in our model, and that these
changes affect thematerial propertiesmainly in its shearmodulus. This artifact alsomanifests as a deviation
from the ideal isotropic behavior. As afirst applicationof ourmodelwe studied emergent residual strainfields
and bulk tissue deformation that arise due to anisotropic growth in rectangular model setups. We show data
where a maximal residual strain of 5% emerges in the tissue, similar to previous modeling work [27].

Anisotropic elongation: “root bending”
An important phenomenon in plant development is the bending of the root, for instance to grow towards
nutrients, or to follow the gravitational field. Such directional growth responses are called tropisms, and they
arise from a directional environmental signal becoming translated into a tissue level asymmetry of the plant
hormone auxin. Since auxin levels dictate cellular expansion rates, this auxin asymmetry subsequently in-
duces a growth rate asymmetry that results in bending. To illustrate the application of our method to the
study of tropisms we superimposed a growth rate asymmetry.

To model root tropism, we use a slab of tissue with initial size 76 µm ×32 µm, with Young’s moduli Yx =
40 MPa ·m and Yy = 80 MPa ·m, Poisson’s ratio ν = 0.2 and turgor pressure pt = 0.2 MPa ·m. We show the
results of the simulation in Figure 9 and in a Supplemental movie [42]. Growth happens in this setup only in
x-direction (elongation along the “root axis”), and an asymmetric growth field is used (see Figure 9, second
column) such that the upper part of the “root” grows faster than the lower part. We see that the asymmetric
growth causes a bending of the tissue, where the inner side of the arc is the side with the slower growth rate.
At 42 mi n the onset of bending can be seen. For time points 85 and 107 mi n a slight negative strain (com-
pression) in the x-direction emerges (third column), which is weaker at the ends of the medium. In these
snapshots we also see that remeshing is happening (left column) due to the growth process, starting from
the outside arc, the location of highest growth rate and “propagating as a wave” towards the inner side of the
arc. This remeshing does not cause a visible disruption of the direct strain in the x-direction (third column);
however, for the absolute shear (right column) we see that the remeshing causes a slight local distortion of
the shear strain field (see thin red line). These effects of the remeshing on the strain fields can be explained
by our findings shown in Figure 8, where we showed that plastic growth affects the shearmodulus, but hardly
affects the Young’s modulus. Later the simulation (129, and 141 mi n) shows that the negative strain in the
x-direction increases at the inner side of the arc (where the growth rate is smaller) to a maximum of −5%,
whereas the strain on the fast growing side (outer side of the arc) is minimal. Furthermore we can see the
emergence of a substantial shear strain field (see two “red eyes” in the right column). Note that throughout
the simulation strain in the y-direction was very small, which is why we choose to not show it in Figure 9 (it
is included in the Supplemental movie).

Anisotropic growth in two dimensions “leaf growth”
In many plant tissues, plastic growth is not restricted to a single direction. For example in leaf blades, tissue
growth happens in two principal directions. Additionally, in case of bidirectional growth, tissue expansion
is often anisotropic. Here we demonstrate such differential bidirectional growth in our model. For this we
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Figure 9. Application “root bending”. Anisotropic elongation (growth along root axis) causes emergence of
residual strain fields and bending of the bulk tissue.

consider an initially quadratic slab of tissuewith initial size 76µm×67µm, with Young’smoduli Yx = 40 MPa ·
m and Yy = 80 MPa ·m, Poisson’s ratio ν = 0.2 and turgor pressure pt = 0.2 MPa ·m. We show the results of
this simulation in Figure 10 and in a Supplemental movie [42]. We apply growth in both directions, and use
an asymmetric growth field (see Figure 10, second column). We see that residual strain fields emerge in the
growing tissue. FromFigure 10, third columnwe see that during growth positive strain in x-direction (stretch)
gradually increases at the upper and lower border of the tissue, whereas a negative strain in the x-direction
emerges in the center of themedium. In contrast to strain in the x-direction, in the y-directionweaker positive
strain at the left and right borders gradually increases during growth, and no compression strain in the center
happens. This can partly be explained by the elastic anisotropy of the tissue, where the stiffness in y-direction
is twice larger compared to the x-direction (compareFigure 10, fourth column) causing that the tissue is easier
deformed in x-direction than y-direction. We see that a substantial shear strain field (see four “red eyes” in
right column) emerges in the medium.
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Figure 10. Application differential growth in 2D “leaf growth”. Anisotropic growth (in both directions)
causes emergence of residual strain fields in the tissue.

Discussion
We introduced a discretemechanical growthmodel to study plant growth and development. Themodel con-
tains an orthogonally organized mesh of mass points and connecting springs, providing an intuitive resem-
blance to the typical orthogonal microfibril architecture of anisotropic, polarized plant cells. We approxi-
mate themodel’s material properties as an orthotropic Hookeanmaterial. The discrete nature of themethod
enables the incorporation of experimental data on material properties on subcellular level. Compared to
continuousmechanics approaches ourmethod is relatively easy to implement in a computationally efficient
manner, and allows usage of simpler integration schemes. We propose the method as a building block for
multi-process models. Researchers can link gene regulation, hormonal signaling, water transport and cellu-
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lar behavior to the mechanics of tissue growth and deformation.

Themodelwas used to study the consequences of growth. We found that anisotropic growth causes emer-
gent strain fields in themedium, and that an asymmetric elongation (similar to root growth) causes a bending
of thebulk tissue. Itwouldbe interesting to compareourpredictions regarding tissuebending andemergence
of strain fields to continuum mechanics models, and test them experimentally. Thusfar, the role of strain
fields in root tropisms has not been investigated. Potentially the feedback of strain on growth mechanics
could play a role in regulating growth asymmetry.

The model’s material properties were characterized in a series of simulations, and discussed deviations
from the approximated material law that arise from finite strain and plastic growth. A further limitation re-
garding material properties emerges from our choice of the coordinate system (fiber directions) to couple
the discrete method to a continuous material. In presence of shear the underlying coordinate system is not
ideally orthogonal but skewed. If under such conditions direct stress is applied, the “Poisson effect” in the
model will artificially cause a force which is not perfectly orthogonal to the stress, but skewed. Importantly,
for multi-scale biological models, the aim is to uncover how interactions between different processes shape
tissue growth, development and adaptation rather than making precise predictions. In addition, typically,
such research requires large numbers of exploratory simulations that probe different possible interactions
between processes, initial conditions and parameter regimes, as opposed to computing a fewdistinct scenar-
ios. Thus, we argue that the computational and numerical simplicity of our model outweighs its limitations
in terms of accuracy for the aims it was developed for.

The model can be extended in various directions. For example, because of the discrete nature of the
method breakage of cell wall material can be modeled with a removal of mass points, springs and hinges.
This can be useful tomodel lateral root emergence when the forming tissue breaks through upper cell layers.
In this paper we used simple growth functions to illustrate themodel. However, as a next step growth should
be formulated in terms of physiological processes. For instance, local growth can be formulated in terms of
local auxin concentrations, strain fields and cytoskeletal processes. Moreover, the method may be applied
not only to study plant tissue, but also to study other turgoid cell types of bacteria or fungi.

Appendix

A
In this section we demonstrate that for small strain, the following approximation used in Eq.8 is valid

∂Ψ̃

∂εi j
= E ′

A
− A′E

A2 ≈ E ′

A
=⇒

∣∣∣∣ A′E
A2

∣∣∣∣¿ ∣∣∣∣E ′

A

∣∣∣∣ =⇒ ∣∣∣∣ A′E
A

∣∣∣∣¿ ∣∣E ′∣∣ =⇒ ∣∣A′Ψ̃
∣∣¿ ∣∣E ′∣∣ . (37)

First, we write A in terms of strain

A = x y cos(ϕ) = x0 y0(1+εxx )(1+εy y )cos(ϕ) (38a)
= x0 y0(1+εxx )(1+εy y )cos(arctan(τ)) (38b)

= x0 y0(1+εxx )(1+εy y )(1+τ2)−1/2 (38c)

= x0 y0(1+εxx )(1+εy y )(1− 1

2
τ2 +O (τ4)) (Taylor expansion around 0) (38d)

≈ x0 y0(1+εxx )(1+εy y )(1−2ε2
x y ). (38e)
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Taking the derivatives with respect to strain, and approximating these by keeping only terms that are of the
lowest order in εwe obtain

∂A

∂εxx
= ∂A

∂εy y
≈ x0 y0 (39a)

∂A

∂εx y
= ∂A

∂εx y
≈−4x0 y0εx y , (39b)

from this it follows that
∂A

∂εxx
Ψ̃ is of O (ε2), and

∂A

∂εx y
Ψ̃ is of O (ε3), while E ′ is linear with respect to strain

components (compare Eq. 18). Therefore our approximation is valid for small strain.

Note that we can predict a scaling behavior of the errors for material properties for increasing strain. For
the shear modulus µ we can expect an error to increase quadratically with increasing shear strain. Whereas
we expect a linearly increasing error of the Young’s modulus Y for increasing direct strain.

B
Here we explain the following approximation which was used in Eq.17

∂E

∂ekl
≈ A

∑
no

C̃klnoeno . (40)

We use Eq.11 to write the left side of Eq.40 in terms of the stiffness tensor

∂E

∂ekl
= ∂

(
AΨ̃

)
∂ekl

= ∂A
(∑

nopr C̃nopr enoepr
)

2∂ekl
. (41)

Because the elements of the stiffness tensor Cnopr are proportional to A (see Eq.10),
we define Hnopr

..= Cnopr /A, to rewrite the expression to

∂
(

A2 ∑
nopr Hnopr enoepr

)
2∂ekl

= ∂A2

2∂ekl

∑
nopr

Hnopr enoepr + A2

2

∑
nopr

Hnopr
∂enoepr

∂ekl
(42a)

= 2
∂A

∂ekl
Ψ̃+ A

∑
no

C̃klnoeno . (42b)

Thus our approximation (Eq.40) implies

2
∂A

∂ekl
Ψ̃¿ A

∑
no

C̃klnoeno . (43)

We again concentrate on terms with lowest order in ε (see Eq.39) to rewrite

∂A

∂exx
Ψ̃≈ x0 y0Ψ̃ (44a)

∂A

∂ex y
Ψ̃≈−4x0 y0ex yΨ̃ (44b)

By taking the derivative with respect to direct strain components (exx ,ey y ), we obtained expressions of O (e2),
while by taking the derivative with respect to shear strain components (ex y ,ey x) we obtained expressions of
O (e3). Finally we note that the right hand term in Eq.43 is linear with respect to strain components, and thus
our approximation is valid for small strain.
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C
Here we derive Eq.22, the term which we use to compute the elastic shear force acting at a mass point

−(
C̃x y x yτ

)
A
∂ex y

∂i
=

−µ
N

N∑
n=1

 A2
n(

x2
0(n) + y2

0(n)

)
4s̃2

(n)

τn
(
1+τ2

n

)√
1−a2

n

(
an

(
y n∥∥y n

∥∥2 + xn

‖xn‖2

)
− (xn + y n)

‖xn‖
∥∥y n

∥∥
) .

We start with the derivative
∂ex y

∂i
:

∂ex y

∂i
(20)..= 1

2N

N∑
n=1

∂τn

∂i
(45a)

(21)= 1

2N

N∑
n=1

∂

∂i

 an√
1−a2

n

,with: an
..= xn · y n

‖xn‖
∥∥y n

∥∥ (45b)

= 1

2N

N∑
n=1

(
o′

u
− u′o

u2

)
, (45c)

with:

o ..= an (46a)

o′ ..= ∂an

∂i
(46b)

u ..=
√

1−a2
n (46c)

u′ ..=
∂
√

1−a2
n

∂i
. (46d)

Let us first solve the derivative 46b:

o′ = ∂an

∂i
= ∂

∂i

(
xn · y n

‖xn‖
∥∥y n

∥∥
)

(47a)

= v ′

w
− v w ′

w2 , (47b)

with:

v ..= xn · y n (48a)

v ′ ..= ∂
(
xn · y n

)
∂i

=−(xn + y n) (48b)

w ..= ‖xn‖
∥∥y n

∥∥ (48c)

w ′ ..= ∂
(‖xn‖

∥∥y n

∥∥)
∂i

=− xn

‖xn‖
∥∥y n

∥∥− y n∥∥y n

∥∥ ‖xn‖ . (48d)
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Substituting

o′ = v ′

w
− v w ′

w2 = −(xn + y n)

‖xn‖
∥∥y n

∥∥ + (
xn · y n

) xn
‖xn‖

∥∥y n

∥∥+ y n‖y n‖ ‖xn‖
‖xn‖2

∥∥y n

∥∥2 (49a)

= −(
xn + y n

)
‖xn‖

∥∥y n

∥∥ +an

(
xn

‖xn‖2 + y n∥∥y n

∥∥2

)
. (49b)

Considering the derivative 46d:

u′ =
∂
√

1−a2
n

∂i
(50a)

(46a,46b)= −1

2

2√
1−a2

n

oo′ (50b)

(46c)= −oo′

u
. (50c)

We rewrite Eq.45 into

∂ex y

∂i
(50c,45c)= 1

2N

N∑
n=1

(
o′

u
+ o2o′

u3

)
(51a)

(21)= 1

2N

N∑
n=1

(
1+τ2

n

) o′

u
(51b)

(46c,49b)= 1

2N

N∑
n=1

(
1+τ2

n

)√
1−a2

n

(
an

(
xn

‖xn‖2 + y n∥∥y n

∥∥2

)
−

(
xn + y n

)
‖xn‖

∥∥y n

∥∥
)

. (51c)

Finalizing the complete expression

−(
C̃x y x yτ

)
A
∂ex y

∂i
(10)= −

(
2µA(

x2
0 + y2

0

)
s̃2

)
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x2
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(20)= −2µ

N
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 A2
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x2
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)
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(
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n
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1−a2

n

(
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− (xn + y n)
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∥∥y n

∥∥
) .

Availability
Themodel was implemented using the C andC++ programming languages. The current version of the source
code is available as Supplemental Material [42]. The software uses the Intel threading building blocks (TBB)
runtime library as a parallelization environment (available in open source from [59]), and for visualization
the CASH library from Rob J. de Boer and Alex D. Staritsky (available in open source from [60]).
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