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Abstract

Mechanistic models are becoming common in biology and medicine. These models are often more
generalizable than data-driven models because they explicitly represent biological knowledge, enabling
simulation of scenarios that were not used to construct the model. While this generalizability has advantages, it
also creates a dilemma: how should model curation efforts be focused to improve model performance? Here,
we develop a machine learning-guided solution to this problem for genome-scale metabolic models. We
generate an ensemble of candidate models consistent with experimental data, then perform in silico ensemble
simulations for which improved predictiveness is desired. We apply unsupervised and supervised learning to
the simulation output to identify structural variation in ensemble members that maximally influences variance in
simulation outcomes across the ensemble. The resulting structural variants are high priority candidates for
curation through targeted experimentation. We demonstrate this approach, called Automated Metabolic Model
Ensemble-Driven Elimination of Uncertainty with Statistical learning (AMMEDEUS), by applying it to 29
bacterial species to identify curation targets that improve gene essentiality predictions. We then compile these
curation targets from all 29 species to prioritize refinement of the entire biochemical database used to generate
them. AMMEDEUS is a fully automated, scalable, and performance-driven recommendation system that
complements human intuition during the curation of hypothesis-driven models and biochemical databases.

Significance

Mechanistic computational models, such as metabolic and signaling networks, are becoming common in
biology. These models contain a comprehensive representation of components and interactions for a given
system, making them generalizable and often more predictive than simpler models. However, their size and
connectivity make it difficult to identify which parts of a model need to be changed to improve performance
further. Here, we develop a strategy to guide this process and apply it to metabolic models for a set of bacterial
species. We use this strategy to identify model components that should be investigated, and demonstrate that
it can improve predictive performance. This approach systematically aides the curation of metabolic models,
and the databases used to construct them, without relying on the intuition of the curator.
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Introduction

Genome-scale metabolic network reconstructions (GENREs) are knowledgebases describing metabolic
capabilities and their biochemical basis for entire organisms. GENREs can be mathematically formalized and
combined with numerical representations of biological constraints and objectives to create genome-scale
metabolic models (GEMs). These GEMs can be used to predict biological outcomes (e.g., gene essentiality,
growth rate) given an environmental context (e.g., metabolite availability) (Oberhardt et al., 2009). GEMs are
now used widely for well-studied organisms such as Escherichia coli and Saccharomyces cerevisiae, but
GEMs for most other organisms are much more taxing to create and curate, partially due to the exhaustive and
manually-driven steps required (Thiele and Palsson, 2010).

Systems for automatically generating GEMs of sufficient quality for limited purposes have been
developed (Henry et al., 2010), but the methods used to further curate GEMs are nearly universally
under-reported in the literature. Curation methods for GEMs that take researchers many months to years to
develop are often summarized qualitatively with limited description. This is not surprising, given the difficulty in
prioritizing areas for curation of network-based, highly connected mechanistic models such as GEMs.

In practice, heuristics are typically used to prioritize curation, such as curating portions of the GEM
directly involved in the manipulation of a metabolite, gene, or pathway of known interest. These heuristics,
combined with targeted literature searches, allow task-based curation and GEM evaluation, which is
increasingly supported in software related to genome-scale metabolic modeling (Lieven et al., 2018; Wang et
al., 2018). However, identifying the network components that influence the predictions of interest is not an
intuitive process because biological networks are generally highly connected. Gap-filling is an algorithmic
approach for identifying reactions to be added to a GEM, or changes to existing reactions, that satisfy imposed
constraints on the GEM such as production of a metabolite of interest (Reed et al., 2006). Using gap-filling to
guide the curation process is thus limited to helping identify metabolic functions that lead to an experimental
phenotype known a priori. In other words, gap-filling is a process of fitting a GEM to observed data. This fitting
is of tremendous value, but the primary purpose of mechanistic models is to generate in silico predictions for
behavior in a previously unobserved environment. In order to improve GEM performance for simulation tasks
that have no observed experimental equivalent, a curator needs to understand which portions of the GEM
affect the output of the simulation.

One way to view this issue is through the lens of a sensitivity analysis, asking how much variation in the
parameters of a model will impact a simulation of interest. Such an approach has been developed and applied
to dynamic models of biological networks (Babtie et al., 2014), which relies on quantified uncertainty in the
structure of a model. Uncertainty quantification has been applied at the level of individual components within a
GEM, either by considering the probability of a function being present in a network based on sequence
comparisons (Benedict et al., 2014) or by leveraging network structure to more accurately estimate these
probabilities (Plata et al., 2012). However, an approach that unifies a probabilistic view of GEM structure with
simulations performed with them, which would enable structural sensitivity analysis for GEMs, has not been
developed to our knowledge. At a minimum, guiding the curation of a GEM to improve performance on a
prospective simulation requires quantifying the uncertainty in the simulation output.

Recently, we developed a framework for the generation of ensembles of GEMs which can be applied to
improve predictive performance over that of an individual GEM (Biggs and Papin, 2017). This approach is
analogous to the use of ensembles of data-driven models (Dietterich, 2000) or hypothesis-driven models such
as signaling networks (Kuepfer et al., 2007), and has been applied to metabolic networks for dynamic modeling
as well (Tran et al., 2008). Here, we prioritize curation of GEMs by coupling ensemble modeling with machine
learning to take advantage of the uncertainty quantification inherent to ensemble modeling. We call this
approach Automated Metabolic Model Ensemble-Driven Elimination of Uncertainty with Statistical learning.
(AMMEDEUS). One of the central tenets of systems biology is that models represent our hypotheses about
how an organism functions. As such, we can use these models to simulate the behavior we expect according
to our hypotheses. AMMEDEUS takes advantage of this principle, generating many hypotheses (e.g. an
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ensemble) and coupling them with machine learning to identify experiments that optimally improve our
understanding of a specific behavior for an organism.

Results

The AMMEDEUS approach is summarized as follows. First, we generate many models that are each
consistent with experimental data, forming an ensemble of models (Figure 1a). We then perform a set of
simulations using the ensemble that are related to a task of interest, such as drug target identification or
production of a metabolite of commercial interest (Figure 1b). Using the output of these simulations, we
perform unsupervised learning to generate phenotypic clusters of models, where clustering is determined by
similarity of simulation profiles across the entire set of simulations (Figure 1¢). We then apply supervised
learning to predict simulation cluster membership for each model using the values of variable parameters in
that model as input (Figure 1¢). The relative importance of these model parameters in the supervised learning
model indicates the impact that uncertainty in that parameter has on simulation outcomes across the ensemble
(Figure 1d). In other words, resolving the true state of these parameters will maximally reduce uncertainty in
the simulations performed with the ensemble. Here, we apply this approach to the task of reducing uncertainty
in predicted gene essentiality for 29 bacterial species (Figure 1a-d). We generate an ensemble for each
species using previously published growth phenotyping data (Plata et al., 2015), predict the effect of
genome-wide single gene knockouts, then apply machine learning as described above. Critically, this process
is generalizable to any mechanistic model and simulation task of interest with the correct substitution of
machine learning models given changes in the type of simulation output (e.g., continuous vs. discrete,
steady-state vs. dynamic).
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Figure 1. The AMMEDEUS approach guiding curation of genome-scale metabolic models. a) A draft GEM is
generated using ModelSEED. Algorithmic gapfilling is applied so that the GEM can recapitulate experimental
observations, and the process is repeated to identify alternative solutions. These alternative solutions are assembled
into an ensemble of GEMSs, each of which contains the original content of the draft GEM and a unique set of gapfilled
reactions. b) Single gene knockouts are performed using the ensemble, in which production of biomass is evaluated
when reactions requiring each gene are inactivated. ¢c-d) Machine learning approach for identifying curation targets
based on ensemble simulations. Unsupervised machine learning is applied to the ensemble simulation results,
generating two simulation clusters (cluster 1 [red] and cluster 2 [blue]). Here, principal coordinate analysis is used to
visualize the similarity of simulation profiles for all models within an ensemble. Simulation clusters are then used as
labels in supervised machine learning, which are predicted using model reaction content as input to a random forest
classifier. Curation is prioritized based on the features contributing to classifier performance.
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Given our objective of identifying the most impactful experiment or curation effort to improve the quality
of a given model, we required ensembles of GEMs that were large enough to saturate the space of unique
simulation results (i.e., predicted behavior) and model structures (i.e., hypotheses). We implemented a
previously developed iterative gapfilling procedure for generating ensembles of GEMs (Biggs and Papin,
2017). First, each member of an ensemble is generated by iteratively filling gaps in the network to enable in
silico growth in each of a set of media conditions (Figure 2a; see Methods). Alternative solutions are explored
by shuffling the order of media conditions used for gapfilling and repeating the process until the ensemble
reaches the desired size (Figure 2b; see Methods). Using this method, we were able to generate ensembles
of around 1000 GEMs for 29 bacterial species (see Methods for descriptions of exceptions).

To validate that the ensembles we generated represent an adequate sampling of the feasible model
space, we first subsampled gap-filled reactions in each ensemble for each species and determined the unique
reaction content within each subsample (Figure 2¢). We found that unique reaction content (e.g., number of
unique reactions gap-filled) plateaued or nearly plateaued with ensembles containing as few as 100-200
models, suggesting the ensembles we generated sufficiently saturate the space of unique gap-filled reactions.
For gene essentiality simulations, the number of variable predictions (e.g., number of genes for which at least
one ensemble member disagrees with another member) plateaued in a similar manner (Figure 2b). We also
performed subsampling for predictions of growth rate (a common simulation performed with GEMs), which
exhibited similar properties of convergence (Supplemental Figure 1a-b).

Taken together, these subsampling-based results confirm that ensembles containing 1000 models
generated using our reconstruction pipeline sufficiently represent the network structure space (e.g., unique
reactions) and prediction space (e.g., essentiality profiles) possible given the input data. This behavior is
consistent with our previous work examining the performance of ensembles of GEMs for Pseudomonas
aeruginosa, in which various aspects of ensemble performance nearly plateaued with only 50 GEMs (Biggs
and Papin, 2017). However, in order to ensure that an adequate number of samples are included for
downstream machine learning analyses, we maintain the full ensemble of 1000 GEMs for each species in all
analyses. In other applications, we suspect that organisms with lower quality GEMs (e.g., more gaps in their
metabolic network) or less phenotypic profiling data may require additional sampling to saturate this space. In
contrast, species with GEMs containing fewer gaps are likely to require less sampling or an alternative
ensemble generation procedure. For example, when attempting to build an ensemble of GEMs for Bacillus
megaterium using our pipeline, only one unique gapfilling solution could be found. This result is likely due to its
large genome size (5.5Mb, 5609 coding sequences) and its extensive genomic and physiological
characterization from over 100 years of use in biochemistry research (Eppinger et al., 2011).
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Figure 2. Ensemble generation process and subsampling of ensemble content and simulations to demonstrate adequate
sampling of the solution space. a) Algorithm for generating a single ensemble member. Given a set of confirmed
experimental growth conditions, reactions are added to fill gaps in the GEM required for in silico growth in the first
condition (See Methods, Algorithm 1). The reactions are added, then the process is performed iteratively for the
remaining growth conditions until growth is possible in all conditions. b) Process for producing an ensemble of GEMs.
The algorithm in panel a is performed to generate a single ensemble member, then the order of the media conditions is
shuffled and the process is repeated to generate another ensemble member. This process is repeated 1000 times,
generating approximately 1000 ensemble members (for some species, duplicate solutions occur and these members are
removed. All 29 species had 970-1000 ensemble members) ¢) The variable reaction content in ensemble members as a
function of increasing ensemble size. A variable reaction is any reaction that has is variably included across any member
of the subsampled group (e.g., it is absent from some members and present in other members, but neither entirely
present in nor entirely absent from the ensemble). For each species, the mean number of variable reactions in
subsamples of GEMs is shown by the solid line, with the standard deviation shown as light fill of the same color above
and below the mean. Subsampling was performed with 1000 draws per subsample size. Ensembles were sampled at
intervals of 20 members, e.g., 20, 40, 60... until reaching the size of the entire ensemble. d) Variability in gene
essentiality simulations within subsamples of ensemble members. Using the same subsampling procedure as in panel ¢,
the number of genes with at least one GEM in the subsample with a simulation outcome different than the rest (e.g.,
non-consensus) was determined. The mean for each subsample size is shown by the solid line, with the standard
deviation shown as light fill of the same color above and below the mean.

Each species’ ensemble contained 19.27 +/- 8.66 genes (mean +/- standard deviation) for which at
least one GEM’s prediction of essentiality disagreed with another GEM in the ensemble, representing 3.11 +/-
1.39% of total metabolic gene content. For the unsupervised machine learning portion of AMMEDEUS, we
performed k-means clustering on the gene essentiality simulations from each species’ ensemble separately.
We chose k = 2 to generate two clusters for each species, each of which contain GEMs from the ensemble
with similar gene essentiality simulation profiles. The results are visualized for all species in this study using
principal coordinate analysis (PCoA) in Figure 3a. Although we chose k = 2 here to illustrate the approach, the
separation of models in PCoA space suggests that for many species, determining a larger number of clusters
might be advantageous. For example, while k = 2 generates two maximally-different simulation clusters, there
may be more than two distinct in silico phenotypic clusters that represent significant differences in
hypothesized model behavior. Accounting for the presence of these smaller clusters may identify important
network features that would otherwise only be found through multiple iterations of clustering with k= 2 and
refinement of the ensemble.
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Our approach is focused on prioritizing curation efforts to reduce uncertainty in model simulations.
However, whether the parameters we have used result in clusters with differences in predictive performance is
unclear. To investigate this question, we evaluated the performance of a subset of ensembles for which
experimental genome-wide gene essentiality datasets derived from in vitro growth on a rich medium were
available. Suitable datasets were identified for Staphylococcus aureus (Chaudhuri et al., 2009) and
Haemophilus influenzae (Akerley et al., 2002). Each GEM in the ensemble for each species was evaluated
using precision (the ratio of true positives to the sum of true and false positives) and recall (the ratio of true
positives to the sum of true positives and false negatives; Figure 3b). For both species, ensemble members
have variable precision and recall, and simulation cluster membership is associated with a difference in both
precision and recall (p < 0.0001, Mann-Whitney U-test with false discovery rate control via Benjamini Hochberg
procedure). We note that the poor precision and recall for all ensemble members is consistent with the
performance of other GEMs in predicting gene essentiality, especially when comparing to in vitro essentiality
datasets that suffer from technical noise and variability (Blazier and Papin, 2019). The critical aspect of these
results is that there are biologically meaningful differences in the predictions generated by each cluster. The
difference in performance between two clusters suggests that there are meaningful differences in network
structure and that assigning two clusters (k = 2) is sufficient to capture these differences across an ensemble.
Having a meaningful degree of variation between simulation clusters is essential moving forward in
AMMEDEUS, as we aim to predict the simulation cluster from the network structure of each ensemble
member.

We next sought to identify the reactions that vary across an ensemble that are associated with
membership in each cluster. For this objective, we calculated two metrics for each gapfilled reaction in each
ensemble. This process is demonstrated for Enterococcus faecalis in Figure 3c-d. First, we trained a random
forest classifier (Breiman, 2001) to predict cluster membership for each GEM from its reaction content. The
classifier for every species had an out-of-bag accuracy above 97%, indicating that gene essentiality cluster
membership can robustly be predicted from reaction content within the ensembles. To prioritize candidate
reactions for curation of each species’ ensemble, we examined the features that contributed the most to
classifier performance. We call this first metric the fractional importance of each reaction (called “fractional”
because all importances sum to 1 for each species). Second, we developed a metric to represent the
enrichment of gapfilled reactions in a single cluster without consideration of classifier performance, which we
call the cluster ratio. The cluster ratio (Figure 3c¢) is 1 when a reaction is present in one cluster and not present
in any member of the other cluster, and 0 when the reaction is present in an equal number of members in each
cluster.

The intent of the cluster ratio is to capture the value of curating reactions that may be lowly abundant
throughout an ensemble yet highly enriched in one of the two clusters (e.g., present in 0% of members of one
cluster but 20% of members in the second cluster). These reactions may make small contributions to classifier
performance due to their low abundance, but curating their presence or absence will reduce the uncertainty in
the ensemble of GEMs in a straightforward and interpretable way. This strategy contrasts with reactions with
high fractional ratios (i.e., important in the random forest) because the random forest allows for interactions
between input variables. As such, curation of individual reactions with high fractional importance may not result
in a substantial change in GEM performance; improvements from curating these reactions may be dependent
on also curating other reactions that interact with the curated reaction in the trained random forest. Together,
the cluster ratio and fractional importance can guide manual curation of a GEM. High cluster ratio reactions
represent interpretable “low-hanging fruit” with modest overall value for curation, while high fractional
importance reactions represent the highest value curation effort that could be pursued. Reactions with high
values for both metrics should be prioritized above all else (Figure 3d).
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Figure 3. Application of AMMEDEUS to bacterial species. a) Ensemble gene essentiality simulations and unsupervised
learning for all 29 species. Principal coordinate analysis (PCoA) plots show the similarity between gene essentiality
simulation profiles for each ensemble member. Within each PCoA plot, each point represents an ensemble member,
colored by cluster membership as determined with k-means clustering (k=2). PCoA is used solely for visualization; only
k-means clustering results are used in AMMEDEUS. Percent variance in the pairwise distance matrix explained by each
principal coordinate is indicated in parentheses. b) Evaluation of performance of GEMs in each simulation cluster
compared to genome-wide gene essentiality data. Essentiality datasets from in vitro experiments were collected for
Haemophilus influenzae and Staphylococcus aureus. Precision (TP/[TP + FP], TP = true positives, FP = false positives)
and recall (TP/[TP+FN], FN = false negatives) were calculated for each ensemble member for each species. Small red
and blue circles indicate an individual ensemble member, colored by simulation cluster membership. Large red and blue
circles indicate mean behavior for ensemble members from each cluster, and error bars of same color extend above
and below the mean by one standard deviation. ¢) Extraction of curation metrics (fractional importance and cluster ratio)
for each reaction after the unsupervised learning step. d) Example curation guidance plot for Enterococcus faecalis e)
Example of a network feature driving simulation cluster membership. The metabolic activity, selenocystathionine
L-homocysteine-lyase, is known to be catalyzed promiscuously by the enzyme cysteine-S-conjugate beta-lyase, which
acts on a variety of S- and Se-conjugates. We discovered that this activity has been experimentally verified in vitro for
E. faecalis, but is not incorporated in biochemical databases. Water is excluded from reactants for visualization.
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With a list of prioritized reactions for curation in hand, there are multiple approaches that can be taken
to curate their presence or absence, including wet lab experiments, targeted bioinformatic analyses, and
literature searches. The optimal approach depends on the scientific history of the organism and data
availability. A targeted literature search might reveal information that has not been incorporated into genomic or
metabolic databases, especially for well-characterized organisms with a large body of literature. For example,
in the ensemble for E. faecalis, the reaction with the second highest fractional importance and a cluster ratio of
1 (perfectly enriched in one cluster) was selenocystathionine L-homocysteine-lyase, which generates
selenohomocysteine, pyruvate, and ammonia from selenocystathionine (Figure 3e; reaction IDs: SEED
rxn03379 and KEGG R04941). This reaction is catalyzed by cysteine-S-conjugate beta-lyase (Enzyme
Commision number 4.4.1.13), which normally catalyzes beta elimination reactions with cysteine sulfur
conjugates but is known to act promiscuously on cysteine Se-conjugates (Cooper and Pinto, 2006; Cooper et
al., 2011). Cysteine-S-conjugate beta-lyase activity is prevalent in the human gut microbiota, and a study that
screened 29 isolates from the gut for Cysteine-S-conjugate beta-lyase and Cysteine-Se-conjugate beta-lyase
activity on a variety of conjugates found that E. faecalis consistently demonstrated both activities (Schwiertz et
al., 2008). Thus, the reaction identified by AMMEDEUS is highly likely to occur in E. faecalis, and it should be
added to all members of the ensemble to improve the representation of biochemical knowledge as well as
reduce uncertainty in the predictions generated by the ensemble. This reaction may be missing appropriate
links between genomic and biochemical annotation for a number of reasons: the primary activity is
promiscuous (S-conjugates can be one of many compounds), the secondary activity is a less appreciated
promiscuous activity (Se-conjugate metabolism by an enzyme primarily known for S-conjugate metabolism),
and the primary activity is sparsely annotated in the database used to construct GEMs in this study (PATRIC;
contains 45 CDS annotated as “putative cysteine-S-conjugate beta- lyase”, only 7 of which occur outside the
Mycobacteroides genus). As such, this curation vignette also presents an opportunity for targeted curation of
E. faecalis annotation in genomic and biochemical databases.

In addition to the single-species curation guidance enabled by AMMEDEUS, the automated nature of
the approach allows meta-analyses that span metabolic models for multiple organisms or entire databases. We
performed the AMMEDEUS approach for all 29 species in our study. Figure 4a shows curation guidance plots
for all species, which demonstrate the variability in the distribution of curation target metrics across species.
Some species display behavior similar to E. faecalis, with many reactions with high fractional importance at
intermediate cluster ratio values, indicating complex interactions between reactions of interest (e.qg., Listeria
monocytogenes, Listeria seeligeri, Neisseria mucosa). For these species, reduction of uncertainty in gene
essentiality predictions will likely require curation of multiple reactions. Other species have simpler behavior,
with a high degree of concordance between cluster ratio and fractional importance for the most important
reactions (e.g. Bacillus pumilis, Haemophilus influenzae, Pseudomonas putida). For these species, each
individual reaction of high importance that is curated will result in a substantial and easily predictable decrease
in uncertainty for gene essentiality predictions.
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Figure 4. Analysis of AMMEDEUS curation targets for 29 bacterial species. a) Curation target plots for all 29 species
generated with AMMEDEUS. b) Distribution of mean fractional importances across all species. For each gapfilled
reaction, fractional importances were averaged across all ensembles in which the reaction was gapfilled; the histogram
of these means is shown. ¢) Distribution of mean cluster ratios across all species. Data handled the same as in panel b.
d) Compiled curation target plot for all species. Size of each point represents the number of species for which the
reaction was gapfilled. e) L-threonine acetaldehyde-lyase, which had the second highest pan-species mean fractional
importance. Species for which the reaction was gapfilled lack an annotated L-threonine aldolase, the primary enzyme
known to catalyze this reaction. However, the two species for which this reaction was in the top 10 most important
reactions have an annotation for Serine hydroxymethyltransferase, which promiscuously catalyzes this reaction. f&g)
Mean fractional importance (f) and cluster ratio (g) across all species by subsystem. Subsystem colors are the same in
panels f and g. Subsystems are ordered by decreasing median from left to right in both panels. Only subsystems with at
least 10 gapfilled reactions are shown. Boxplots show median (center line) and extend to the 25th and 75th percentile.
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By compiling these curation target metrics across all 29 species, we are able to identify pan-species or
database-wide curation targets. For these reactions, improving the accuracy or coverage of
gene-protein-reaction associations could greatly improve the performance of GEMs generated with this
database for any species. In Figure 4b, we show the distribution of mean fractional importances for each
reaction used to fill a gap in any ensemble (calculated using the fractional importances only for species for
which the reaction was gapfilled). The high-importance tail of this distribution suggests that a small number of
reactions have a substantial impact on gene essentiality prediction uncertainty for many species. The same is
true of the cluster ratio, for which a large set of reactions have a mean cluster ratio of 1 (e.g., only present in
one cluster) across species (Figure 4c). The cluster ratio distribution is approximately normal, centered around
0.5, meaning the average behavior for reactions with a cluster ratio not equal to 1 is to be twice as abundant in
one cluster than the other (e.g., 1 - 2 = 0.5). These distributional observations are also true when reactions
occurring in fewer than 5 species are filtered (Figures S2a-b) and when considering the distribution of
fractional importances without taking the mean across all species (Figure S2c¢). The distribution of raw cluster
ratios (i.e. no mean across species, Figure S2d) still has a large set of reactions with a cluster ratio of 1, but
has a much larger set of reactions with near 0 cluster ratio (e.g. uniformly distributed across two clusters, 1 -
1/1 = 0). This result suggests that many reactions are evenly distributed between the two clusters for some
species, but are enriched in one cluster for at least one other species (resulting in the distribution of means
shifting away from 0, as in Figure 4c). Taken together, these results suggest that some reactions are of high
value across many species (reactions with high mean cluster ratio and/or high mean fractional importance), but
these reactions may have minimal or no value for a smaller subset of species.

Individual reactions can be prioritized at the pan-species or database level by taking both cluster ratio,
fractional importance, and their frequency across species into account. Figure 4d shows the value of each
metric for each reaction, as well as the number of species that the reaction was gapfilled for in our analysis.
Reactions towards the upper right corner that have large points (i.e., gapfilled for many species) are of highest
value from a database curation standpoint. To illustrate a specific example, the reaction with the second
highest mean fractional importance is L-threonine acetaldehyde-lyase, which converts L-threonine to glycine
and acetaldehyde (Figure 4e; reaction IDs: SEED rxn00541 and KEGG R00751; EC 4.1.2.5 and 4.1.2.48). It
was gapfilled in 5 out of 29 ensembles, and has a mean cluster ratio of 0.99. This reaction is known to be
catalyzed by threonine aldolase (TA) as well as promiscuously by serine hydroxymethyltransferase (SHMT;
generally encoded by glyA) in bacteria (Chaves et al., 2002). For two species in this study, Corynebacterium
efficiens and Haemophilus parasuis, this reaction is amongst the 10 reactions with the highest fractional
importance. TA activity is known to occur in Corynebacterium glutamicum, a close relative of C. efficiens, but it
is not known whether the activity is due to TA or SHMT (Simic et al., 2002). Interestingly, the genomes for C.
efficiens YS314 and H. parasius SH0165 (both used in this study as representative genomes) contain a
putative SHMT encoded by glyA, but no putative TA. For these species, a simple experiment with crude
extracts to verify TA activity, as performed previously for C. glutamicum, could verify that the metabolic activity
occurs either through promiscuous SHMT activity or an orphan enzyme (Simic et al., 2002). A more systematic
set of experiments utilizing glyA mutants for these species and a handful of others could identify the degree of
promiscuous TA activity by SHMT to properly propagate annotations to other species within databases. In
addition to the inherent value in improving the quality of biochemical databases through this targeted
investigation, AMMADEUS shows that this specific investigation would substantially decrease uncertainty in
gene essentiality predictions for a broad selection of bacterial species.

Based on this pan-species analysis, we next asked whether reactions within specific subsystems were
contributing more to prediction uncertainty than other pathways. Reactions assigned to “Respiration” had a
lower mean fractional importance than reactions assigned to any other pathway except for “Phosphorus
metabolism” (Figure 4f, Kruskall-Wallis test with posthoc pairwise Dunn’s test and Bonferroni multiple testing
correction). Given the key role of respiration in energy generation and it's well-characterized structure, it is no
surprise that reactions directly involved in respiration do not significantly contribute to prediction uncertainty for
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GEMs. Few other differences in mean fractional importances across pathways exist (see Supplemental Table
S2). The same analysis, instead performed on the mean cluster ratio of reactions assigned to each subsystem,
yielded far more differences between subsystems (Figure 4g, Supplemental Table S$3). “Metabolism of
Aromatic Compounds” and “Nucleosides and Nucleotides” had particularly high mean cluster ratios, suggesting
that curating individual reactions within those subsystems should reduce prediction uncertainty without
dependence on curating larger pathways. “Respiration” also had a high cluster ratio, in contrast to its low mean
fractional importance. One potential explanation for this is that the small number of reactions involved in
respiration tend to be essential, but they also have overlapping roles for generating key metabolites such as
pyruvate, L-lactate, and acetyl-CoA, and thus may be redundant for some GEMs. Reactions involved in
respiration also have redundant electron carriers, such as ubiquinone and menaquinone, so preferential
addition of each of the two reactions to different clusters could result in a high cluster ratio for each reaction
without any impact on gene essentiality simulations. Other subsystems had mean cluster ratios centered closer
to 0.5, similar to the mean value in the normal portion of the distribution in Figure 4c. Together, the
subsystem-specific fractional importance and cluster ratio behavior suggests that focusing on individual
reactions in database-wide curation will have greater value than focusing on subsystems. Thus, in practice,
modelers that aim to improve their GEM with respect to a broad set of simulations (e.g. genome-wide gene
essentiality) should focus curation on key reactions that are distributed across the network rather than curation
of specific predefined subsystems. AMMEDEUS provides a systematic way to identify these reactions for
individual organisms and entire biochemistry databases.

Discussion

The analysis we performed demonstrates just one possible path towards the goal of reducing
uncertainty in our understanding of biochemical networks within the AMMEDEUS framework. Changes to the
process can be rationalized for new goals; for example, we previously demonstrated that introducing random
weights on inclusion of each reaction during algorithmic gapfilling can generate more diverse ensembles
(Biggs and Papin, 2017). If none of the ensemble members generated by our pipeline adequately represented
metabolism for an organism (e.g., their gene essentiality simulation results were vastly different than
experimental observations), we could introduce such random variance to increase the likelihood of generating
some ensemble members that reflect biological reality. Such an approach may be necessary for organisms
with metabolic repertoires differing substantially from those represented in popular biochemical databases
(e.g., gut microbes, intracellular parasites). Inclusion of methods for proposing novel hypothetical enzymatic
function could complement our approach for such organisms (Hatzimanikatis et al., 2005; Jeffryes et al., 2015).

AMMEDEUS can be immediately extended to other simulations performed using GEMs with small
adjustments to the machine learning models applied. For example, rather than gene essentiality, we may be
interested in improving growth rate predictions across many media conditions. In this case, we would perform
ensemble flux balance analysis in each condition to predict growth rates (Biggs and Papin, 2017), then apply
an unsupervised machine learning algorithm suited to continuous data, such as principal component analysis
(PCA). In this setting, each sample would be a vector of growth rates generated by a single ensemble member,
and the loadings in PCA would describe variance in predicted growth rates, and each sample (ensemble
member) would have a score for each principal component. In the supervised learning step, we would apply
regression to predict the scores (e.g. predict the value of the first principal component [PC1] for each sample)
using the presence or absence of gap-filled reactions as the regressor input. The feature importances in this
regressor would be equivalent to the fractional importances in the random forest classifier we use in the
implementation of AMMEDEUS in this study. To calculate an equivalent to the cluster ratio, the same equation
could be used with f, and f, replaced with the absolute value of the average of PC1 for ensemble members
with and without the reaction, respectively. This hypothetical shift in curation goals, and the simple swapping of
machine learning models required, demonstrates the modular nature of AMMEDEUS.
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Our approach builds on work in other disciplines in which uncertainty quantification and reduction are
applied to understand or improve the behavior of domain-specific models. For example, in petroleum
engineering, an ensemble-based approach is used to derive value of information (VOI) estimates for resolving
parameter values in models of oil reservoir management (He et al., 2018). In this setting, a company may be
interested in performing the experiment or analysis needed to improve their certainty in a model of profit gain
or risk. With AMMEDEUS, we effectively derive VOI estimates for resolving reaction presence or absence,
where value is determined by the degree of uncertainty reduction for predictions of interest. Taking a VOI
approach for biological discovery and to improve the models used in various facets of biotechnology could help
automate workflows and substantially reduce costs by prioritizing experiments. Machine learning methods
have great utility towards this goal, since they can be applied to any variety of mechanistic model structures
and simulation outputs, removing the need to derive analytical solutions for VOI estimates for every new
scenario. As the diversity and depth of organisms that mechanistic models such as GEMs are being
constructed for increases, such approaches will be vital to continue to improve their quality and predictiveness
(Magnusdottir et al., 2017; Monk et al., 2014).

Methods
Organism selection
Organisms with available growth phenotype data were extracted from Plata, et al. (Plata et al., 2015). To
identify a representative genome for each species, we queried the PATRIC database (Wattam et al., 2017) with
the genus and species name for all organisms in the study, then selected a single genome from PATRIC based
on decision criteria described as follows. When a reference genome was assigned for the species, the genome
identifier for the reference genome was chosen. If no reference genome was available, a genome listed as
“representative” was chosen. When multiple genomes with the “representative” status were available, we
chose the first genome listed. If a selected representative genome contained more than 10 contigs, a
representative genome with fewer contigs was chosen. Strain identifiers were not provided in the study from
which data was drawn, so these selection criteria were developed to select the highest-quality genome
available for the species in the study. Selected genome identifiers are available in Supplemental Table S1.
Organism selection was further refined by only including those from Plata, et al. (Plata et al., 2015)
which grew in at least 10 of the single-carbon source Biolog conditions. The experimental growth threshold
originally used in the paper from which data were drawn was used (>10 colorimetric units of tetrazolium dye
reduction; originally scaled between 0 and 100 based on positive [100 units] and negative [0 units] controls).
This choice was made with the recognition that the tetrazolium dye measures redox activity and not actual
biomass production; for the purpose of our study, we assume that detectable redox activity above 10 relative
units would require biomass production. After this initial selection step, Brachybacterium faecium and Gordonia
bronchialis were also removed from the analysis because no solutions existed to enable biomass production
using the universal reaction bag for either species. Bacillus megaterium was excluded because only one gapfill
solution was found across all gapfilling cycles. Similarly, Stenotrophomonas maltophilia was excluded because
only two unique gapfill solutions were found. In total, the full analysis pipeline was applied to 29 species.

Generation of draft genome-scale metabolic models

Draft-quality genome-scale metabolic models (GEMs) were generated using the ModelSEED reconstruction
pipeline (Henry et al., 2010) accessed through PATRIC in August 2018 (Wattam et al., 2017). PATRIC servers
were queried to generate GEMs formatted for use in cobrapy (Ebrahim et al., 2013) using the Mackinac
package (Mundy et al., 2017).

Representative media
The base medium for biolog conditions was derived from the ModelSEED media compositions for biolog
plates. Flux variability analysis was used to identify metabolites which had essential uptake reactions in all
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complete media-gapfilled reconstructions from PATRIC. Based on this analysis, we added Heme and H2SO3
to the base biolog composition used in silico (i.e., uptake of heme and H2SO3 was allowed in all conditions).
For each single carbon source, appropriate identifiers were found in the ModelSEED database. For
metabolites with ambiguous chemical identities (e.g., metabolites that Biolog does not provide isomer
composition for, such as D-galactose), only one isomer was selected from ModelSEED to represent the
condition. Carbon sources that are complex mixtures of metabolites (gelatin) or polymers (pectin) were
excluded from analyses.

Algorithmic gapfilling

Each individual gapfilling step, corresponding to enabling biomass production on a single media source, was
performed using the following algorithm adapted from our previous work (Biggs and Papin, 2017). This
algorithm is in essence the same as parsimonious flux balance analysis (pFBA, (Lewis et al., 2010)), except
that the parsimonious assumption of minimization of the sum of all fluxes is only applied to reactions from a
universal reaction bag that are activated to allow flux through the network.

Algorithm 1: pFBA-based gapfilling

Min E(abs(yj))forj € [0,1, ... # universal reactions] , subject to:
Sv+Uy=0
Vyomass > 005 hr™!
Vib,i < Vi <Vup,i

Yin,j <Y <Vuw,j

Where S is the stoichiometric matrix representing the model to be gapfilled, v is the vector of fluxes through
reactions in S, U is the stoichiometric matrix representing the reaction database from which reactions are
activated to fill gaps, y is the vector of fluxes through reactions in U, v,, = is flux through the biomass
reaction, v, and v, are lower and upper bounds of flux through reactions in the original model, respectively,
and y, and y, are lower and upper bounds of flux through reactions in the reaction database U .

The formulation is identical to the original formulation of pFBA, except for four key differences. First, we
only require an arbitrarily low amount of flux through biomass, rather than the maximum amount of biomass,
meant to represent a binary growth condition. Second, we introduce a universal reaction bag (U ) and
associated flux variables for each reaction in U (y ). Third, only fluxes through reactions in U are penalized;
fluxes through reactions in the model being gapfilled (S ) are not penalized. Fourth, rather than explicitly
splitting all reactions into irreversible reactions, we take advantage of solver-level interfaces implemented in
cobrapy through the optlang package (Jensen and Cardoso, 2016) that allow introduction of absolute values
into the objective (this is done out of convenience in our implementation; this aspect of the problem formulation
is identical to the same aspect in pFBA at the solver level) (Jensen and Cardoso, 2016). As in Biggs et al.
(Biggs and Papin, 2017), the solution to this optimization problem activates reactions in the universal reaction
bag with the minimum sum of fluxes necessary to enable flux through the biomass reaction in a given
condition.

Generating ensembles from gapfill solutions
For each organism, the entire algorithm for generating an ensemble is as follows:

For i in number of ensemble members:
Randomly order a selection of J media conditions
For a single condition j in J:
1. Set model bounds to represent media condition
2. Optimize using pFBA-based gapfilling
3. Add activated reactions/remove flux


https://doi.org/10.1101/460071
http://creativecommons.org/licenses/by/4.0/

415

420

425

430

435

440

445

450

455

bioRxiv preprint doi: https://doi.org/10.1101/460071; this version posted June 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

minimization penalty for those reactions
Store solution from this iteration
Create an ensemble where each member contains the set of
reactions added over an iteration through all media conditions.

We performed this procedure for 1000 cycles for each species (i.e., number of ensemble members = 1000).
All species included in the study grew in at least 10 in vitro single carbon source media conditions (i.e., J
contained at least 10 conditions); for each species, all positive growth conditions were used to gapfill during
each cycle. After removing duplicate gapfill solutions, all species included for further analyses had 970-1000
members in their ensemble (species not considered after this point are detailed in Organism selection).

Ensemble Flux Balance Analysis and Ensemble Gene Essentiality

Ensemble flux balance analysis and ensemble gene essentiality screens were performed using Medusa v0.1.2
(Medlock and Papin, 2019) and cobrapy v0.13 (Ebrahim et al., 2013). The GNU linear programming kit (GLPK)
was used as the numerical solver in all cases. For all simulations, rich medium was used (1,000 mmol/gram
dry weight*hr uptake allowed for all metabolites with a transport reaction; commonly referred to as “complete
medium”). An arbitrarily low cutoff for flux through biomass in gene essentiality screens was used (1E-6 units of
biomass/hr), but varying this quantity between 1E-10 and 1E-3 did not substantially affect essentiality results.

Subsampling of ensemble features and predictions

For all subsampling performed, 1,000 random draws were made with replacement at each subsample
ensemble size. Ensemble sizes for each subsampled population ranged from 20 to 1,000, with subsampling
performed in intervals of 20 members (i.e., 20, 40, 60 ... 1,000 members). When the subsample size
exceeded the actual ensemble size (e.g., some species had slightly less than 1,000 members), all ensemble
members were subsampled.

Clustering of ensemble gene essentiality predictions and prediction of clusters

Prior to clustering of gene essentiality predictions, genes with perfectly correlated predictions across an
ensemble were collapsed to a single variable (i.e., if gene 1 always has the same essential/nonessential
prediction as gene 2, they are lumped as a single variable). Without this aggregation, these perfectly correlated
features heavily biased k-means clustering resulting in unbalanced clusters with ~90% of ensemble members
in a single cluster. After aggregation of perfectly correlated genes, ensemble gene essentiality predictions were
clustered into two clusters using k-means clustering as implemented in the KMeans class of scikit-learn
v0.19.2 (Pedregosa et al., 2011) (max iterations=300, convergence tolerance=1E-4, Elkan’s(Elkan, 2003)
algorithm). Gene essentiality predictions were converted to binary data (essential or nonessential) using a
cutoff of flux through biomass of 1E-6 mmol/(gDW*hr). Random forest classification was performed to predict
cluster membership using active features in each ensemble member (e.g., presence or absence of a reaction
was assigned as True or False in the input, respectively) (Breiman, 2001). The RandomForestClassifier class
from scikit-learn v0.19.2 was used (500 trees, quality of splits determined with the gini criterion, no max depth,
minimum of 2 samples per split, minimum of 1 sample per leaf, sqrt(number of features) searched at each split,
training samples determined for each tree via bootstrap selection with replacement). The default metric in
scikit-learn’s RandomForestClassifier for determining feature importance, the mean decrease in node purity,
was used to calculate feature importance in this study (Gordon, 1984).

Visualization of gene essentiality clusters

Principal coordinate analysis (PCoA) (Gower, 1966) was used to visualize ensemble gene essentiality results.
PCoA as implemented in scikit-bio v0.5.4 (https://github.com/biocore/scikit-bio) was performed using the
hamming distance (Hamming, 1950) to compute the pairwise distance matrix.
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Gene essentiality datasets

Gene essentiality datasets were identified for species in this study from the Online Database of Gene
Essentiality (OGEE, (Chen et al., 2017)). In cases where multiple datasets were available for a given species,
the dataset generated using the same strain of the species selected for GENRE reconstruction was selected. If
multiple datasets still existed for a species, a single dataset was chosen based on media richness (e.g., more
complex media were selected over simpler media). We excluded the essentiality dataset for Streptococcus
pneumoniae because the total set of screened genes was not included (Song et al., 2005). In brief, the authors
developed a kanamycin insertion cassette targeted for 693 genes that were selected based on having >40%
amino acid sequence identity with a set of well-studied organisms. The authors reported the identity of only the
essential genes, so non-essential genes that would be in the dataset could not be included in our set of
predictions. Based on these selection criteria and limitations, we selected datasets from OGEE for
Staphylococcus aureus (Chaudhuri et al., 2009) and Haemophilus influenzae (Akerley et al., 2002).

Subsystem analysis

Subsystem assignment for reactions in ModelSEED were obtained from the ModelSEED biochemistry
repository in April 2019
(https://github.com/ModelSEED/ModelSEEDDatabase/blob/dev/Biochemistry/Pathways/ModelSEED_Subsyste
ms.tsv). The highest level subsystem assignment, “class”, was used. For reactions with multiple subsystem
assignments at this level, the reaction was considered as a separate observation belonging to both
subsystems with the same mean fractional importance and mean cluster ratio (e.g., a reaction belonging to two
subsystems is an independent observation for each subsystem in Figures 4f&g). To test for differences
amongst subsystems, we performed a Kruskal-Wallis test with post-hoc pairwise Dunn’s tests with Bonferroni
multiple testing correction using SciPy version 1.1.0 (Kruskal-Wallis) and scikit-posthocs version 0.6.1 (Dunn’s
test with Bonferroni correction) (Jones et al., 2016; Terpilowski, 2019).

Data and analysis availability

All data, analysis scripts, results, and models generated are available at
https://github.com/gregmedlock/ssl_ensembles and will be archived on Zenodo upon acceptance for
publication after peer review.

Acknowledgements

We acknowledge funding from the National Institutes of Health R01GM108501, RO1AT010253, T32LM012416,
the Thomas F. and Kate Miller Jeffress Memorial Trust, and a Wagner predoctoral fellowship to GLM. We thank
Matthew Biggs for thoughtful discussion related to the manuscript and Maureen Carey for helpful comments on
drafts.

Author Contributions

Conceptualization, G.L.M and J.P; Data Curation, G.L.M; Formal Analysis, G.L.M; Investigation, G.L.M;
Methodology, G.L.M; Software, G.L.M; Validation, G.L.M; Visualization, G.L.M; Writing - original draft, G.L.M;
Writing - Review & Editing, G.L.M and J.P; Funding Acquisition, G.L.M and J.P; Project Administration, J.P;
Resources, J.P; Supervision, J.P.

Competing Interests Statement

The University of Virginia has filed a U.S. Provisional Patent Application (No. 62/744,393) related to this
manuscript which describes a curation guidance system for biological network models of which G.L.M and J.P.
are inventors.


https://doi.org/10.1101/460071
http://creativecommons.org/licenses/by/4.0/

500

505

510

515

520

525

530

535

bioRxiv preprint doi: https://doi.org/10.1101/460071; this version posted June 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

References

Akerley, B.J., Rubin, E.J., Novick, V.L., Amaya, K., Judson, N., and Mekalanos, J.J. (2002). A genome-scale
analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl. Acad.
Sci. U. S. A. 99, 966-971.

Babtie, A.C., Kirk, P., and Stumpf, M.P.H. (2014). Topological sensitivity analysis for systems biology. Proc.
Natl. Acad. Sci. U. S. A. 111, 18507-18512.

Benedict, M.N., Mundy, M.B., Henry, C.S., Chia, N., and Price, N.D. (2014). Likelihood-based gene annotations
for gap filling and quality assessment in genome-scale metabolic models. PLoS Comput. Biol. 70, e1003882.

Biggs, M.B., and Papin, J.A. (2017). Managing uncertainty in metabolic network structure and improving
predictions using EnsembleFBA. PLoS Comput. Biol. 13, e1005413.

Blazier, A.S., and Papin, J.A. (2019). Reconciling high-throughput gene essentiality data with metabolic
network reconstructions. PLoS Comput. Biol. 15, e1006507.

Breiman, L. (2001). Random Forests. Mach. Learn. 45, 5-32.

Chaudhuri, R.R., Allen, A.G., Owen, P.J., Shalom, G., Stone, K., Harrison, M., Burgis, T.A., Lockyer, M.,
Garcia-Lara, J., Foster, S.J., et al. (2009). Comprehensive identification of essential Staphylococcus aureus
genes using Transposon-Mediated Differential Hybridisation (TMDH). BMC Genomics 70, 291.

Chaves, A.C.S.D., Fernandez, M., Lerayer, A.L.S., Mierau, |., Kleerebezem, M., and Hugenholtz, J. (2002).
Metabolic engineering of acetaldehyde production by Streptococcus thermophilus. Appl. Environ. Microbiol. 68,
5656-5662.

Chen, W.-H., Lu, G., Chen, X., Zhao, X.-M., and Bork, P. (2017). OGEE v2: an update of the online gene
essentiality database with special focus on differentially essential genes in human cancer cell lines. Nucleic
Acids Res. 45, D940-D944.

Cooper, A.J.L., and Pinto, J.T. (2006). Cysteine S-conjugate beta-lyases. Amino Acids 30, 1-15.

Cooper, A.J.L., Krasnikov, B.F., Niatsetskaya, Z.V., Pinto, J.T., Callery, P.S., Villar, M.T., Artigues, A., and
Bruschi, S.A. (2011). Cysteine S-conjugate B-lyases: important roles in the metabolism of naturally occurring
sulfur and selenium-containing compounds, xenobiotics and anticancer agents. Amino Acids 41, 7-27.

Dietterich, T.G. (2000). Ensemble Methods in Machine Learning. In Multiple Classifier Systems, (Springer
Berlin Heidelberg), pp. 1-15.

Ebrahim, A., Lerman, J.A., Palsson, B.O., and Hyduke, D.R. (2013). COBRApy: COnstraints-Based
Reconstruction and Analysis for Python. BMC Syst. Biol. 7, 74.

Elkan, C. (2003). Using the triangle inequality to accelerate k-means. In Proceedings of the 20th International
Conference on Machine Learning (ICML-03), pp. 147-153.

Eppinger, M., Bunk, B., Johns, M.A., Edirisinghe, J.N., Kutumbaka, K.K., Koenig, S.S.K., Creasy, H.H.,
Rosovitz, M.J., Riley, D.R., Daugherty, S., et al. (2011). Genome sequences of the biotechnologically important
Bacillus megaterium strains QM B1551 and DSM319. J. Bacteriol. 7193, 4199-4213.

Gordon, A.D. (1984). Biometrics 40, 874—-874.

Gower, J.C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis.
Biometrika 563, 325-338.

Hamming, R.W. (1950). Error Detecting and Error Correcting Codes. Bell System Technical Journal 29,


https://doi.org/10.1101/460071
http://creativecommons.org/licenses/by/4.0/

540

545

550

555

560

565

570

575

bioRxiv preprint doi: https://doi.org/10.1101/460071; this version posted June 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

147-160.

Hatzimanikatis, V., Li, C., lonita, J.A., Henry, C.S., Jankowski, M.D., and Broadbelt, L.J. (2005). Exploring the
diversity of complex metabolic networks. Bioinformatics 27, 1603—-1609.

He, J., Sarma, P., Bhark, E., Tanaka, S., Chen, B., Wen, X.-H., Kamath, J., and Others (2018). Quantifying
Expected Uncertainty Reduction and Value of Information Using Ensemble-Variance Analysis. SPE Journal.

Henry, C.S., DedJongh, M., Best, A.A., Frybarger, P.M., Linsay, B., and Stevens, R.L. (2010). High-throughput
generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 28, 977-982.

Jeffryes, J.G., Colastani, R.L., Elbadawi-Sidhu, M., Kind, T., Niehaus, T.D., Broadbelt, L.J., Hanson, A.D.,
Fiehn, O., Tyo, K.E.J., and Henry, C.S. (2015). MINEs: open access databases of computationally predicted
enzyme promiscuity products for untargeted metabolomics. J. Cheminform. 7, 44.

Jensen, K., and Cardoso, J. (2016). Optlang: An algebraic modeling language for mathematical optimization.
Journal of Open Source.

Jones, E., Oliphant, T., Peterson, P., and Others (2016). SciPy: Open source scientific tools for Python, 2001.

Kuepfer, L., Peter, M., Sauer, U., and Stelling, J. (2007). Ensemble modeling for analysis of cell signaling
dynamics. Nat. Biotechnol. 25, 1001-1006.

Lewis, N.E., Hixson, K.K., Conrad, T.M., Lerman, J.A., Charusanti, P., Polpitiya, A.D., Adkins, J.N., Schramm,
G., Purvine, S.0., Lopez-Ferrer, D., et al. (2010). Omic data from evolved E. coli are consistent with computed
optimal growth from genome-scale models. Mol. Syst. Biol. 6, 390.

Lieven, C., Beber, M.E., Olivier, B.G., Bergmann, F.T., Babaei, P., Bartell, J.A., Blank, L.M., Chauhan, S.,
Correia, K., Diener, C., et al. (2018). Memote: A community-driven effort towards a standardized genome-scale
metabolic model test suite.

Magnusdéttir, S., Heinken, A., Kutt, L., Ravcheev, D.A., Bauer, E., Noronha, A., Greenhalgh, K., Jager, C.,
Baginska, J., Wilmes, P., et al. (2017). Generation of genome-scale metabolic reconstructions for 773
members of the human gut microbiota. Nat. Biotechnol. 35, 81-89.

Medlock, G.L., and Papin, J. (2019). Medusa: software to build and analyze ensembles of genome-scale
metabolic network reconstructions.

Monk, J., Nogales, J., and Palsson, B.O. (2014). Optimizing genome-scale network reconstructions. Nat.
Biotechnol. 32, 447-452.

Mundy, M., Mendes-Soares, H., and Chia, N. (2017). Mackinac: a bridge between ModelSEED and COBRApy
to generate and analyze genome-scale metabolic models. Bioinformatics 33, 2416—-2418.

Oberhardt, M.A., Palsson, B.@., and Papin, J.A. (2009). Applications of genome-scale metabolic
reconstructions. Mol. Syst. Biol. 5, 320.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P,,
Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12,
2825-2830.

Plata, G., Fuhrer, T., Hsiao, T.-L., Sauer, U., and Vitkup, D. (2012). Global probabilistic annotation of metabolic
networks enables enzyme discovery. Nat. Chem. Biol. 8, 848-854.

Plata, G., Henry, C.S., and Vitkup, D. (2015). Long-term phenotypic evolution of bacteria. Nature 5717,
369-372.


https://doi.org/10.1101/460071
http://creativecommons.org/licenses/by/4.0/

580

585

590

595

600

bioRxiv preprint doi: https://doi.org/10.1101/460071; this version posted June 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Reed, J.L., Patel, T.R., Chen, K.H., Joyce, A.R., Applebee, M.K., Herring, C.D., Bui, O.T., Knight, E.M., Fong,
S.S., and Palsson, B.O. (2006). Systems approach to refining genome annotation. Proceedings of the National
Academy of Sciences 103, 17480-17484.

Schwiertz, A., Deubel, S., and Birringer, M. (2008). Bioactivation of Selenocysteine Derivatives by (3-Lyases
Present in Common Gastrointestinal Bacterial Species. International Journal for Vitamin and Nutrition
Research 78, 169-174.

Simic, P., Willuhn, J., Sahm, H., and Eggeling, L. (2002). Identification of glyA (encoding serine
hydroxymethyltransferase) and its use together with the exporter ThrE to increase L-threonine accumulation by
Corynebacterium glutamicum. Appl. Environ. Microbiol. 68, 3321-3327.

Song, J.-H., Ko, K.S., Lee, J.-Y., Baek, J.Y., Oh, W.S., Yoon, H.S., Jeong, J.-Y., and Chun, J. (2005).
Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol. Cells
19, 365-374.

Terpilowski, M. (2019). scikit-posthocs: Pairwise multiple comparison tests in Python. Journal of Open Source
Software 4, 1169.

Thiele, 1., and Palsson, B.J. (2010). A protocol for generating a high-quality genome-scale metabolic
reconstruction. Nat. Protoc. 5, 93-121.

Tran, L.M., Rizk, M.L., and Liao, J.C. (2008). Ensemble modeling of metabolic networks. Biophys. J. 95,
5606-5617.

Wang, H., MarciSauskas, S., Sanchez, B.J., Domenzain, I., Hermansson, D., Agren, R., Nielsen, J., and
Kerkhoven, E.J. (2018). RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study
on Streptomyces coelicolor. PLoS Comput. Biol. 14, e1006541.

Wattam, A.R., Davis, J.J., Assaf, R., Boisvert, S., Brettin, T., Bun, C., Conrad, N., Dietrich, E.M., Disz, T.,
Gabbard, J.L., et al. (2017). Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis
Resource Center. Nucleic Acids Res. 45, D535-D542.


https://doi.org/10.1101/460071
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/460071; this version posted June 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Supplemental Figures

Variation in mean flux through biomass

o]

e
2
S

0.025

0.020

o
o
2
o

0.010

0.005

Std. dev. of subsample mean
(as fraction of entire ensemble mean)

0.000

400 600
# of ensemble members

b

Std. dev. of subsample std. dev
(as fraction of entire ensemble mean)

Variation in standard devation of flux through biomass

14
o
I}
=)

00251 |
0.020 |
0.015 1 |
0.010

0.005

e
=3
8
=]

600
members

400 800
# of ensemble

N Acromonas salmonicida
N Bacillus pumilus
[ Chryseobacterium gleum
Corynebacterium efficiens
W Corynebacterium glutamicum
[ Enterococcus faecalis
Flavobacterium johnsoniae
Haemophilus influenzae
M Haemophilus parasuis
[ Listeria monocytogenes
Listeria seeligeri
Neisseria flavescens
N Neisseria meningitidis
N Neisseria mucosa
[ Pseudomonas mendocina

Species ensemble

Pseudomonas putida

N Pseudomonas stutzeri

[ Ralstonia pickettii

W Ralstonia solanacearum
Sphingobacterium spiritivorum

N Staphylococcus aureus

w Staphylococeus epidermidis
Staphylococcus haemolyticus.
Streptococcus equinus

B streptococcus gallolyticus
Streptacoccus mitis
Streptococcus oralis
Streptococcus pneumoniae

I Streptococcus vestibularis.

Figure S1. Subsampled ensemble behavior for predictions of biomass production. We simulated biomass production in
a rich medium across the entire ensemble and subsampled these results at varying ensemble sizes. a) Standard
deviation of the mean flux through biomass from each subsample and b) standard deviation of the standard deviation of
flux through biomass in each subsample. For both quantities (variance of the mean of each subsample and variance of

the variance of each subsample), simulations plateau before inclusion of all 1000 ensemble members. Values on the y
axis are normalized by dividing by the mean flux through biomass for the entire ensemble.
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Figure S2. Distribution of fractional importances and cluster ratios. a) Distribution of mean fractional importances for
reactions gap-filled in at least 5 ensembles. Identical to Figure 4b other than filtering step. b) Distribution of mean
cluster ratios for reactions gap-filled in at least 5 ensembles. Identical to Figure 4c other than filtering step. c)
Distribution of reaction importances across all species. Identical to Figure 4b except the mean is not taken across all
species; the distribution includes values for individual reactions instead of a mean (e.g., a reaction occurring in 7
species has 7 values that are part of the distribution, rather than a single mean as in Figure 4b). d) Distribution of
cluster ratios across all species. As in ¢, the mean is not taken and individual values are included.
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