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Abstract 

There is a lack of biomarkers for pre-kidney transplant immune risk stratification to avoid over- 

or under-immunosuppression, despite substantial advances in kidney transplant management. 

Since the circulating lipidome is integrally involved in various inflammatory process and 

pathophysiology of several immune response, we hypothesized that the lipidome may provide 

biomarkers that are helpful in the prediction of kidney rejection. Serial plasma samples collected 

over 1-year post-kidney transplant from a prospective, observational cohort of 45 adult Kidney 

Transplant [antibody-mediated rejection (AMR)=16; stable controls (SC) =29] patients, were 

assayed for 210 unique lipid metabolites by quantitative mass spectrometry. A stepwise 

regularized linear discriminant analysis (RLDA) was used to generate models of predictors of 

rejection and multivariate statistics was used to identify metabolic group differences. The RLDA 

models include lipids as well as of calculated panel reactive antibody (cPRA) and presence of 

significant donor-specific antibody (DSA) at the time of transplant. Analysis of lipids on day of 

transplant (T1) samples revealed a 7-lipid classifier (lysophosphatidylethanolamine and 

phosphatidylcholine species) which discriminated between AMR and SC with a misclassification 

rate of 8.9% [AUC = 0.95 (95% CI = 0.84-0.98), R2 = 0.63]. A clinical model using cPRA and 

DSA was inferior and produced a misclassification rate of 15.6% [AUC = 0.82 (95% CI = 0.69-

0.93), R2 = 0.41]. A stepwise combined model using 4 lipid classifiers and DSA improved the 

AUC further to 0.98 (95% CI = 0.89-1.0, R2 = 0.83) with a misclassification of only 2.2%. Specific 

classes of lipids were lower in AMR compared with SC. Serial analysis of SC patients 

demonstrated metabolic changes between T1 and 6 months (T2) post-transplant, but not between 

6 and 12 (T3) months post-transplant. There were no overtime changes in AMR patients. Analysis 

of SC T1 vs AMR T3 (that at time of AMR) showed sustained decreased levels of lipids in AMR 

at the time of rejection. These findings suggest that lack of anti-inflammatory polyunsaturated 

phospholipids differentiate SC from AMR pre-transplant and at the time of rejection, and a 

composite model using a 4-lipid classifier along with DSA could be used for prediction of 

antibody-mediated rejection before transplant. 

Keywords: kidney rejection, antibody-mediated rejection (AMR), lipids, Phospholipids, 

biomarkers  
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Highlights: 

1. Despite significant advancements in kidney transplant treatment and intensive clinical 

follow-up monitoring, all rejection events are unlikely to be recognized at the beginning. 

As a result, efforts have been made to identify new biomarkers for kidney rejection 

detection. 

2. While lipids are known to be potent mediators of inflammation, pro-resolving processes, 

and other cell signaling cascades, lipidomics can be applied to identify reliable biomarkers 

to monitor disease severity and may also allow prediction of kidney rejection. 

3. Our lipidomic study shows lipid profile changes between antibody-mediated rejection 

group and stable control group as a function of different time point, pre and post- kidney 

transplantation. Furthermore, our study demonstrates that combining lipid and clinical 

parameters allow prediction of rejection on the day of the transplant.  

4. These findings have the potential to change the present paradigm of pre and post-transplant 

monitoring and management of these patients by implementing an evidence-based risk 

stratification technique, resulting in a substantial improvement in kidney transplant 

success. 

 

 

1-INTRODUCTION 

End-stage renal disease (ESRD) affects almost 786,000 people in the United States in 2020, with 

71% requiring dialysis and 29% requiring a kidney transplant1. Renal transplantation is a common 

therapeutic option for individuals with ESRD, and compared to dialysis, and it provides 

considerable improvements to quality of life and longer life benefits2,3. Kidney transplant has 

advanced significantly over the last 50 years, beginning with the first successful organ transplant 

between twins in 19544. Additionally, patient and allograft survival rates have surpassed 95% in 

the modern age of kidney transplantation2. In addition, patients who receive a kidney transplant 

have a much lower adjusted death rate (48.9 per 1,000) than those who receive dialysis (160.8 per 

1,000)1. 

Despite significant advancements in understanding the pathophysiology and immunology of most 

types of allograft rejection and kidney transplant treatment regimens, transplant rejection remains 
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a significant concern and one of the leading indicators of long-term allograft loss2,5. In the post-

transplant monitoring for renal rejection, routine clinical follow-up evaluations are combined with 

laboratory testing of blood creatinine levels6. A combination of clinical (e.g., GFR, proteinuria), 

immunological (e.g., DSA), instrumental (e.g., resistive index at Doppler ultrasonography), and 

histological measures are being used to monitor the transplanted kidney. Overall, these 

"conventional biomarkers" have a number of limitations that are connected to disease as well as 

nephrologists' and pathologists' abilities7. A renal allograft biopsy for histological assessment is 

usually initiated when blood creatinine levels rise over a patient-specific baseline value, whether 

or not clinical symptoms arise. This frequently suggests detection in later stages of dysfunction, 

but early stages of dysfunction, when functional impairment is not yet clinically visible, may go 

unnoticed. As a result, protocol biopsies were developed to identify acute rejection in subclinical 

conditions8. Serum creatinine levels, glomerular filtration rate, and proteinuria are all monitored 

as part of the transplant monitoring process. These indicators are nonspecific; therefore, diagnosis 

necessitates an invasive allograft biopsy. Furthermore, because these markers have limited 

sensitivity for injury processes, this technique only detects pathological processes at a rather 

advanced stage of tissue injury and misses subclinical alterations. In recipients of kidney allografts, 

protocol biopsies have been proposed to identify alterations before graft failure is evident. Multiple 

biopsies, however, are required to diagnose subclinical alterations6. Although the invasive allograft 

biopsy, which is the gold standard for diagnosing and distinguishing between different forms of 

rejection and pathologic processes used to diagnose kidney rejection, has improved over time, 

hemorrhage and graft loss still occur after the procedure. Moreover, the practicality and cost of 

repeated biopsies required to capture anti-allograft immunity are major limitations, as sampling 

mistakes and inter-observer variability in biopsy findings5,9. Even with repeated biopsies, it's 

doubtful that all rejection episodes would be diagnosed at the outset, much alone the dangers and 

consequences that come with such a pricey procedure8. Furthermore, despite intense 

immunosuppressive medications and rigorous pre-transplant screening using donor-specific 

antibodies and degree of sensitization, kidney rejection is still poorly predicted, and 10-year 

survival rates have remained stable in recent decades3,10. Immunosuppressive medication in kidney 

transplant patients is now administered according to protocols and adjusted based on the allograft's 

functional or histological assessment, as well as indicators of drug toxicity or infection. As a result, 

a considerable percentage of patients are likely to get too much or too little immunosuppression, 

putting them at risk for infection, cancer, and medication toxicity, as well as acute and chronic 
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graft harm from rejection11. Even measuring immunosuppressive medication levels in the blood 

and strict adherence to the specified medication levels does not preclude either 

overimmunosuppression, which can lead to infections, or underimmunosuppression which can 

lead to graft rejection or persistent immunological damage10. These drawbacks emphasize the need 

for more reliable, noninvasive approaches to detect and diagnose acute and chronic graft lesions 

earlier and more precisely6. As a result, one of the field's main goals is to develop noninvasive 

indicators of allograft renal rejection12. Noninvasive biomarkers for transplant diseases have been 

developed as a result of these limitations. High-throughput molecular approaches have made it 

easier to find novel biomarkers that can help physicians regulate immunosuppression and predict 

problems and transplant success13–15.  

Metabolomic seeks to assess all pertinent small molecules, enabling relative and absolute 

measurement of hundreds of lipids and water-soluble small molecules from low volumes of 

biological materials like blood. Observations of changed lipids concentrations reveal functionally 

meaningful read-outs of disturbed disease-associated pathways in human metabolism as 

intermediate and endpoint indicators of numerous biologic processes in the human body12. This 

type of global profiling promises to be very beneficial for discovering new prognostic and 

diagnostic indicators16. Endogenous lipids and their metabolites, which are important regulators 

of inflammation, pro-resolving activities, and other cell signaling cascades, are quantified via 

lipidomic profiling. Lipidomics has been used to demonstrate lipid homeostasis abnormalities in a 

variety of disorders, including immunological responses that produce inflammation17, such as 

kidney rejection. Importantly, these lipid alterations appear to occur at precise points throughout 

illness development, implying that lipidomics can be used to discover meaningful biomarkers for 

disease severity monitoring. In this regard, the ability to read the lipidome could be a useful tool 

for the risk stratification and prediction of kidney rejection after transplantation17,18. Thus, the 

objectives of this study are to identify lipid biomarkers that could allow for better risk stratification 

to enhance the benefit and limit the risk of kidney rejection as well as enhance the 

immunosuppression therapy strategies for individuals. In addition, our objectives are to better 

understand the molecular pathophysiology underlying the development and progression of kidney 

rejection using lipidomic analysis. 
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METHODS: 

 

Patient Selection 

This study was approved by the Virginia Commonwealth University Institutional Review 

Board (IRB). Patients were selected from a prospective observational cohort of a single-center 

adult kidney transplant center in the United States. The study population consisted of 16 

consecutive patients who developed antibody-mediated rejection within 2 years of kidney 

transplant and 29 stable control (SC) patients who did not develop rejection at any point of post-

transplant follow-up.  Serial plasma samples are collected and stored at Time 1 (T1 - pre-

transplant), Month 6 (T2) and Month 12(T3) and then yearly for all patient’s post-transplant as 

part of an IRB approved biobank protocol at our institution.  

SC patients were selected based upon convenience sampling. The primary determinants for 

inclusion of SC patients was availability of volume of samples for lipid-based research assays and 

long-term follow-up with stable renal function with absence of rejection and known adherence to 

immunosuppressive regimens. A minimum follow-up of 2 years was mandated to be a candidate 

for inclusion in the study. Pediatric kidney recipients and multi-organ transplant recipients were 

excluded from the study.  

 

Immunosuppression and Treatment of Antibody-mediated Rejection 

All patients received induction with anti-thymocyte globulin (Thymoglobulin, Genzyme, 

Cambridge, MA) with a total of 6 mg/kg over four consecutive days beginning in the operating 

room. Maintenance immunosuppression included a combination of tacrolimus, mycophenolate 

mofetil and prednisone tapered to 5 mg/day. Highly sensitized patients received 6 sessions of pre-

emptive plasmapheresis with intravenous immunoglobulin (IVIG; 100mg/kg) based upon a pre-

specified protocol as reported by us previously19.  

Indication biopsies were performed for acute allograft dysfunction defined as a rise in 

creatinine >20% above baseline, serum creatinine nadir ≥2.0 mg/dL post-transplant; or delayed 

graft function >21 days post-transplant. Surveillance biopsies were performed in patients with a 

positive flow-cytometric crossmatch (T or B >100 mean channel shifts) and/or presence of pre-

formed donor-specific antibody [DSA; >5000 mean fluorescent intensity (MFI)] at 1 month and 

6-month post-transplant. Biopsies were graded based upon the Banff criteria20. Patients with AMR 

were treated with 6-9 sessions of plasmapheresis with intravenous immunoglobulin (IVIG; 
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100mg/kg) in conjunction with intravenous methylprednisolone 500mg administered once daily 

for 3 days. In selected cases additional drug therapy with rituximab or bortezomib was instituted 

depending upon initial response. 

 

Antibody Testing 

The details of antibody testing performed at our center have been described previously21. 

Briefly, pre-transplant complement-dependent cytotoxicity (CDC) assays and three-color flow-

cytometric cross matching (FCXM) were performed for all patients at the time of transplant. 

Donor-specific antibodies (DSA) were analyzed using the Luminex platform (Immucor Platform, 

San Diego, CA) with the use of an HLA phenotype panel (Lifematch Class I and Class II ID, Gen-

Probe) and a single-antigen panel (Single Antigen Beads, Immucor Platform). Results of bead 

assays were measured as mean fluorescence intensity (MFI). For highly sensitized patients an MFI 

of >5000 was considered unacceptable while for de-novo kidney transplant patients an MFI of 

>10000 was considered unacceptable for kidney transplantation. Calculated Panel Reactive 

Antibody (cPRA) was calculated using CPRA calcoletor22.  

Lipidomic Analysis 

Lipids extraction: Serial plasma samples were stored at -80ºC prior to research use.  Upon 

initiation of experiments, plasma samples were prepared for analysis using a HILIC-based UPLC 

ESI-MS/MS method. 50 µL of plasma was added to 750 µL of MTBE (methyl-tertiary butyl ether), 

containing 20 µL of SPLASH internal standards (SPLASH LIPIDOMIX Mass Spec Standard – 

Avanti 330707), and 160 µL of water. After centrifugation for 2 minutes at 12,300 rpm, 350 µL 

of supernatant was transferred to auto sampler vials and dried under vacuum. Dried extracts were 

re-suspended using 110 µL of a methanol:toluene (10:1, v/v) mixture containing CUDA (12-

[[(cyclohexylamino) carbonyl] amino]-dodecanoic acid)at a final concentration of 50 ng/ml. 

 

Lipidomic data acquisition via mass spectrometry: Samples were analyzed on a QTRAP 6500+, 

with Shimadzu Nexera UPLC. Analytes were separated on a Waters BEH HILIC 1.7 μm 2.1x150 

mm column (column temperature = 30°C). Mobile phase A: 10 mM ammonium acetate (pH 8) in 

95% ACN (acetonitrile). Mobile phase B: 10 mM ammonium acetate (pH 8) in 50% ACN. 

Gradient (B%) ramps from 0.1 to 20 in 10 mins; rises to 98 at 11 min, keeps for 2 mins, then drops 

back to 0.1 and maintains for 3 mins.  
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Statistical Analysis 

A comparison t-test analysis (FDR=0.05) was used to select group differences on the day 

of transplant. Lipids classes mean values were obtained by sum and average of all the lipids by 

each class. Linear Discriminant Analysis with regularized correction (RLDA) models for lipids 

and clinical parameters were created with stepwise forward method (Figure 1). Regression 

performance was estimated with R2, misclassification error and area under the ROC Curve (AUC). 

Estimates were validated with bootstrap coefficient interval (Figure 1). Predictors combined model 

was cross validated with Random Forest method, and the misclassification out-of-bag error (OOB 

error) was estimated and compared to the RLDA error for validation (Figure 1). Changes over time 

were also estimated with sparse partial least square method and group’s separation was validated 

with permutation test. T-test comparison of two time points for the same group and for comparing 

groups at matched time points. Data was analyzed with JMP Pro 13 and MetaboAnalyst 3.0. The 

statistical workflow is depicted in Figure 1. 

 

RESULTS: 

Clinical characteristics of the study population 

Demographic comparison of the two groups in the day of transplant is described in Table 

1. It revealed that there are significant differences for the following parameters for the non-

rejection (SC) compared to the rejection (AMR) group.  Patients in the AMR group were more 

likely to be female, re-transplants and had a higher degree of sensitization (higher cPRA) and 

presence of donor specific antibody (higher DSA) at the time of transplant. They were also more 

likely to have hyperlipidemia. There were no differences noted for age, race, weight, years on 

dialysis, type of dialysis, delayed graft function, or the presence or absence of diabetes mellitus. 

 

Circulating phospholipid concentrations was significantly different between SC and AMR 

prior to transplantation 

A comparison of lipids classes on the day of transplant revealed PLs relative concentration 

differences between SC and AMR (Figure 2). Concentration of phosphatidylcholine (PC) was 

significantly diminished in AMR, while there was a trend for increased concentration of 

lysophosphatidylcholine (LPC). AMR group also showed significantly lower concentration of 

phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), plasmanylethanolamine 

(PE-O), and plasmenylethanolamine (PE-P). Although not statistically significant, there was also 
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lower concentration of Phosphoglycerol (PG), lysophosphatidylglycerol (LPG), and 

sphingomyelin (SM). The activity of phospholipase A2 (PLA2) as a signal of increased metabolism 

was accessed by the ratio of phospholipids (PLs) to lysophospholipids (LPLs). AMR group 

showed decreased ratios of PC/LPC and PE/LPE indicating higher activity of PLA2 in this group 

on the day of transplant. This enzyme activity towards PLs degradation was evident for PE, 

showing more activity in the AMR.  

 

Combined lipid and clinical parameters allow the prediction of rejection on the day of 

transplant. 

Our data so far demonstrated that there are significant differences in the lipidome between 

SC and AMR on the day of transplant. This led to the hypothesis that the lipidome or some 

combination of the lipidome and clinical parameters may enable the prediction of kidney rejection 

at time of transplant, allowing for risk stratification of graft recipients. To investigate this 

possibility, a stepwise regularized linear regression with only lipids, only clinical data and a 

merged clinical and lipid model was tested to see if the lipids alone or a combination of lipid and 

clinical variables would provide a model with high prediction accuracy (Table 2). The analysis 

identified 7 distinct lipids that discriminated between AMR and SC with 8.9% of the events 

misclassified, area under receiver operating characteristic curve (AUC) =0.95 (95%CI=0.84-0.98), 

R2=0.63 (95%CI=0.4-0.8). A clinical model using cPRA and DSA was inferior with 15.6% of the 

events misclassified, AUC=0.80 (95%CI=0.66-0.90), R2=0.36 (95%CI=0.16-0.57).  Still using a 

stepwise selection approach, a combined model determined with 4 lipids plus DSA further reduced 

the misclassification events to 2.2% (Figure 3), and the AUC improved to 0.97 (95% CI=0.88-

1.0), R2=0.81 (95%CI=0.49-0.96). 

Further comparison of the 4 lipids predictors of kidney rejection between SC and AMR 

showed that these lipids are significantly decreased in AMR group, although in PC (18:0/20:4) 

plot it is possible to notice presence of outliers in both groups (Figure 4A). Random Forest method 

was used for statistical validation with 500 bootstrap samples, and the mean decrease accuracy test 

was used estimate the importance of each predictor to the validation model (Figure 4B). The result 

revealed that DSA is the more important biomarker of AMR at the day of transplant, and together 

with LPE (16:0) and PC (18:0/20:4) can discriminate AMR with very low error (2.2%). The 

statistical validation also revealed that exclusion of LPE (22:6) and LPE (20:4) of the model would 

not affect much the misclassification error, although in the RLDA modeling training, using the 
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study population, the addition of these two lipids takes the model estimation from R2=0.75 to 

R2=0.81. 

 

Serial analysis of the lipidome over the course of one year identify time dependent lipid 

changes among patients with a favorable transplant outcome.  

Following the identification of the lipid differences at T0 and their ability to predict graft 

rejection in association with measured clinical parameters, we wished to investigate how the 

lipidome changes over time in patients with a favorable transplant outcome (SC). To achieve this 

end, lipid profiles were analyzed between serially collected samples at Day 0, 6 months and 12 

months post-transplant (Figure 5). A sPLSDA analysis of the data revealed a statistically 

significant alteration in the metabolic profile at 6 months post-transplant compared to the day of 

transplant (Figure 5A).  However, for the subsequent times from 6 months to 12 months, there was 

no significant change in the lipidomic profile (Figure 5B). The data was subjected to validation 

using the permutation test (Figure 5C) and showed significant metabolic difference (p= 0.034) 

from day of transplant to 6 months after transplantation. 

Further investigation of the lipid differences between T1 and T2 identified 19 lipids that 

were significantly elevated at T2 compared to T1 among the SC. statistically relevant lipid changes 

that characterized the time dependent alteration to the lipidome among the SC (Figure 6).  A 

majority of these lipids changes are LPC, with a few PC, one PE-O, two PE-P, and one PG.  

 

Serial analysis of the lipidome over the course of one year demonstrate no significant 

differences among the measured lipids among graft recipients with non-favorable outcomes.  

Following the identification of the longitudinal lipid trajectory among patients with 

favorable transplant outcomes, we investigated the trajectory of the lipidome pre-transplant to post 

transplant one year among the patients with non-favorable outcomes (AMR) (Figure 7). sPLSDA 

analysis of the data reveal that there was no significant alteration in the lipid profile at pre-rejection 

and post-rejection compared to the day of transplant (Figure 7a). While a slight change was 

observed from day of transplant to post-rejection (Figure 7B), validation analysis using 

permutation testing demonstrated this difference to be non-significant (p=0.869) (Figure 7C).  
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Significant lipid changes were also observed between patients favorable and non-favorable 

transplant outcomes at post-transplant, pre-rejection time point (T2). 

As our data revealed that there were significant T1 vs T2 lipid differences between SC, but 

not in AMR, we further investigated the data to identify the exact differences in the lipidome 

between SC and AMR at T2. Any differences identified would indicate an alteration in the lipid 

metabolic environment at the time of rejection that would distinguish AMR from SC. Since there 

were no significant differences between T2 and T3 for SC group we chose to use SC at T2 (6 

months post-transplant) to compare with AMT at T3 (time of AMR). The analysis revealed a panel 

of 13 lipids that were found to differentiate the two groups at T2 (Figure 8). As before, these 13 

lipids were again comprised of LPE and PC species containing monounsaturated and 

polyunsaturated fatty acids, except for LPE (16:0). This data further confirms the presence of a 

sustained lipid metabolic difference between SC and AMR over time that distinguish between the 

patients with favorable and non-favorable transplant outcomes.  

 

DISCUSSION:  

This study highlights the lipidomic signature differences by comparing the lipid profiles of 

SC and AMR groups at various periods before and after kidney transplantation. To the best of our 

knowledge, this is the first study to evaluate the lipidomic profile longitudinally and predict the 

risk of developing kidney rejection. As we face a disorder with unique complexity and unclear 

pathogenesis, our study, among other previous studies23, has demonstrated that circulating lipid 

abnormalities have a role in the etiology of renal allograft rejection. The specific pattern of 

lipidomic abnormalities pre and post kidney transplantation, as well as their links to inflammation 

and rejection, are unclear. However, we explored the changes and possibilities of AMR compared 

SC group to better understand the processes and function of lipidomic in these individuals. 

The comparison of SC and AMR groups on the day of transplant revealed that female 

gender, re-transplant, cPRA, DSA, and hyperlipidemia were statistically different. Moreover, we 

found DSA as the strongest predictor of AMR. These findings are consistent with Dunn et al where 

it was reported that DSA and female gender were risk factors for AMR, while cPRA was associated 

with cell-mediated rejection. However, re-transplant did not reach statistical significance24. Our 

finding of hyperlipidemia in the AMR group could be linked to the fact that hyperlipidemia is the 
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most common form of dyslipidemia, a common complication in CKD patients, associated with the 

decline in kidney function, hypertriglyceridemia, low HDL, and low or normal LDL25.  

The lipidomic profile that we observed between SC and AMR prior to transplantation 

revealed some circulating PLs s that are significantly different, which is mostly in agreement with 

other previously published studies suggesting PLs being the most valuable class of lipids altered 

in kidney transplant patients26–29. Modulation of PLs in CKD is well described in the literature. To 

illustrate, Anna Michalcyke et al showed that LPA concentrations were statistically significant 

higher in patients with kidney transplants than healthy individuals (without CKD)27. Additionally, 

the same study confirmed that patients with unfavorable renal outcomes, including patients with 

renal transplantation, are associated with lower LPC levels compared to healthy individuals27. 

Furthermore, an observational study of CKD patients with either glomerulonephritis or 

subacute/chronic tubulointerstitial injury compared to in healthy volunteers showed that changes 

in urinary phospholipids, especially LPCs, were associated as a result from proteinuria damaged 

kidney function or proteinuria induced hypoalbuminemia or lipotoxicity26.  Additionally, this has 

been confirmed by Lewen Jia et al where plasma samples of patients with chronic 

glomerulonephritis and patients with CKD without renal replacement therapy were compared to 

healthy persons. This study’s showed that primary chronic glomerulonephritis and CRF had 

phospholipid metabolic abnormality, suggesting that nineteen phospholipid species were identified 

as possible biomarkers in plasma samples of chronic glomerulonephritis and CKD28. As our work 

demonstrates that there are alterations in PIs such as PEs, PCs, and LPEs, PIs might be potential 

biomarkers for kidney injury and prediction of allograft rejection.  This showed the potential role 

of PLs in the pathogenesis and immune/inflammation in kidney disease. The presence of 

alterations PIs concentrations observed in patients may have clinical significance. 

LPC has been associated with pro-inflammatory effects30, but there is not much 

information on the effects of LPE. Some studies suggest that LPEs could have possible protective 

effect on inflammation. Schober et al demonstrated that LPE generation from PE oxidation is 

primarily due to PLA2
31. The effect of PLA2 is well known by presenting pro-inflammatory action 

in the hydrolysis of PC to produce LPC with atherosclerotic properties, as well as anti-

inflammatory action in the hydrolysis of platelet-activating factor (PAF) and oxidized PLs32. The 

activity of PLA2 in our study was accessed by the ratio of PLs to LPLs, with the AMR group 

showing higher PLA2 activity, especially for degradation of PE to produce LPE. The use of 
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PC/LPC ratio is used as an indication of inflammation and could indirectly represent the increased 

activity of PLA2 in inflammatory diseases33,34.  

We have demonstrated that associating lipidomic and clinical data for multivariate analysis 

has the potential to reveal metabolic features of CKD patients undergoing dialysis and higher 

inflammation associated with hemodialysis35.  In our study, merging DSA and lipids revealed 

higher DSA and reduction of each of the four identified lipid biomarkers: PC (18:0/20:4), LPE 

(16:0), LPE (22:6), and LPE (20:4), one PC and three LPE species, in the AMR group could 

discriminate AMR with minimal error. Additionally, those four lipids predictors of kidney 

rejection between SC and AMR on the day of transplant were found to be also significantly 

different at post-transplant (T2) PC (18:0/20:4), LPE (16:0), LPE (22:6), and LPE (20:4). 

Statistical validation suggested that LPEs and PCs are potential biomarkers that could be further 

investigated in a clinical study.  

We found infection and rejection risk indicators of lipids that allowed us to stratify patients 

based on their relative risk of renal transplantation outcomes. Our method might allow us to predict 

patients’ specific risk of developing allograft rejection before transplantation. This approach might 

be used in more clinical settings to enhance the survival and quality of life of the thousands of 

patients who receive renal transplants. This is considered the first step toward customized medical 

therapy following transplantation, which allows us to create a risk profile for allograft rejection 

and the consequences of under and overimmunosuppression. This strategy's potential utility is 

widespread, ranging from the prediction of patients who might undergo kidney rejection, 

identification of patients who could benefit from immunosuppressive reduction or tolerance 

induction methods to the optimization of organ allocation systems18. 

The lack of significant differences in the lipidomic profile of the subsequent times from 6 

months to 12 months with a favorable transplant outcome, indicating a stabilization of the lipid 

changes that happen after transplant with the achievement of improved kidney function and 

possibly a reduced milieu of inflammation. On the other hand, there was no significant alteration 

in the lipid profile on pre-rejection and post-rejection compared to the day of transplant among 

patients with AMR. These findings indicate that as opposed to patients with favorable transplant 

outcomes (SC), in the case of patients with non-favorable transplant outcomes (AMR), the lipid 

profile observed pre-transplant was sustained over time. Additionally, various mechanisms 

involving chronic inflammation, humoral, and cellular immune reactions play essential roles in the 
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immunopathogenesis of kidney rejections. In fact, Transplant rejection can be classified as hyper-

acute, acute, or chronic. Hyper-acute rejection is usually caused by specific antibodies against the 

graft and occurs within minutes or hours after grafting. Acute rejection occurs days or weeks after 

transplantation and can be caused by specific lymphocytes in the recipient that recognize human 

leukocyte antigens in the tissue or organ grafted. Lastly, chronic rejection usually occurs months 

or years after organ or tissue transplantation36. Therefore, showing significant lipid changes could 

fail because of the heterogeneity of types of kidney rejection, and different patient subgroups 

encounter various risks of rejection and infection34. Each type of allograft rejection has different 

mechanisms, so each type would likely have a different lipidomic profile and thus be difficult to 

evaluate unless large sample sizes of each type of kidney rejection are obtained37. 

Identification of the factors that cause inflammation/immune response following solid 

organ implantation might lead to a better understanding of the underlying pathophysiology and 

new therapies for reducing inflammation inside the transplant, allowing the transplant to be treated 

before being implanted into the recipient. Inflammation resolution in renal transplantation is 

somewhat unknown territory. It may be possible to reduce the detrimental inflammation that 

occurs during transplantation by identifying the mechanisms that promote inflammation 

resolution. Approaches to successfully reduce local inflammation inside renal transplants, using 

lipidomic in combination with efforts to advance inflammation resolution, may improve the 

efficacy of renal transplantation, a vital treatment for end renal failure38.  

Our results suggest that a lack of anti-inflammatory protection in patients on the day of 

transplant is a risk of rejection. No relevant changes occurred for AMR until rejection, confirming 

that the metabolic profile predicting AMR persisted after transplantation. Accordingly, over time 

comparison of SC and AMR showed that the difference in LPE level and PC was kept after 6 

months representing the metabolic difference between rejection and non-rejection. The presence 

of monounsaturated and polyunsaturated fatty acids in PLs is also an indication that their low 

plasma content is a risk factor for kidney health39. In contrast, the elevation of LPC, PC, PE-O, 

PE-P, and PG after 6 months in the SC group implies that restauration of PLs content is a result of 

successful transplantation. Indeed, some studies have shown that elevation of polyunsaturated fatty 

acids presents a lower risk of developing end-stage renal disease40, as well as higher survival rates 

after kidney transplantation41. In a human study comparing health controls and CKD patients, 

Reis et al found that the content of total PC and Ceramides were decreased as well as the ratio 
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of LPC/LPE41. In a study comparing CKD progressors patients compared to control patients, 

Afshinnia et al reported that CKD progressors had lower Cholesteryl ester (CE), diacylglycerols 

(DG), PC, plasmenylcholine (PC-P), PE-P, and phosphatidic acid (PA) while presenting 

elevated PE and monoacylglycerols (MAG)42. This suggests that CKD progressors with a 

decrease of longer acyl chains and polyunsaturated lipids could benefit from the effects of 

polyunsaturated fatty acid supplementation, as some studies reveal. In our study, although both 

groups represent progressive CKD patients, the SC group had higher PC and LPE than AMR and 

a trend for lower LPC.  

The intrarenal renin-angiotensin system (RAS) has been postulated to have a role in the 

onset and progression of allograft damage, in addition to immunologic and inflammation 

pathways. The involvement of the intrarenal RAS in the pathogenesis of hypertension and renal 

damage has piqued researchers' interest in recent years43. Hypertension (HT) is a common 

complication in kidney transplant patients, and it is a serious complication that can have a negative 

impact on patient and graft survival. Chronic allograft damage and graft failure have been observed 

as a result of HT. Despite the knowledge that HT is a manageable risk factor, kidney transplant 

recipients experience poor blood pressure management. Thus, HT is a significant risk factor for 

both graft and patient survival following transplantation44. HT, which is characterized by multiple 

changes in the structure and function of the cell membrane, such as changes in membrane 

microviscosity, receptor function, signal transduction, ion transport, calcium mobilization, 

intracellular pH regulation, etc, is frequently linked to serious metabolic abnormalities, including 

lipid metabolism. For example, alterations in membrane lipid composition due to extensive 

interchange between circulating and membrane lipids, as well as aberrant cellular lipid production 

and metabolism, are reflected in the changed membrane microviscosity. Lipids, as a component of 

the cell membrane, play a critical role in the control of the aforementioned membrane 

characteristics45–47. In fact, Phospholipids such as phosphatidylcholines (PC), 

phosphatidylethanolamines (PE), lysophosphatidylcholines (LPC), PE-based plasmalogens 

(PLPE), ceramides (CERs), and sphingomyelin (SPM) all play a role in the bilayer of (blood) cell 

membranes47. Understating the relationship between the lipid circulation and the renin-angiotensin 

system may reveal potential molecular targets that are involved in allograft failure as a result of 

HT. Phospholipids, which can give insight into the pathophysiology of hypertension, are measured 

by Jun Liu et al. In this study, eight circulating phospholipids have been discovered and linked to 

blood pressure that can predict the onset of hypertension.  Six phosphatidylethanolamines (PE 
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38:3, PE 38:4, PE 38:6, PE 40:4, PE 40:5, and PE 40:6), as well as two phosphatidylcholines (PC 

32:1 and PC 40:5), were shown to predict the occurrence of hypertension48. These findings are 

aligned with our specific significant lipids (figures 6 and 8). This suggests that phospholipid 

metabolites in the bloodstream might provide insight into blood pressure control, as well as a 

variety of viable hypotheses for future research indicating the role of the onset and progression of 

allograft rejection.  

The study's main limitation was that our pathological subgroups of kidney rejection were 

limited due to the small number of patients in the cohort. Second, Cellular rejection and systemic 

inflammatory illnesses, for example, were excluded due to a lack of individuals with those 

symptoms. The addition of these pathologic symptoms, which are associated with elevated 

inflammation, may have an impact on our lipidomic risk stratification and prediction of kidney 

rejection. Cross-validation at multiple centers with higher patient numbers and disease subgroups 

is needed to confirm our preliminary research results.  

CONCLUSION: 

Our study, for the first time identifies the lipid differences pre-transplant and post-

transplant, pre-rejection that distinguish kidney transplant patients with favorable transplant 

outcomes (SC) and a major form of non-favorable transplant outcomes (AMR). We further 

demonstrate that unlike SC patients that demonstrate a dynamic longitudinal lipid change, AMR 

patients maintain a relatively unchanging lipid profile over time with respect to the measured 

lipids. In addition, we demonstrate for the first time the potential for risk stratification of kidney 

transplant patients on the day of transplant with respect to the potential for the onset of AMR. 

Lastly, we identify some potential target lipids that could involve in some inflammatory processes 

of kidney rejection. Following validation in a larger cohort, these findings have the potential to 

alter the current paradigm of post-transplant monitoring and treatment of these patients via an 

evidenced-based risk stratification strategy and thereby vastly improving the success of kidney 

transplantation. 
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Figure Legends, Tables and Figures 

Figure 1: Statistical analysis workflow for the study. After data filtering and normalization a 

statistical workflow based on Regularized Linear Discriminant Analysis (RLDA) and Sparse 

Partial Least Square Discriminant Analysis (sPLSDA) was applied. Variables were selected by t-

test with FDR=0.05 validation. RLDA on the day of transplant was used to identify predictor’s 

models of rejection on day of transplant with lipids, clinical parameters, and a combined model 

through stepwise forward method. Bootstrap and Random Forest were used as internal validation. 

sPLSDA at three different time points was used to identify and compare metabolic changes 

indicative of AMR. Permutation test was used as validation. 

Figure 2: Significant differences are observed among phospholipids at T1 between SC and 

AMR. A) AMR group showed a significant lower concentration of PC, PE, and LPE. There was 

a trend towards higher levels of LPC in AMR. B) The ratio of PLs degradation to produce LPLs 

is an indication of PLA2 activity with lower values suggesting higher activity. AMR group 

presented lower ratio for both more PC/LPC and PE/LPE. Suspected outliers are indicated by open 

circles in the box plot. Green rectangles represent AMR and the Red rectangles represent SC. * 

indicates significant differences with p<0.05. 

 

Figure 3:  The RLDA model generated using 4 lipids and DSA demonstrate good separation 

between AMR and SC groups. The RLDA plot shows the clear separation of the patients in the 

two groups based on the Mahalanobis distance. This method determines whether the selected 

predictors can separate the distinct categories and reveals the presence of outliers in in the AMR 

and SC groups.  Blue dot among the red dots indicates the one misclassified patient based in the 

predictive model. Internal ellipse indicates the 95% confidence region to contain the true mean of 

the group. External ellipse indicates the region estimated to contain 50% of group’ population. 

 

Figure 4:  Predictors of AMR on the day of transplant and Random Forest statistical 

validation. A) Box plot of normalized concentration shows that AMR group has lower 

concentration of the lipids predictors. Suspected outliers are represented as open circles that appear 

outside the whiskers. The validation method showed that the predict model can discriminate SC 

and AMR in the day of transplant with 0.022 OOB error. The mean Decrease Accuracy method 

shows that DSA is the more important predictor, followed by LPE (16:0) and PC (18:0/20:4) and 
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they independently could be used as biomarkers. The analysis also reveals that when considering 

these predictors as biomarkers, the inclusion of LPE (20:4) and LPE (22:6) does not add any 

predictive power, and rather must be use to compose the RLDA model. * indicates significant 

differences with p<0.01. 

 

Figure 5: The lipidome of SC demonstrate clear differences between T1 and T2 but no 

differences between T2 and T3. A) The graphical distribution of T1 (shown in red), T2 (shown 

in green), and T3 (shown in blue) indicates that there is no difference between 6 months and 1-

year post-transplant, after a metabolic shift from the day of transplant. B) The lipid difference is 

highlighted by the change in the first 6 months C) Permutation test was performed as a validation 

test to evaluate the statistical significance of the PLS-DA model separation from T1 to T2 

(p=0.034). Ellipses represent the 95%CI of each time point. 

 

Figure 6: Specific lipids characterize the difference between T1 and T2 among SC patients. 

The levels of 19 different lipids are significantly elevated 6 months after transplantation. Most of 

the lipids are from LPC class and they contain saturated and saturated fatty acids. PCs, PE-O, PE-

P and PG are also represented elevated after 6 months. * indicates significant differences with 

p<0.01. 

 

Figure 7: Contrary to SC patients, no statistically significant difference was observed in the 

T1 and T2 lipidome of AMR patients. A) The graphical distribution of T1 (shown in red), T2 

(shown in green), and T3 (shown in blue) indicates that there is no difference over time, although 

a slight metabolic shift could be detected from the day of transplant to post-rejection. B) The plot 

of the slight metabolic difference from day of transplant to post-rejection highlight the overlap of 

the 95%CI of the two time points. C) Permutation test was performed as a validation test to 

evaluate if there is a statistical significance of the PLS-DA model separation from T1 to T2 

(p=0.869). Ellipses represent the 95%CI of each time point. 

 

Figure 8: Specific lipids demonstrate significant differences between SC and AMR at T2. The 

metabolic changes observed in the day of transplant was sustained 6 months after transplant with 

lower LPE and PC species in AMR group. Except for LPE (16:0) all lipids contained 
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monounsaturated and polyunsaturated fatty acids. SC group shown in red. AMR group shown in 

green. * indicates significant differences with p<0.01. 
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Table 1 – Demographic Characteristics of the Patient Cohort - Categorical variables were 

analyzed with the Fisher’s exact test; Continuous data is presented as a mean of the group ± 

standard deviation and is analyzed by t-test. SD: Standard deviation; cPRA: calculated panel 

reactive antibody; DSA: donor specific antibody; GRF: glomerular filtration rate. 

Characteristic SC AMR p-value 

N 29 (100%) 16 (100%) 
 

Female Gender 4 (14%) 11 (69%) 0.005* 
Age, years (Mean±SD) 47±11 50±9 0.45 
African-American Race 17 (59%) 13 (81%) 0.19 
Pre-transplant Diabetes 10 (34%) 8 (50%) 0.35 
Pre-transplant hyperlipidemia 7 (29%) 16 (100%) 0.04* 
Weight at Transplant, kg (Mean±SD) 85±21 82±14 0.6 
Years on dialysis (Mean±SD) 2.9±1.9 4.3±4.1 0.26 
Mode of dialysis 

   

Hemodialysis 19 (65%) 13 (81%) 
0.49 Peritoneal Dialysis 4 (14%) 2 (12%) 

Preemptive transplant 6 (21%) 1 (7%) 
Re-transplant 4 (14%) 9 (56%) 0.001* 
cPRA, % (Mean±SD) 9.8 (±29.4) 40.8(±45.8) 0.023* 
DSA 1 (3%) 8 (50%) <0.001* 
Kidney Donor Profile Index, % 

 

52±27 54 ±32 0.89 
Delayed Graft Function 13 (45%) 7 (44%) 1.00 
GFR at 6 months post-transplant* 67±22 61±23 0.37 
GFR at 12 months post-transplant* 68±19 58±22 0.11 
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Table 2 – Predictors of Rejection at the Time of Transplant - Bootstrap validation with 95% 

Confidence intervals is included for RLDA estimates and area under the curve (AUC). cPRA: 

Calculated Panel Reactive Antibody; DSA: donor specific antibodies; GFR: Estimated glomerular 

filtration rate (mL/min/1.73m2); SC: Stable Controls; AMR: Antibody-mediated Rejection; 

*statistically significant. 

Model Predictors R2 Misclassificatio

n 

AUC 

Only lipids PC (16:0/22:6) 

PC (18:0/20:4) 

PC (18:1/20:4) 

LPE (16:0) 

LPE (16:1) 

LPE (20:4) 

LPE (22:6) 

0.63 

(0.40 – 0.80) 

8.9% 

(3.3 – 18.6) 

0.95 

(0.84 – 0.98) 

Only clinical cPRA 

DSA 

0.36 

(0.16 – 0.57) 

15.9% 

(7.4 – 29.2) 

0.80 

(0.66 -0.90) 

Merged models PC (18:0/20:4) 

LPE (16:0) 

LPE (20:4) 

LPE (22:6) 

DSA 

0.81 

(0.49 – 0.96) 

2.3% 

(0.1 – 12.1) 

0.97 

(0.88 – 1.00) 
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Figure 1: Statistical analysis workflow for the study. 
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Figure 2: Significant differences are observed among phospholipids at T1 between SC and 

AMR. 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 21, 2022. ; https://doi.org/10.1101/460030doi: bioRxiv preprint 

https://doi.org/10.1101/460030


26 
 

Figure 3:  The RLDA model generated using 4 lipids and DSA demonstrate good separation 

between AMR and SC groups. 
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Figure 4:  Predictors of AMR on the day of transplant and Random Forest statistical 

validation.  
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Figure 5: The lipidome of SC demonstrate clear differences between T1 and T2 but no 

differences between T2 and T3.  
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Figure 6: Specific lipids characterize the difference between T1 and T2 among SC patients. 
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Figure 7: Contrary to SC patients, no statistically significant difference was observed in the 

T1 and T2 lipidome of AMR patients.  
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Figure 8: Specific lipids demonstrate significant differences between SC and AMR at T2. 
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