
 1 

Single-Cell Modeling of CD8+ T Cell Exhaustion Predicts Response to Cancer 

Immunotherapy 

 
Guangxu Jin1,5,*, Gang Xue2,5, Rui-Sheng Wang3, Ling-Yun Wu4, Lance Miller1, Yong 
Lu2,*& Wei Zhang1,* 

 
1Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 
 
2Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-
Salem, NC 27101 
 
3Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, 
MA 02115 
 
4Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China 
100190 
 
5These authors contribute to this work equally. 
 
*Correspondence should be addressed to gjin@wakehealth.edu, yolu@wakehealth.edu, or 
wezhang@wakehealth.edu  
  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 2, 2018. ; https://doi.org/10.1101/459867doi: bioRxiv preprint 

https://doi.org/10.1101/459867


 2 

 

Abstract 

Accurate prediction of response to immune checkpoint blockade (ICB) and simultaneous 

development of new efficacious ICB strategy are unmet needs for cancer immunotherapy1-5. 

Despite the advance of existing clinical or computational biomarkers6-10, it is very limited in 

explicating phenotypic variability of tumor-infiltrating CD8+ T lymphocytes (TILs) at the 

single-cell level, including tumor-specificity11,12 and distinct exhaustion profiles13-16, that are 

crucial for the responsiveness to ICB. Here we show that a quantitative criterion, D value, for 

evaluating tumor-specific TIL exhaustion, identified by our new high-dimensional single-cell-

based computational method, called HD-scMed, accurately predicts response to the ICB, i.e., 

aPD-1, aCTLA-4, and aPD-1+aCTLA-4, with the performance of AUC=100% in human 

tumors. D-value is the Euclidean distance from a subset of exhausted CD8+ TILs, identified as 

Pareto Front (PF)18-21 by HD-scMed within the high-dimensional expression space of a variety 

of exhaustion markers, to the baseline TILs excluded by the PF. We phenotypically 

distinguished two types of TIL “exhaustion” by the D value, namely “D Extremely-high” in 

non-responders, associating with high tumor-specificity imprinted with enhanced exhaustion 

and inactivated effector and cytotoxic signatures; and “D low” specific to responders, 

alternatively enriched with T cell activation and cytolytic effector T cell signatures. We also 

observed a large portion of “D negative” bystander T cells irrelevant to response. Notably, D-

low TILs in clinical responders display very low LAG3 expression. To reverse the 

functionality of the LAG3-high TILs after receiving aPD-1+aCTLA-4, we combined aLAG3 

with aPD-1+aCTLA-4 in treating a murine tumor model. Remarkably, aLAG3+aPD-

1+aCTLA-4 displays extraordinary antitumor efficacy to eradicate advanced tumors, which is 

associated with burst GZMBhi TIL populations; whereas aPD-1+aCTLA-4 or aPD-

1+aCTLA-4 plus other ICBs as control only induce moderate tumor growth inhibition. Our 

study has important implications for cancer immunotherapy as providing both accurate 

predictions of ICB response and alternative strategy to reverse ICB resistance.  
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Main Text 

Characteristics of TIL exhaustion are generally considered as low effector function, decreased 

proliferation, and diminished cytokine production13-16. However, the challenges in 

understanding the key role of TIL exhaustion, especially in determining responses to ICBs, 

come with the identification of appropriate exhaustion biomarker or criterion. At the single-

cell level, the quantitative exhaustion criterion is required to be able to demonstrate 

fundamentally distinct types of T cell functions represented by various functional molecules, 

such as, surface exhaustion markers (PD-1, CTLA-4, LAG3, TIM3, VISTA, TIGIT, etc)22-26, 

related transcriptional factors (EOMES, T-BET, PRDM1, etc)15, effector molecules (IFNG, 

GZMB, GZMA, PRF1, FASLG)27, and tumor-specificity markers (CD39 and CD103)11,12. 

The developed D value as such a quantitative exhaustion criterion models TILs within a high-

dimensional expression space defined by a number of exhaustion related markers (Online 

Methods, Extended Data Fig. 1, Supplementary Methods). To predict response to ICB, we 

used two single-cell mass cytometry (CyTOF) datasets17, including 11 specimens from 7 

melanoma patients received the ICBs of aPD-1, aCTLA-4, or aPD-1+aCTLA-4 and another 

34 mouse specimens from melanoma mouse tumors received the ICBs of aPD-1 or aCTLA-4 

(Online Methods, Extended Data Fig. 2-3, Supplementary Table 1-2). D-values for the 

tumors were identified from a 11-dimensional expression space (immune checkpoints or ICs: 

PD-1, CTLA-4, LAG3, and TIM3, other relevant markers: KLRG1, Blimp1, BCL6, Ki-67, and 

CD127, and the related transcriptional factors or TFs: EOMES and T-bet). The proportion of the 

PF single cells in all TILs is 18%±5% (Fig. 1a, Supplementary Table 3). We identified that the 

exhausted CD8+ TILs of the non-responders have significantly higher D-values than those of 

responders (P < 10-16, Mann-Whitney U test), refer to Fig. 1b,e. The proportion of D-high TILs 

in non-responders is significantly higher than that in responders (P < 10-15, Fisher’s exact test, 

Fig. 1c-d). By analyzing the contributions (DEi) of the exhaustion markers to D values, we 

observed significant contributions from PD-1, CTLA-4, and LAG3 to high D values in non-

responder (Fig. 1g, P < 10-16, Mann-Whitney U test). Thus, D value predicts clinical response to 

ICBs in human tumors accurately, that is, AUC=100% (Online Methods, Fig. 1f). Similarly, D 

value predicts ICB responses of mouse tumors at the accuracy of AUC=83% (Extended Data 

Fig. 4c). More importantly, the prediction accuracy is not affected by the number of 

exhaustion markers used in the model (Extended Data Fig. 9, an example with 6 markers). 
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Next, to explicit fundamentally different T cell functionalities as well as phenotypic gene 

signatures underlying D-high and D-low TILs, we analyzed another single-cell RNA-seq 

(scRNA-seq) dataset28 of 1,233 TILs pooled from 8 melanoma patients (Online Methods, 

Extended Data Fig. 5-6). Most of these patients received the ICBs of aPD-1, aCTLA-4, or 

aPD-1+aCTLA-4 (Supplementary Table 4). We used LAG3, TIGIT, HAVCR2 (TIM3), 

PDCD1 (PD-1), CTLA-4, IRF4, EOMES, and CD160, as exhaustion markers (Fig. 2a, 

Extended Data Fig. 6, Supplementary Text). We divided the PF TILs into four categories: D 

Extremely-high (top 1%), UQ_90 (D-high, top 2%-10%), UQ_75 (D-high, upper quartile 

excluded top 10%), and D-low (lower 75%), ref to Fig. 2a, Supplementary Table 5. D-high and 

D-low as well as non-PF TILs (TILs excluded by PFs) show distinct activation of T cell 

signaling pathways and functions, including cytotoxic T cell signaling, CD28 signaling, PCKe 

signaling, cytokine-related gene signature, and exhaustion gene signature (Online Methods, 

Fig.2b-c, Extended Data Fig. 7). It seems that non-PF TILs are resting T cells displaying 

neither exhaustion nor cytotoxicity27, but enriched with a central memory signature including 

markedly increased expression of IL-7R, LEF1, SELL, CCR7, and VAX2 (Fig. 2d). Most 

importantly, non-PF TILs have significantly low tumor-specificity described by 

CD39low/negCD103low/neg11,12 (Fig. 2e). This explains why we observed a large portion of non-PF 

TILs that seem to be irrelevant to treatment response because they are tumor-infiltrating 

bystander T cells.  

 

D-high and D-low TILs show fundamentally distinct signaling signatures. The TILs with D 

Extremely-high display highest exhaustion and inactivation of both cytotoxicity and effector 

functions, together with decreased IFN-g production. With the decrease of D values which comes 

with downregulation of T cell exhaustion, the tumor-specific TILs with UQ_90 and UQ_75 

demonstrate a gradually upregulated activation of effector T cell signatures, including 

cytotoxicity and T cell activation through TCR, PCKe and CD28 signals. In addition, the less-

exhausted D-low TILs are tumor-specific cytotoxic effectors (Fig. 2b-c). Of note, the TILs with 

D-high are terminally differentiated effector (KLRD1 and ZEB2), with the high expression of T 

cell exhaustion (PD-1, LAG3, CTLA-4, TIM3, etc.) and tumor specificity markers (CD39 and 

CD103), but inactivated in prosurvival and long-lived gene signature (e.g., IL7R, LEF1, and 
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SELL), proliferation (Ki-67), cytokine production (INFG, IL2, and TNF), and cytotoxicity 

(GZMA, GZMB, PRF1, and FASLG). The result from scRNA-seq analysis is highly consistent 

with the observed D-high TILs in non-responders identified from the CyTOF data. The TILs 

with high D values possess their unique exhaustion accompanied by high tumor-specificity and 

irreversible T-cell dysfunction (at least not by aPD-1/aCTLA4), which lead to the therapy 

resistance of the present ICBs in non-responders.  

 

To determine whether the good outcome of the clinical responders is determined by specific 

exhaustion markers after receiving aPD-1, aCTLA-4, or aPD-1+aCTLA-4, we further defined 

the contribution ratio of each marker to the D value, that is, DEi/Ei, the ratio between increased 

expression level of each marker in a PF single cell compared to its non-PF baseline single cells 

(DEi) and the expression level of this marker in this PF single cell (Ei), see Online Methods, 

Extended Data Fig. 1. Comparison of the contribution ratios of the exhaustion markers between 

responders and non-responders revealed that LAG3 has low contribution to D values in most PF 

TILs of responders (Fig. 3a,c). In other words, LAG3 does not show high expression levels in 

most PF TILs of responders. Analysis of the LAG3-low PF TILs by CD45RA, CD45RO, and 

CD127, revealed that these exhausted TILs show high effector but low memory function in the 

responders (Extended Data Fig. 8a). To predict efficacious ICB combinations based on the 

contribution ratios of the exhaustion markers, including PD-1, CTLA-4, LAG3, and TIM3, we 

defined an in-silico exhaustion value for each tumor by using the burst levels of DE/E and D 

values of the PF TILs (exhausted TILs), refer to Online Methods. The in-silico TIL exhaustion 

value, Ex, represents to what extent the selected exhaustion markers included in a new ICB 

combination have burst expression in D-high TILs after receiving aPD-1, aCTLA-4, or aPD-

1+aCTLA-4 (Online Methods). By associating the predicted Ex values of tumors with their 

clinical responses to ICBs, we identified the important roles of LAG3 in developing 

alternative ICB strategies, e.g., aLAG3+aPD-1+aCTLA-4 (Fig.3b). The role of LAG3 in 

ICB combinations remains to be identified29,30 though the combination of aLAG3 with aPD-1 

or aCTLA-4 in ongoing clinical trials (NCT01968109).  
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Importantly, we validated the superiority of the new ICB combination, aLAG3+aPD-

1+aCTLA-4, in eradicating established mice tumors and prolonging mice survival, compared 

to aPD-1+aCTLA-4 and other ICB combinations with aPD-1+aCTLA-4. By in vitro 

experiments, we firstly observed significantly upregulated expression levels of PD-1, CTLA-

4, and LAG3 in the activated CD8+ T cells after co-culture with MC38-OVA tumor cells (Fig. 

4a, P < 10-16, Two-sample Kolmogorov-Smirnov test), but no changes in the presence of 

aPD-1 + aCTLA-4 or isotype-matched antibody (IgG), see Fig. 4b. We next tested the 

antitumor capacity of aLAG3+aPD-1+aCTLA-4, compared to PBS, IgG, aLAG3, aPD-

1+aCTLA-4, in the CT26 mouse model that shows resistance to most known ICBs. As 

expected, PBS, IgG, aLAG3, aPD-1+aCTLA-4 show resistance although moderate 

improvement for aPD-1+aCTLA-4 (Fig. 4c). Strikingly, aLAG3+aPD-1+aCTLA-4 

eradicated the large established tumors with long-term tumor-free survival (Fig. 4c-e). 

Additionally, we also tested the antitumor ability of other ICB combinations, e.g., 

aTIM3+aPD-1+aCTLA-4 and aTIGIT+aPD-1+aCTLA-4, but no better improvement than 

aPD-1+aCTLA-4 treatment was observed (Extended Data Fig. 10a). Mechanistically, 

aLAG3+aPD-1+aCTLA-4 leads to markedly increased tumor-infiltrating CD4+ and CD8+ T 

cells, compared to other treatments (Fig. 4f). The statistical analysis by normalizing T cell 

number to per mg tumor demonstrates a dramatical increase of CD4+ and CD8+ T cells in the 

treatment by aLAG3+aPD-1+aCTLA-4 (Fig. 4g). Lastly, we implemented high-dimensional 

single-cell analysis by CyTOF on the tumors from the 5 treatment groups (Online Methods, 

Extended Data Fig. 10b). Notably, the T cell populations from aLAG3+aPD-1+aCTLA-4 

show extremely high expression levels of GzmB (4 times higher than aPD-1+aCTLA-4 and 

~300 times higher than other treatments) and high tumor specificity, refer to Fig. 4h and 

Extended Data Fig. 10b. 

 

Overall, our high-dimensional single-cell based computational model provides a 

comprehensive evaluation of CD8+ TIL exhaustion by modeling CD8+ TILs in a high-

dimensional expression space. The new computational biomarker, D value, plays a key role in 

predicting clinical response to ICB and discovering alternative efficacious ICB combination. 

Detailed investigation of the D-values by the marker contributions led to the observation of 
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low expression of LAG3 in the clinical responders and discovery of the new combination of 

aLAG3 with aPD-1+aCTLA-4 that aims to reverse the LAG3-high TILs in non-responders. 

We validated the efficacy of the new ICB in a remarkable murine model for cancer 

immunotherapy. High-dimensional single-cell analysis by CyTOF displayed the dramatically 

increased GzmB in most TILs after aLAG3+aPD-1+aCTLA-4. Our results demonstrate the 

importance of characterizing and modeling of CD8+ TIL exhaustion by the high-dimensional 

markers representing fundamentally distinct types of T cell functions at the single-cell level. 
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Methods.  

Cell lines 

CT26 and MC38 murine colon carcinoma cells were purchased from ATCC. MC38-OVA cells 

were generated by transducing MC38 cells by OVA-encoding lentivirus. Cells were cultured in 

RPMI 1640 Medium (Invitrogen) supplemented with 10% heat-inactivated fetal bovine serum 

(Thermo Scientific), 100 U/ml penicillin-streptomycin, and 2 mM L-glutamine (both from 

Invitrogen).  

Mice 

BALB/c (Stock No: 000651), C57BL/6-Tg(TcraTcrb)1100Mjb/J (Stock No: 003831| OT-1) mice 

were purchased from The Jackson Laboratory. Male and female 6- to 8-week-old mice were used 

for each animal experiment. All experiments complied with protocols approved by the 

Institutional Animal Care and Use Committee at the Wake Forest School of Medicine. 

Reagent 

IgG control, aPD-1 (clone RMP1-14), aCTLA-4 (clone UC10-4F10-11), aLAG3 (clone 

C9B7W), aLAG3 (clone RMT3-23), and aTIGIT (clone 1G9) were purchased from BioXcell. 

Human IL-2 was purchased from R&D Systems. 

In vitro cell coculture 

Naïve CD8+ T cells were purified from the spleens of OT-I mice by isolation kit (STEMCELL 

Technologies, Cat#19858) according to the manufacturer’s protocol. OT-I-specific naïve CD8 T 

cells were cultured for 5 days with Dynabeads (cat#11452D, Thermo Fisher) in the presence of 

hIL-2(100 U/ml). After cultured for 5 days, the activated CD8 T cells were cocultured with 

0.3×106 MC38-OVA cells plus control IgG or PBS or MC38-OVA cells plus aPD-1 and 

aCTLA-4 for 48 hours in the presence of IL-2 (50 U/mL).  

Flow cytometry 

FITC-, PE- or eFluor-conjugated mAbs (1:100 dilution) were used for staining after Fc 

blocking. Samples were acquired with Fortessa flow cytometer and data were analyzed with 

Flowjo software. 

In vivo murine tumor experiments 

BALB/c mice were inoculated subcutaneously (s.c.) at the right flank with 1×106 CT26 tumor 

cells in 0.1 mL of PBS. Treatment was started at day 7 when tumors area reached about 50 

mm2 (~8×7 mm). IgG control (100 µg, ~4 mg/kg), aPD-1 (100 µg, 4 mg/kg), aCTLA-4 (100 
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µg, 4 mg/kg), aLAG3 (100 µg, 4 mg/kg), aTIM3 (100 µg, 4 mg/kg), and aTIGIT (100 µg, 4 

mg/kg), alone or in combination, were intraperitoneal (i.p.) injection on days 7 and 10 after 

tumor injection. Tumors were measured by caliper and tumor area were calculated as width × 

length. At the time of sacrifice for analysis, mice were euthanized using CO2 and subsequent 

cervical dislocation.  

Mass cytometry antibodies  

Metal conjugated antibodies were purchased from Fluidigm or conjugated to unlabeled 

antibodies in our lab. All non-platinum conjugations were performed using Maxpar Antibody 

Labeling Kit (Fluidigm) according to the manufacturer’s protocol and were performed at 100 

mg scale. Antibodies include:  89Y-CD45, 141Pr-Gr1, 142Nd-CD39, 145Nd-CD69, 145Nd-CD8a, 

147Sm-CD160, 148Nd-Ki67, 149Sm-CD19, 150Nd-CD44, 151Eu-CD25, 152Sm-CD3e, 153Eu-PD-L1, 

154Sm-CTLA4, 155Gd-TIGIT, 156Gd-KLRG1, 158Gd-Foxp3, 159Tb-2B4, 160Gd-Tbet, 162Dy-

TIM3, 164Dy-CD62L, 165Ho-IFNg, 167Er-Nkp46, 169Tm-VISTA, 170Er-EOMES, 171Yb-GzmB, 

172Yb-CD11b, 174Yb-LAG3, 175Lu-CD127, 176Yb-ICOS, 209Bi-CD11c and 194Pt-Live/Dead. 

Every antibody was used at 1:100 dilution on samples. 

Mass cytometry analysis of murine tumors  

Tumors were dissected, manually dissociated, and digested enzymatically with Collagenase D 

(Sigma) and DNase I (Roche) in PBS containing 2% FBS for 20 min at room temperature with 

continuous agitation. Add EDTA to a final concentration of 10mM and incubate at room 

temperature for 5 min. Pour the entire suspension through a 70 um filters into RPMI-1640 

supplemented with 10% FBS. Filtered cells were then washed twice with FACS buffer and total 

cell concentration determined using an automated cell counter (Thermo Fisher). 2 × 106 or fewer 

cells per tumor were performed by cell surface staining, cytoplasmic antigen staining, and 

nuclear antigen staining according to the manufacturer’s protocol (Fluidigm). Samples were 

shipped to the CyTOF Core of Dana-Farber Cancer Institute and then analyzed using a CyTOF2. 
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Methods1

CyTOF and scRNA-seq datasets.2

We used three single-cell datasets from CyTOF and scRNA-seq platforms in our analyses, that3

is, human melanoma CyTOF data, mouse melanoma CyTOF data, and human melanoma scRNA-4

seq data. Human melanoma CyTOF data include 14 specimens from 7 patients (n = 11, tumor5

tissues) and 3 healthy donors (n = 3, PBMC). These patients received αPD-1, αCTLA-4, or αPD-6

1+αCTLA-4, Supplementary Table 1. The responses to ICB are progressive disease or PD,7

partial response or PR, and stable disease or SD. The PBMC samples from the 3 healthy donors8

are the baseline control for the ICB. The specimens for the responses to ICB are PD (n = 6 from 29

patients), PR (n = 1 from 1 patient), and SD (n = 4 from 4 patients). Mouse melanoma CyTOF data10

include 52 tissue specimens (n = 52) from 34 mice received αPD-1+GVAX or αCTLA-4+GVAX11

(n = 34) and 18 control mice that only received GVAX tumor vaccine (n = 18), Supplementary12

Table 2. The tumor volumes of the 34 mice after ICB therapy and the 18 control mice were derived.13

Human melanoma scRNA-seq data include 19 tumor tissue specimens from 19 patients, in which14

8 patients (n = 8) have more than 50 CD8+ TILs. These patients received αPD-1, αCTLA-4, or15

αPD-1+αCTLA-4, Supplementary Table 4.16

The CyTOF data were bead-normalized and debarcoded mass cytometry. We applied Flow-17

SOM analysis to the raw data. The expression values were arcsinh transformed by the antibod-18

ies for transformation (Supplementary Tables 5-6). In order to apply HD-scMed to the tumors19

and compare the tumors, we further applied upper-quartile normalization to the processed CyTOF20

data. The CD8+ TILs were identified by consensus clustering of the antibodies for cell linage21

1
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(Supplementary Tables 5-6, Extended Data Figs. 2-3). The scRNA-seq data were the processed22

data that were normalized by house-keeping genes as described in ref.23

High-dimensional single-cell based computational method (HD-scMed).24

HD-scMed identifies exhausted TILs from a high-dimensional expression space defined by a va-25

riety of exhaustion markers, including immune checkpoints and related transcriptional factors26

(Extended Data Fig. 1). The number of exhaustion markers included in HD-scMed is determined27

by the available antibodies in the CyTOF data and the functionality of diverse exhaustion mark-28

ers in the scRNA-seq data. The mathematical model utilized by HD-scMed is a well-established29

multiple-objective optimization model, Perato Optimization (PO). The key role of the PO model30

is to facilitate identification of a subset of CD8+ TILs with exhaustion in terms of all considered31

exhaustion markers within the high-dimensional expression space.32

Multiple-objective optimization model, Perato Optimization.33

A general multiple-objective optimization model (MOO) comprises a set of n decision variables,34

x, a set of k objective functions, y, and a set of constraints, e(x) ≤ 0. Objective functions and35

constraints are functions of the decision variables31.36

MOO:


max

x
y = f(x) = [f1(x), f2(x), . . . , fk(x)]

subject to x ∈ Ω

where Ω = {x = (x1,x2, . . . ,xn) ∈ X|e(x) = [c1(x), c2(x), . . . , cm(x)] ≤ 0} is called as a fea-37

sible set, containing the set of decision vectors x that satisfies the constraints e(x) ≤ 0.38

2
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In this MOO model, decision variables, x, represent the CD8+ TILs that are coded by the39

molecules, genes or proteins, from Ω, objective values, y denote the expression levels of the ex-40

haustion markers from these CD8+ TILs (x), available in the CyTOF or scRNA-seq data. But the41

issue is that the mathematical expression of the objective functions, f(x), are unknown. Alterna-42

tively, Pareto Optimization (PO) was considered.43

PO:


max

y
[y1,y2, . . . ,yk]

subject to y ∈ Θ

(1)

The PO model does not require the exact expression of the mathematical equation, f(x), in the44

MOO model. The variables, y, denote the expression levels of exhaustion markers, E, across the45

TILs. The feasible region of the PO model mapped from decision space X to the objective space46

Y, is denoted by Θ. The objective space, Θ, i.e., the high-dimensional expression space, contains47

the points defined by all candidate TILs of interest, each of which, yj =
[
yj

1,y
j
2, . . . ,y

j
k

]
, j ∈ X,48

represents the expression levels of the markers from a TIL j.49

For the application of HD-scMed to human CyTOF data, the exhaustion markers (i =50

1, 2, . . . , 6) are the ICs, PD-1, CTLA-4, LAG3, and TIM3, and the TFs, EOMES and TBET. In the51

PO model, each yj is defined by the expression levels of the 6 exhaustion markers from a TIL j,52

j ∈ X. The expression levels of the TIL j, yj , is expressed as yj =
[
yj

1,y
j
2, . . . ,y

j
6

]
, j ∈ X. For53

mouse CyTOF data, each yj is defined by the exhaustion markers, PD-1, TIM3, TIGIT, VISTA,54

EOMEs, and TBET. For human scRNA-seq data, we considered 15 well-studied exhaustion mark-55

ers initially. But due to the diversity of the 15 markers in determining functionality of exhaustion,56

we identified 8 markers from 3 clusters of the 15 markers in the final model (Supplementary Text,57

3
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Extended Data Fig. 5), that is, PDCD1 (PD-1), CTLA-4, LAG3, TIGIT, HAVCR2 (TIM3), IRF4,58

CD160, and EOMES.59

Pareto dominance.60

The PO model relies on a Pareto dominance relationship, �, defined for any two single cells in the61

decision space, Ω, to identify which TILs are exhausted. If two TILs have a � b, or say, TIL a62

dominates TIL b, the expression levels of the k markers in a are higher than or equal to those of63

b, but a 6= b. More precisely, we have64

a � b (a dominates b)⇔ ya > yb (2)

where ya and yb are the marker expression levels of the candidate TILs, a and b. If we have65

ya > yb, we need the follows.66

ya = yb ⇔ for any i ∈ {1, 2, . . . , k} : ya
i = yb

i

ya ≥ yb ⇔ for any i ∈ {1, 2, . . . , k} : ya
i ≥ yb

i

ya > yb ⇔ ya ≥ yb and ya 6= yb

Perato front or PF.67

In this paper, Perato front or PF is used to identify exhausted TILs in the high-dimensional expres-68

sion space defined by the exhaustion markers. The PF TILs are also called nondominated TILs.69

Precisely, for a subset Ω′ ⊆ Ω, the function ℘(Ω′) defines the set of nondominated decisions in70

4
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Ω′:71

℘(Ω′) = {a ∈ Ω′|a is nondominated regarding Ω′} (3)

where72

a is nondominated regarding Ω′ ⇔6 ∃b ∈ Ω′ :b � a

The ℘(Ω′) is the nondominated set with regard to Ω′. The set of mapped objective vectors,73

f(℘(Ω′)), is the Pareto-optimal front for Ω′. Moreover, the set X℘ = ℘(Ω) is called the Pareto-74

optimal set and the set Y℘ = f(X℘) comprises the Pareto-optimal front, or for short, Pareto75

front (PF). The PF contains the exhausted TILs in context of the k-dimensional exhaustion mark-76

ers. The PF is a set of the expression level vectors, in which each vector denotes the expression77

levels of the markers from one single cell within the PF. In this paper, to simplify the terms, we78

called the exhausted TILs in the PF as PF TILs.79

Strength score and fitness score.80

Identification of the PF TILs, as shown in equation of (3), by HD-scMed requires strength score81

and fitness score defined by Pareto dominance. The detailed description of the algorithms used82

in PO model, such as Strength Pareto Evolutionary Algorithm 2 (SPEA2), can be found in Sup-83

plementary Text. Of note, our PO problem for identification of exhausted TILs is different from84

traditional PO problems defined by continuous variables or known objective functions, f(x). In85

our PO model, the decision space Ω of the candidate TILs has a fixed number of n, which is the86

CD8+ TIL number in the CyTOF data or scRNA-seq data. However, the decision space Ω in the87

traditional PO problem was defined by continuous variables or known objective functions. This88

5
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reality determines that the traditional PO problems cannot enumerate all decisions from decision89

space, requiring evolutionary algorithms, e.g., SPEA2.90

Strength score and fitness score were designed by SPEA2 to evaluate which decisions should91

be included into PF (Supplementary Text). In our HD-scMed, evolutionary algorithms are not92

required but the strength score and fitness score are still needed to identify PF TILs. Based on93

SPEA2, we defined the strength score S and fitness score F .94

S(a) = |{b|b ∈ Ω ∧ a � b}|

and95

F (a) =
∑

c∈Ω∧c�a

S(c)

S and F scores make it feasible to quantify the exhaustion of TILs by the high-dimensional96

exhaustion markers. High strength score and low fitness score define exhausted TILs in this study.97

Thus, the PF TILs were defined as those TILs with strength score higher than zero and fitness score98

that equals to 0, i.e.,99

A TIL a is a PF TIL⇔ S(a) > 0 and F (a) = 0 (4)

D value.100

D value is designed for further categories of PF TILs, exploring the extents of exhaustion deter-101

mined by the high-dimensional exhaustion markers. The D value for a PF TIL a is defined as102

the Euclidean distance or straight-line distance between a and its dominating non-front TILs, Ω′′,103

6
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where Ω′′ ⊆ Ω satisfying that104

Ω′′ = {b ∈ Ω|a � b}

Precisely, D value for the TIL a is called Da,105

Da =

∑
b∈Ω′′ Da,b

|Ω′′|
(5)

where Da,b is defined by the ∆Ei of the exhaustion markers in the high-dimensional expression106

space, Ω. ∆Ei = ya
i − yb

i .107

Da,b =
k∑

i=1

∆Ei (6)

In the analysis of human melanoma CyTOF data (Fig. 1), the PF TILs were classified into D108

high and D low categories. D = 1.25 is the threshold for D high and D low categories. D = 0.25,109

0.5, 0.75, and 1, are the additional thresholds for D low 5, D low 4, D low 3, D low 2, and D low110

1. D = 1.5, 2, 2.5, and 3, are the additional thresholds for D high 1, D high 2, D high 3, D high 4,111

and D high 5.112

D value for a tumor, t, is defined by the D values of its PF TILs, Ω′t. D value at the tumor113

level, Dt, is critical for predicting response to ICB.114

Dt =

∑
a∈Ω′

t
Da

|Ω′t|
(7)

Burst value.115

Burst value is extended from the ∆E value required for D value. The goal of Burst value is116

to investigate how the exhaustion is regulated by specific exhaustion markers after the tumor or117

7
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the patient received the ICB therapy. The rationale behind Burst value is that resistance to ICB118

should be caused by the irreversible high exhaustion (at least not by αPD-1 or αCTLA-4) through119

regulating the burst expression of specific exhaustion markers. For a PF TIL, a, the Burst value for120

the marker i, is defined as Ba,i,121

Ba,i =
∆Ea

i

ya
i

× 100 (8)

where ∆Ea
i = ya

i −
∑

b∈Ω′′ yb
i

|Ω′′| , Ω′′ = {b ∈ Ω|a � b}. The Burst value ranges from 0 to 100. 0122

means no expression change by comparing the PF TIL with its baseline non-front TILs whereas123

100 indicates there is a burst from 0 to a high value for this exhaustion marker in the TIL after the124

tumor or the patient received the ICB therapy.125

Predicting responses to ICB by D values at the tumor level126

As shown in Fig. 1 and Extended Data Fig. 4, the D values at the tumor levels, Dt, are highly127

associated or correlated with responses to ICB. This is because that D value highly represents the128

exhaustion of CD8+ TILs by considering the high-dimensional exhaustion markers. To further129

evaluate the importance of D values in predicting responses to ICB, we constructed the prediction130

model powered by a 5-fold cross-validation supporting vector machine (SVM). The x variables are131

the D values from the tumors, and the y variables for predictions are the responses to ICB from132

human patients or the tumor volumes derived from the mice after receiving ICB. The prediction133

performance is evaluated by the Receiver operating characteristic (ROC) curves. The prediction134

accuracy is described as the Area Under the Curve (AUC), which ranges from 50% to 100%.135

Predicting new combination strategy for ICB by both D values and Burst values of PF TILs136

To figure out which exhaustion markers have burst expression in the PF TILs after the tumor137

8
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received ICB and how these markers contribute to the responses to ICB, we developed a computa-138

tional strategy to evaluate the consistency between the D values and Burst values of a combination,139

C, of specific exhaustion markers, that is, the in silicon exhaustion value, Ex. For a tumor, t, and140

its PF TILs, Ω′t, the consistency between D values and Burst values for the PF TILs, DΩ′
t

and BC
Ω′

t
,141

is defined as follows.142

ExC
t =

DΩ′
t
·BC

Ω′
t

‖DΩ′
t
‖ × ‖BC

Ω′
t
‖

(9)

where DΩ′
t

= {Da|a ∈ Ω′t} and BC
Ω′

t
= {BC

a |a ∈ Ω′t}.143

With the changes of the combinations of exhaustion markers, i = 1, 2, . . . , k, the Ba values144

for the marker combinations are updated. For a marker combination, C, the Ba is defined as145

follows.146

BC
a =

∑
i∈CBa,i

|C|

As shown in Fig. 3b, the prediction of the alternative strategy for ICB combination is based147

on the association of the exhaustion values, ExC
t , and the responses to ICB in both responders and148

non-responders. This prediction was implemented to human melanoma CyTOF data only. Pre-149

cisely, the exhaustion values are ExC
t (t ∈ NR and R), of a marker combination, C, where NR150

includes the tumors from PD response and R is the set of the tumors from PR and SD responses.151

The significant exhaustion marker combinations were predicted by the statistical P value from the152

association between the exhaustion values and ICB responses. P < 0.01, Mann−Whitney U test.153

Pathway or gene signature activation154

The pathway analyses were implemented by the Ingenuity Pathway Analysis (IPA) software155

9
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(https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/). The statistical P156

values identified for the enriched signaling pathways are the p-values from Fisher′s exact test that157

are adjusted by Benjamini-Hochberg (B−H) method. The activation scores for pathways and gene158

signatures were calculated as follows,159

A =
a− b√
n

(10)

where a is the number of upregulated genes, b is the number of downregulated genes, and n is the160

total gene number in the pathway or gene signature.161

Statistical analyses.162

We have implemented the statistical analyses by R. Mann−Whitney U test calculates the two-163

sides p-values. Pearson product-moment correlation coefficient test returns the 2-tailed p-values.164

Analysis of Variance (ANOVA) test is carried out by one-way ANOVA . The P values are from the165

F -distribution. A multiple-testing corrected P value, q value, is calculated using the Benjamini-166

Hochberg method for the DEGs calculated by Student′s t test. The DEGs were defined by P167

value less than 0.001 and corrected p-values less than 0.01. The corrected p-values by Benjamini-168

Hochberg (B−H) method were also used for the Fisher′s exact test employed for the pathway169

analysis in IPA software. The enriched signaling pathways were identified by B−H P values with170

a threshold of 0.05. The P values from Fisher′s Exact Test is right-tailed in the IPA software.171

Software availability.172

Software used to generate all analyses in this manuscript is publicly available as a Python package,173

HD-scMed (https://github.com/guangxujin/HDscMed) and included here as Supplementary Soft-174

ware. HD-scMed can be accelerated by GPU computing or high-performance computing (HPC).175
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Data availability.176

Full CyTOF data sets, scRNA-seq data set, and command lists to identify the POFs and the quanti-177

tative values are included as Supplementary Data 1-3. The published data used in this study can178

be accessed in the Gene Expression Omnibus under accession numbers GSE72056, and the Flow179

repository (https://flowrepository.org/) under accession FR-FCM-ZY6C and FR-FCM-ZY6A.180
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Figure 1. D value from HD-scMed in distinguishing clinical responses to ICB. Clinical responses include 

PD: progressive disease, PR: partial response, and SD: stable disease. ICBs are PD-1, CTLA-4, and PD-

1+CTLA-4. ND: PBMC samples from healthy donors were used as the baseline for ICB samples. (a). 

Identification of Pareto front (PF) TILs as exhausted TILs in the high-dimensional expression space. TIL 

exhaustion is evaluated by HD-scMed in the high-dimensional expression space defined by PD-1, CTLA4, 

LAG3, EOMES, TIM3, and TBET, from human CyTOF antibody panel (Online Methods, Extended Data 

Fig. 1). Shown is a small portion of PF TILs identified as exhausted TILs by HD-scMed. (b). D value 

distributions in tumors with different clinical responses. D value is defined as the Euclidean distance or straight-

line distance in the 11-dimensional expression space by the expression levels of the 11 exhaustion markers. D 

value for each PF TIL is the Euclidean distance between the PF TIL and its baseline non-front TILs that are 

dominated by the PF TIL (Online Methods, Extended Data Fig. 1a-b). (c). Analysis of D-low and D-high PF 

TILs of the tumors from non-responders (PD) versus responders (PR or SD) by the threshold of D = 1.25. 

Fisher’s exact test. (d). Analysis of D-low and D-high PF TILs of the tumors from non-responders (PD) versus 

responders (PR or SD) by the threshold of D = 2.5. Fisher’s exact test. (e). An instance to show the difference of 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 2, 2018. ; https://doi.org/10.1101/459867doi: bioRxiv preprint 

https://doi.org/10.1101/459867


D-value in the TILs of a non-responder (NR) and a responder (R). Both patients received the combination 

therapy of PD-1+CTLA-4 by ipilimumab+nivolumab. Tumor 170-b is from the NR patient with progressive 

disease whereas tumor 227 is from the R patient with stable disease. The D-value for each tumor is averaged 

from those of PF TILs of this tumor. (f). ROC curve. The prediction accuracy of D value in distinguishing the 

tumors of non-responders from those of responders is AUC = 100. 5-fold cross-validation supporting vector 

machine (SVM). AUC: The area under the ROC curve. ROC: Receiver Operating Characteristic. (g). Heatmap 

of E values of the 8 exhaustion related markers by the TILs from D low to D high. 𝐷 = √∑ ∆𝐸𝑗
26

𝑗=1
2

, where E 

value of each marker is the expression level difference between the PF TILs and their baseline non-front TILs. 

D value category is classified by D values of the PF TILs (Online Methods). Heatmap of another 3 exhaustion 

related markers is shown in Extended Data Fig. 8b. 
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Figure 2. TILs with D low and D high show distinct activation of T cell signaling pathways and T cell 

functions. (a). TIL categories classified by D values from high to low. 401 PF TILs were classified into D 

Extremely-high (top 1%), UQ_90 (top 10% excluded D Extremely-high), UQ_75 (upper quartile excluded top 

10%), and D low (lower 75%). The heatmap shows the E values of the exhaustion markers of each PF TIL. D 

value of each PF TIL is derived from the E values of the exhaustion markers. (b). Activated signaling 

pathways and signatures related to T cell functionality. Shown are the activation scores that evaluate the 

activation patterns of the T cell exhaustion related signaling pathways and signatures (Online Methods). (c). 
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Heatmaps of expression levels of the signature genes associated with the activated signaling pathways. (d). Heat 

maps illustrating the relative expression of genes in different categories of TILs. Statistical significance is 

shown in Extended Data Fig. 7. (e). Analysis of the tumor-specificity in TILs with different D-values. CD39 

and CD103 are used to annotate tumor-specific TILs.  
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Figure 3. Burst expression of LAG3 and its important role in predicting alternative strategy for ICB. (a). 

Burst expression of the exhaustion markers included in human melanoma CyTOF data. Burst is defined as 

E/E, describing to what extent the marker has burst expression change in the PF TIL after the ICB. E is 

defined as in Fig. 1f, and E is the expression level of this marker in the PF TIL. 100 indicates that the burst is 

from 0 to a high level whereas 0 suggests no change. (b). Predicting efficacious immune checkpoint 

combinations. The candidate ICB combinations are determined by the consistency between the Burst values of 

the combined markers and D values of PF TILs. 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =
𝐵𝑢𝑟𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗∙𝐷⃗⃗ 

|𝐵𝑢𝑟𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|∙|𝐷⃗⃗ |
. If the combined markers show 

significantly higher Bursts in D-high TILs of non-responders (P < 0.01, Mann-Whitney U test), the new 

alternative strategy takes the combined markers as a new ICB. The threshold is 2 for −log(P-value). (c). 

Heatmap of the Burst values of the 8 exhaustion related markers in non-responders (NR) and responders (R). 

Heatmap of another 3 exhaustion related markers is shown in Extended Data Fig. 8c. 
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Figure 4. Efficacy of the new ICB strategy of PD-1+CTLA-4+LAG3 in murine tumor models.  

(a). Flow cytometric analysis of PD-1, CTLA-4 and LAG3 expression on the activated CD8 T cells before and 

after cocultured with MC-38-OVA cells in vitro (n = 3). (b). Flow cytometric analysis of PD-1, CTLA-4 and 

LAG3 expression on activated T cells which cocultured with tumor cells in the presence of PD-1 + CTLA-4 

or isotype-matched antibody (IgG) (n = 3). (c-e). CT26 tumor growth (c) in BALB/c mice that were treated with 

PBS or IgG or LAG3 or PD-1+CTLA-4 or PD-1+CTLA-4+LAG3, as indicated by arrow, and percent 

change in tumor volumes, **** P < 10−9, Fisher’s exact test (d) between days 7 and 49, and Kaplan Meier 

survival plot of different treatment groups (n = 10), log-rank test (e). (f). Flow cytometric analysis of the 

percentage of CD4 and CD8 T cells in the tumor of mice treated with PBS or IgG or LAG3 or PD-
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1+CTLA-4 or PD-1+CTLA-4+LAG3 (n = 3). (g). The cell numbers of CD4 and CD8 T cells in the 

tumors of mice treated with PBS or IgG or LAG3 or PD-1+CTLA-4 or PD-1+CTLA-4+LAG3 (n = 3). 

* P < 0.01, ** P < 0.001, Student’s t test. (h) t-SNE plot of CD45+ cells overlaid with the expression of GzmB 

by CyTOF data.  
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Extended Data Fig. 1. High-dimensional single-cell-based computational method (HD-scMed) for 

evaluation of TIL exhaustion within a high-dimensional expression space. (a). The high-dimensional 

expression space comprises the expression levels of TILs by a variety of exhaustion markers (PD-1, CTLA-4, 

LAG3, TIM3, etc.) with their related transcriptional factors (e.g., EOMES and TBET). To quantify which TILs 

are exhausted in terms of the expression levels of the high-dimensional markers, the exhausted TILs are 

evaluated by Pareto dominance defined by a multiple-objective optimization (MOO) model (Online Methods, 
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Supplementary Text). Pareto dominance from the MOO model identified a subset of TILs, called as Pareto 

Front (PF) TILs, each of which are optimal after trading-off the expression levels of high-dimensional 

exhaustion markers (by Strength score and Fitness score as described in Online Methods). A PF TIL is optimal 

because no other TILs can dominate it (right panel). Other than PF TILs, the TILs dominated by PF TILs are 

non-front TILs, the baseline for the exhaustion level of the PF TILs. (b). D value is calculated for each PF TIL 

and its dominated non-front TILs. Euclidean distance or straight-line distance between each PF TIL and each of 

its dominated non-front TIL is calculated. D value at the tumor level is defined as the average value of the 

Euclidean distances between the PF TIL and its dominated non-front TILs. D value is an integrative 

quantification criterion for TIL exhaustion by considering the high-dimensional expression information of the 

exhaustion markers. (c). Two critical values, E and E/E (Burst), were derived from D value for each 

exhaustion marker. The relationship between E and D value is that 𝐷 = √∑ ∆𝐸𝑗
2𝑘

𝑗=1
2

, where k is the number of 

dimensions or the exhaustion markers (Online Methods). The Burst value is essential for evaluating which 

markers have burst expression (from a low level to a high level) after receiving the ICB, e.g., PD-1, CTLA-

4, and PD-1+CTLA-4. 
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Extended Data Fig. 2. Identification of CD8+ TILs from human melanoma CyTOF data. (a). Cell counts 

for the specimens. Sample annotation is same as Fig. 1. (b). Consensus clustering of the pooled TILs from the 

14 specimens, following FlowSOM analysis pipeline. The cluster # is set as 20. The CD8+ TILs are identified as 

those clusters with normalized CD8A expression level higher than 0.50 (Online Methods). (c). Histogram of 

clustering distribution. X axis is the expression level of the markers and y axis is the distribution density along 

the clusters. (d). Evaluation of the batch effect of the CyTOF data by multidimensional scale (MDS). Batch 

effect removal for the analyses in (a-c) is included in Online Methods.  
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Extended Data Figure 3. Identification of CD8+ TILs from mouse melanoma CyTOF data. (a). Cell counts 

for the specimens. Sample annotation is Shown in Supplementary Table 2. (b). Consensus clustering of the 

pooled TILs from the 52 specimens, following FlowSOM analysis pipeline. The cluster # is set as 20. The CD8+ 

TILs are identified as those clusters with normalized CD8 expression level higher than 0.50 (Online Methods). 

(c). Histogram of clustering distribution. X axis is the expression level of the markers and y axis is the 
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distribution density along the clusters. (d). Evaluation of the batch effect of the CyTOF data by 

multidimensional scale (MDS). Batch effect removal for the analyses in (a-c) is included in Online Methods. 
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Extended Data Figure 4. D value from HD-scMed in distinguishing the responses to ICB in 34 melanoma 

mice. (a). Correlation between D values derived from the PF TILs of the tumors and the tumor volumes after 

receiving the ICB therapies. (b). The cumulative distributions of the D values in the PF TILs from the mouse 

group with different tumor volumes. P < 10e−16, Mann-Whitney U test. (c). An instance to show the difference 

of D values in two mice with different sizes of tumors after receiving PD-1 + GVAX. The first mouse, C163, 

has a large tumor (within the first quartile of tumor sizes) whereas the second mouse, C258, bears a small tumor 

within the fourth quartile. (d). ROC curve. The prediction accuracy of D value in distinguishing the tumors of 

non-responders from those of responders is AUC = 0.83. 5-fold cross-validation supporting vector machine 

(SVM). (e). The comparison of burst values of the 6 exhaustion markers available in the melanoma mouse 

CyTOF data. 

 

Supplementary Text:   
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Extended Data Figure 5. Hierarchical clustering of 15 exhaustion markers by E and Burst values. (a). 

Hierarchical clustering of 15 exhaustion markers by E values (top panel). The PF TILs were classified into 

four categories as defined by the percentiles in Fig. 2. Lower panel shows the statistical significance of the 

difference of E values among the 4 TIL categories. One-way ANOVA analysis. (b) Hierarchical clustering of 
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15 exhaustion markers by Burst values (top panel). Lower panel shows the statistical significance of the 

difference of E/E values among the 4 TIL categories. One-way ANOVA analysis. 

 

 

Supplementary Text: The hierarchical clustering of the 15 exhaustion markers suggests their diverse roles in 

determining TIL exhaustion functions (Extended Data Fig.5). The 15 markers were divided into 3 clusters. As 

an example, KLRG1 shows distinct pattern of E values, compared to other markers. We also clustered the 15 

exhaustion markers by their burst values. By combined the two clustering results, we selected 8 markers by 

satisfying (1) covering all 3 clusters of Extended Data Fig.5a; (2) covering the top significant markers shown 

in the clusters; (3) the NS markers showing the same trend as D value (CD160).  
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Extended Data Figure 6. Patient information with PF TIL numbers in the Fig.2a. (a). Patient information 

added as column annotation. (b). the numbers of PF TILs in melanoma patients. (c). The statistical significance 

of the difference in E values of these 8 markers among the identified four TIL categories. One-way ANOVA 

analysis. 
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Extended Data Figure 7. The statistical p values for the genes with differential expression among the TIL 

categories in Figs. 2c-d. The molecules of signaling pathways were derived from Ingenuity Pathway Analysis 

(IPA) by differential expression genes (Supplementary Table xx), a,b,d,f. And the gene signatures for c,e,g 

were derived from literature (Supplementary Text). The statistical significance was derived from One-way 

ANOVA analysis. * < 0.05, **<10e−4, ***<10e−8, ****<10e−16. 
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Extended Data Figure 8. Effector and memory TILs sorted by D values of PF TILs from the human 

CyTOF data and the heatmaps for another 3 negative markers for exhaustion. (a) Hierarchical clustering 

of the effector and memory markers, including CD45RO, CD45RA, and CD127 by the expression values of 

these markers. (b) The E values for the negative exhaustion markers, BCL6, CD127, and Ki-67, 

Supplementary to Fig. 1g. (c) The E/E values for the negative exhaustion markers, BCL6, CD127, and Ki-67, 

Supplementary to Fig. 3c. 
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Extended Data Figure 9. D value identified from 6 exhaustion markers by HD-scMed in distinguishing 

clinical responses to ICB. Clinical responses include PD: progressive disease, PR: partial response, and SD: 

stable disease. ICBs are PD-1, CTLA-4, and PD-1+CTLA-4. ND: PBMC samples from healthy donors 

were used as the baseline for ICB samples. (a). Identification of Pareto front (PF) TILs as exhausted TILs in 

the high-dimensional expression space. TIL exhaustion is evaluated by HD-scMed in the high-dimensional 

expression space defined by PD-1, CTLA4, LAG3, EOMES, TIM3, and TBET, from human CyTOF antibody 

panel (Online Methods, Extended Data Fig. 1). Shown is a small portion of PF TILs identified as exhausted 

TILs by HD-scMed. (b). D value distributions in tumors with different clinical responses. D value is defined as 

the Euclidean distance or straight-line distance in the 6-dimensional expression space by the expression levels 

of the 6 exhaustion markers. D value for each PF TIL is the Euclidean distance between the PF TIL and its 

baseline non-front TILs that are dominated by the PF TIL (Extended Data Fig.1a). (c). Analysis of D values 

for PF TILs of the tumors from non-responders (PD) versus responders (PR or SD). P < 10e−16, Mann-Whitney 

U test. (d). ROC curve. The prediction accuracy of D value in distinguishing the tumors of non-responders from 

those of responders is AUC = 100. 5-fold cross-validation supporting vector machine (SVM). AUC: The area 

under the ROC curve. ROC: Receiver Operating Characteristic. (e). An instance to show the difference of D-
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value in the TILs of a non-responder (NR) and a responder (R). Both patients received the combination therapy 

of PD-1+CTLA-4 by Ipi+Nivo. Tumor 170-b is from the NR patient with progressive disease whereas tumor 

227 is from the R patient with stable disease. The D-value for each tumor is averaged from those of PF TILs of 

this tumor. (f). Heatmap of E values of the 6 exhaustion markers by the TILs from D low to D high.  𝐷 =

√∑ ∆𝐸𝑗
26

𝑗=1
2

, where E value of each marker is the expression level difference between the PF TILs and their 

baseline non-front TILs. D value category is classified by D values of the PF TILs. 
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Extended Data Figure 10. In vivo experiments for PD-1+CTLA-4+TIM3 and PD-1+CTLA-

4+TIGIT and the expression levels of the markers from CD26 mouse CyTOF data. (a) CT26 tumor 

growth in BALB/c mice that were treated PD-1+CTLA-4+TIM3 or PD-1+CTLA-4+TIGIT or PD-
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1+CTLA-4+IgG as indicated by arrow (n=10). (b) t=SNE plot for the markers: CD8a, CD4, Nkp46, CD39, 

Ki-67.  
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