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Abstract—Computed tomography (CT) is a widely-used diag-1

nostic image modality routinely used for assessing anatomical2

tissue characteristics. However, non-standardized imaging pro-3

tocols are commonplace, which poses a fundamental challenge4

in large-scale cross-center CT image analysis. One approach5

to address the problem is to standardize CT images using6

generative adversarial network models (GAN). GAN learns the7

data distribution of training images and generate synthesized8

images under the same distribution. However, existing GAN9

models are not directly applicable to this task mainly due to the10

lack of constraints on the mode of data to generate. Furthermore,11

they treat every image equally, but in real applications, some12

images are more difficult to standardize than the others. All these13

may lead to the lack-of-detail problem in CT image synthesis.14

We present a new GAN model called GANai to mitigate the15

differences in radiomic features across CT images captured16

using non-standard imaging protocols. Given source images,17

GANai composes new images by specifying a high-level goal18

that the image features of the synthesized images should be19

similar to those of the standard images. GANai introduces an20

alternative improvement training strategy to alternatively and21

steadily improve model performance. The new training strategy22

enables a series of technical improvements, including phase-23

specific loss functions, phase-specific training data, and the adop-24

tion of ensemble learning, leading to better model performance.25

The experimental results show that GANai is significantly better26

than the existing state-of-the-art image synthesis algorithms on27

CT image standardization. Also, it significantly improves the28

efficiency and stability of GAN model training.29

Index Terms–computed tomography, image synthesis, generative30

adversarial network, alternative training31

I. INTRODUCTION32

Computed tomography (CT) is one of the most popular di-33

agnostic image modalities routinely used for assessing anatom-34

ical tissue characteristics for disease management [1], [2], [3],35

[4], [5]. CT scanners provide the flexibility of customizing36

acquisition and image reconstruction protocols to meet an37

individual’s clinical needs [6], [7]. However, CT acquisition38

parameter customization is a double-edged sword [8]. While it39

enables physicians to capture critical image features towards40

personalized healthcare, it forms a barrier to analyzing CT41

images in a large scale, in that capturing CT images with42

non-standardized imaging protocols may result in inconsistent43

radiomic features [9], [10]. As was revealed in a recent44

study, both intra-CT (by changing CT acquisition parameter-45

s) and inter-CT (by comparing different scanners with the46

same acquisition parameters) tests have demonstrated low 1

reproducibility regarding radiomic features, such as intensity, 2

shape, and texture, for CT imaging [11], [12]. In the example 3

shown in Figure 1, each lung tumor was acquired twice using 4

two different reconstruction kernels (Bl64 and Br40, Siemens 5

Healthineers, Erlangen, Germany). The figure demonstrates 6

that the appearances (as well as the radiomic features) of the 7

same tumor can be strongly affected by the selection of CT 8

acquisition parameters. 9

To overcome the barriers that prevent the use of CT images 10

in large-scale radiomic studies, algorithms have been devel- 11

oped aiming to integrate and standardize CT images from 12

multiple sources. Image synthesis is a class of algorithms 13

that generate synthesized images from source images, which 14

satisfy the condition that the feature-based distributions of the 15

synthesized images are similar to that of target images [13]. 16

Mathematically, given source image x, an image synthesis 17

algorithm composes a synthesized image x′ by specifying a 18

high-level goal that the image features of x′ are significantly 19

more similar to that of the target image y than the source 20

image x. Image synthesis algorithms have been widely used 21

in image conversion and natural language processing, such as 22

the synthesis of images from text descriptions [14]. Note that 23

image synthesis is different from image conversion (such as 24

to convert an MRI image to a CT image), which requests an 25

exact pixel-to-pixel match between the synthesized images and 26

the target images [15]. 27

Image synthesis algorithms can be roughly classified into 28

two groups, i.e., traditional image processing algorithms and 29

deep learning-based algorithms. In the first group, the his- 30

togram matching-based algorithm has been widely used [16], 31

[17], [18], [19]. In general, it synthesizes images by mapping 32

the histogram of source images to that of target images. 33

However, finding the mapping function requires the presence 34

of the target images, which are often missing or are not well 35

defined in practice. In the second group, generative adversarial 36

network models (GAN), a class of deep learning algorithms, 37

can learn the data distribution of training data and generate 38

synthesized examples which fall under the same distribution 39

of the training [20]. In particular, the conditional generative 40

adversarial network (cGAN), a special kind of GANs, learns 41

the conditional distribution of the source image x given the 42
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Fig. 1: Lung tumors acquired using two kernels have shown significantly different appearances as well as radiomic features. (A) Lung tumor
1 acquired with kernel Bl64. (B) Lung tumor 1 acquired with kernel Br40. (C) Lung tumor 2 acquired with kernel Bl64. (B) Lung tumor 2
acquired with kernel Br40.

target image y and then performs image transference from1

one domain to another [21], [22]. However, GAN models2

(include cGAN) are not directly applicable to our task mainly3

due to three limitations: 1) GAN models do not contain any4

constraints to control what modes of data it shall generate; 2)5

the synthesized images are not guaranteed to be similar to the6

target images (Figure S1); 3) GAN models treat every image7

in training equally, but in real applications, some images are8

more difficult to synthesize than the others (Figure S2). All9

these limit the functionality of GAN models and may lead to10

the lack-of-detail problem in image synthesis.11

To address the computational challenges in medical image12

synthesis, where great image details have to be maintained, we13

propose a novel deep learning framework called “Generative14

Adversarial Network with Alternative Improvement (GANai)”.15

GANai has a similar architecture as cGAN, but its training pro-16

cess is significantly different. Specifically, GANai introduces17

an alternative improvement training strategy to alternatively18

train its deep learning components and steadily improve the19

whole model performance. The adoption of the new training20

strategy enables a series of technical improvements, includ-21

ing phase-specific loss functions, component-dedicate training22

data, adoption of ensemble learning, and so on, leading to a23

significant improvement on model performance.24

While GANai can be deployed in many applications, we25

adopted and evaluated GANai in mitigating the differences26

in radiomic features due to using non-standardized CT imag-27

ing protocols. The experimental results show that GANai is28

significantly better than the state-of-the-art image synthesis29

algorithms, such as cGAN and histogram matching, on all the30

image acquisition parameters that we have tested. In summary,31

GANai has the following computational advantages:32

1) GANai introduces an alternative improvement training33

strategy to alternatively and steadily improve model34

performance.35

2) GANai adopts a new phase-specific loss function that36

allows the discriminator and the generator to collaborate37

rather than competing with each other.38

3) GANai improves model training effectiveness by train-39

ing the discriminator and the generator using specified40

training images.41

4) GANai adopts ensemble learning to significantly im- 1

prove the stability of GAN model training . 2

II. BACKGROUND 3

Radiomics is an emerging science to extract and use com- 4

prehensive radiomic features from a large volume of medical 5

images for the quantification of overall tumor spatial com- 6

plexity and the identification of tumor subregions that drive 7

disease transformation, progression, and drug resistance [23], 8

[24], [25], [26]. However, due to the use of non-standardized 9

imaging protocols, variations in acquisition and image re- 10

construction parameters may cause inconsistency in radiomic 11

features extracted from images, which poses a barrier to the 12

practice of radiomics in large-scale [10], [24], [25]. 13

A. CT Image Acquisition Parameters 14

In modern CT imaging, there are a large number of imaging 15

protocols, and using non-standardized imaging protocols is 16

common [6]. The CT image acquisition parameters includ kV 17

(the x-tube voltage), mAs (the product of x-ray tube current 18

and exposure time), collimation, pitch, reconstruction kernel, 19

field-of-view, and slice thickness [27], [28]. In routine clinical 20

practice, certain parameters are often adjusted to meet the 21

diagnostic needs, i.e., to obtain satisfactory image quality 22

while maintaining low radiation dose to patients. Changing 23

acquisition parameters may significantly affect the resulting 24

images (Figure 1). For example, adjusting kV will change CT 25

numbers (the pixel values of a CT image), changing mAs will 26

affect image noise rate, and the selection of reconstruction 27

algorithms will result in different image texture features. 28

B. Histogram Matching 29

Histogram matching (or called histogram specification) is 30

a widely-used image synthesis tool. It uses the intensity 31

histogram to represent images and then transforms a source 32

image to a target image by matching their intensity histogram- 33

s [16], [17], [18], [19]. While histograms can represent the 34

density of intensity in the whole image, the major drawback 35

is the loss of location information. A variation of histogram 36

matching is to divide a source image into multiple patches 37

and to apply histogram matching on each patch, expecting that 38

such patch-based representation may lead to location-specific 39
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image synthesis. However, patch-based histogram matching1

may introduce artifacts, esp. on the edges of patches. It is2

also sensitive to the selection of matching parameters such as3

the number of bins of a histogram (Figure S3).4

C. Generative Adversarial Networks5

Recently, deep learning has shown remarkable performance6

in various medical informatics tasks. For example, it has7

surpassed the human experts’ performance on skin cancer8

classification by only looking at the dermoscopic images [29].9

The generative adversarial network (GAN) is a kind of10

deep learning models that learns the data distribution of11

training images and generate synthesized images under the12

same distribution [20], [30], [31]. A GAN model usually has13

two components, i.e., the discriminator (D) and the generator14

(G), where G generates synthesized data from random noise,15

and D learns a data distribution from the training data and16

determines whether the synthesized data generated by G fall17

into the distribution. The goal of G is to generate synthesized18

data which are good enough to fool D, while D always aims19

to discriminate the synthesized data and the real data.20

The conditional generative adversarial network (cGAN) is21

a kind of GAN models that learns the conditional distribution22

of the training data and generates synthesized data under the23

same condition [21], [32], [33]. Among cGAN models, the24

Image-to-Image model performs the image-to-image trans-25

ference from one domain to another concerning the given26

condition, and it has become a widely recognized conditional27

image synthesis model [22]. Note that the images synthesized28

by cGANs are not necessarily similar to the target images,29

although they look “real”, meaning having similar semantic30

meanings as the target images (see Figure S1, S2). However,31

in medical applications, it is important to maintain authenticity32

in the synthesized CT images. Specifically, it is expected to33

generate images with the distribution of radiomic features34

significantly similar to that of the target images.35

While GAN models are advanced in image synthesis [22],36

[14], image inpainting [34], semantic segmentation [35], etc.,37

GAN models are suboptimal regarding training efficiency and38

stability. To address the GAN training problem, several en-39

semble learning-based strategies have been applied to improve40

model training: 1) to train multiple GANs in parallel using41

a random initialization of model parameters, and then to42

randomly choose one of the GANs to generate the synthesized43

data [36]; 2) to train multiple Ds and requires the G to fool a44

group of Ds [37]; and 3) to select training data using boosting45

and to train a cascade of GANs in sequence. It has been shown46

that the performance of GANs can be significantly improved47

by using ensemble learning [37].48

III. METHOD49

To extend the adversarial learning into the medical image50

domain and to address the aforementioned challenges, we51

propose Generative Adversarial Network with Alternative Im-52

provement (GANai).53

Fig. 2: Architecture of GANai. Given a source image, the generator
G synthesizes a new image to fool the discriminator D, while D
aims to distinguish the synthesized image and the target image.

A. Architecture 1

GANai consists of two components, i.e., the generator (G) 2

and the discriminator (D), where G is a U-Net with fifteen 3

hidden layers and D is a multilayer perceptron model with 4

six fully connected layers [38]. The architecture of GANai 5

is similar to the cGAN models, shown in Figure 2 [22]. The 6

inputs of D of GANai are image pairs (x, y) and (x, x′), where 7

(x, y) denotes the real pair (positive training), and (x, x′) 8

denotes the fake pair (negative training). The goal of D is 9

to distinguish the real pairs from the fake pairs. Given the 10

feedback from D, G learns the mapping from X to Y and 11

generates a synthesized image x′ for any given source image x 12

(x ∈ X) in Y ’s domain. In contrast to D, G aims to synthesize 13

images that can fool D. If D can distinguish most of the fake 14

pairs from the real pairs, the performance of G needs to be 15

further improved. Otherwise, we conclude that the generative 16

results of G are good enough for the current D. 17

B. Alternative Improvement 18

In traditional GAN models, D and G are trained syn- 19

chronously (D and G trained together) or asynchronously 20

(several batches of D-training followed by several batches of 21

G-training), based on the assumption that both D and G can 22

be gradually improved together. In practice, however, if D is 23

not well trained to capture the intrinsic features to separate a 24

real and a fake image, G can easily fool D. Similarly, if G 25

is not well “challenged” by D, its model performance is not 26

guaranteed to be improved. 27

We introduce the alternative training approach for GANs 28

(Figure 3). As the name suggested, GANai has two alternate 29

training phases, i.e., the discriminator training (D-training) and 30

the generator training (G-training). In each training phase, we 31

focus on optimizing one of the components while freezing 32

the other. A training phase will stop if the current component 33
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Fig. 3: In each training phase of GANai, D (or G) is trained while
the other component is frozen. The name of a block (such as D0

or G1) indicates the component in training, and the letter located at
the bottom left corner indicates the component that is frozen. The
alternative training (solid line) ensures high performance while the
ensemble approach (dotted line) improves the training stability.

is well trained or the training step exceeds an upper bound1

(see Section V-B for more details). After that, we switch to2

the other training phase (Figure 3 solid lines). The alternative3

training strategy enables a series of technical improvements,4

including phase-specific loss functions, phase-specific training5

data, and the adoption of ensemble learning, which will be6

introduced in the following subsections.7

C. Loss Functions8

The alternative training of GANai may boost model per-9

formance by preventing each component being too strong or10

too weak. In the literature, strategies have been presented11

to freeze part of a GAN when the GAN components are12

imbalanced [39]. However, it is difficult to decide when to13

freeze/unfreeze a component of GAN. To address this issue,14

we redesigned the loss functions.15

In the D-training phase, G is frozen so that D learns the16

differences between the synthesized images and the target im-17

ages and discriminates the synthesized images. Hence, the loss18

function of D is the same discriminator loss of cGAN [21]:19

LPhase D(D) =Ex,y∼Pdata(x,y)[− logD(x, y)]+

Ex∼px,z∼pz(z)[− log(1−D(x,G(x, z)))]
(1)

where x is the source image; y is the target image; G(x, z)20

is the synthesized image generated by G, which maps the21

source image x and a random noise vector z to y; D(x, y)22

is the prediction result of the real pair; and D(x,G(x, z)) is23

the prediction result of the fake pair. For D(x, y), the higher24

the prediction accuracy, the higher the value of D(x, y).25

In the G-training phase, D is frozen, and it evaluates the26

results of G. Since we expect G to fool D, the loss of D in27

the G-training phase is defined as:28

LPhase G(D) =Ex,y∼Pdata(x,y)[− logD(x, y)]+

Ex∼px,z∼pz(z)[− log(D(x,G(x, z)))]
(2)

Finally, by integrating Eq 1 and Eq 2, the loss function of29

D in GANai is defined as:30

L(D) =Ex,y∼Pdata(x,y)[− logD(x, y)]+(
Ex∼px,z∼pz(z)[− logD(x,G(x, z))]

)α
+(

Ex∼px,z∼pz(z)[− log(1−D(x,G(x, z)))]
)1−α (3)

where parameter α = 1 if GANai is in the G-training phase31

and α = 0 in the D-training phase.32

The loss function of G is the same as Isola et al. [22]. Also, 1

we adopt the L1 loss as the regularization factor. 2

L(G) =Ex,G(x,z)[− logD(x,G(x, z))]+

βEG(x,z),y[||y −G(x, z)||]
(4)

where β is the weight of the regularization term. 3

To determine when to switch between the D-training phase 4

and the G-training phase, the prediction accuracy on the fake 5

image pairs (D(x, x′)) is used. The value of D(x, x′) is 6

computed at every training step and is compared with two 7

thresholds. More specifically, if D(x, x′) ≤ Tl, GANai will 8

switch from D-training to G-training. If D(x, x′) ≥ Th, 9

GANai will switch from G-training to D-training. Tl and Th 10

are the lower and upper thresholds of D(x, x′). To improve 11

training stability, the least amount of steps (minibatches) of 12

each training phase is also specified. Note that in GANai, the 13

value of D(x, x′) increases and decreases, indicating that the 14

performance of D and G is improved alternatively. 15

D. Training D and G with Dedicated Training Data 16

Since the components of GANai are trained separately, one 17

idea is to increase model training efficiency by training G 18

and D using different data. More specifically, the images that 19

are potentially synthesizable can be used to accelerate the G- 20

training, while the training of D can benefit from images that 21

are difficult to synthesize. 22

We develop a procedure to select training data for D and G. 23

First, a cGAN model is trained using all the training data [22]. 24

Second, with the trained cGAN model, we synthesize a new 25

image for every source image and compare every synthesized 26

image with its corresponding target image using Kullback- 27

Leibler divergence [40], normalized mutual information (N- 28

MI) [41], and cosine similarity. Finally, the training data is split 29

into two subsets based on z-score, i.e., 1/3 of the source-target 30

image pairs with the highest similarities between synthesized 31

images and target images (called Teasy) and 1/3 of the images 32

with the lowest similarities (call Thard). The new procedure 33

allows us to train G using Teasy and train D using Thard (see 34

Section V-A for other training set selection strategies). 35

E. Improving Training Stability using Ensemble Learning 36

Due to the nature of the generative adversarial concept 37

(i.e., open-ended competition between GAN components), it 38

is not guaranteed that G or D will improve towards the same 39

direction. For example, if the kth state of G fools the (k−1)th 40

state of D, it still may be classified by the older (k−2)th state 41

of D. Therefore, during the two-phase training of GANai, we 42

improve the model stability by adopting the ensemble learning. 43

Simply speaking, a D is required to discriminate multiple Gs 44

and a G must fool multiple Ds. 45

Mathematically, the following criteria are specified in 46

GANai: when training the kth G, the G must fool both the 47

(k−2)th state and the (k−1)th state of D, and when training 48

kth D, the D should discriminate both the (k− 2)th state and 49

the (k − 1)th state of G. For an illustrative example, see the 50

dot lines in Figure 3. These criteria can be further extended 51
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to incorporate more historical Ds or Gs or more sophisticated1

conditions. In the exception that GANai cannot identify such2

a D or G that satisfies the criteria after at most Ts steps (the3

maximum training step in each phase), it will roll back to the4

previous state, and re-train the current component.5

IV. EXPERIMENTAL RESULTS6

A. Data7

In total 2,448 chest CT image slices of lung cancer patients8

were collected using Siemens CT Somatom Force at the9

University of Kentucky Medical Center. For each patient, a CT10

image was constructed with each of the possible combinations11

of two image reconstruction parameters, i.e., slice thickness12

(0.5, 1, 1.5, 3mm) and reconstruction kernels (Bl57 and Bl64).13

With data augmentation, the training data has been extended14

to 14,958 image patch pairs. Among them, 7,479 assigned15

as Teasy and 7,479 assigned as Thard using the procedure16

introduced in Section III-D. Each image pair contains a17

source image x and the target image y. See details of data18

augmentation in Section S1.A with examples in Figure S4.19

The validation data contains 3,554 2.5D images, and mul-20

tiple radiomic features were extracted for model validation.21

Specifically, we randomly cropped 2.5D images from the CT22

images that have not been used as training data, with their23

dimensions ranging from 5 × 5 × 5 to 60 × 60 × 30 pixels.24

When cropping the 2.5D validation images, we excluded areas25

with bone or air, since soft tissues are what physicians are most26

interested. See Section S1.B for more details.27

Given a large number of CT imaging protocols, it is28

impractical to apply all of them. We selected two image29

reconstruction parameters (kernel and slice thickness) and30

used all the combinations for the model performance test.31

Also, we chose 1mm slice thickness and Bl64 kernel to be32

the standard imaging protocol, since it is widely used in the33

current lung cancer radiomic studies. Note the settings can be34

easily extended to incorporate more acquisition parameters or35

to use a different standardized imaging protocol.36

B. Implementation Details of GANai37

In GANai, G is a fifteen hidden layers U-Net [38], with the38

size between 128×128×64 and 1×1×512 (Figure S5). The39

input of G are 256× 256 images, and the synthesized images40

have the same image size. D is implemented as a multilayer41

perceptron model with six fully connected layers with the size42

between 256× 256× 3 and 30× 30× 1 (Figure S6).43

The training of GANai started with the D-training phase,44

and all the network weights were randomly initialized. We set45

the regularization term weight β = 100 to reduce the visual46

artifacts [22], and used Tl = 0.05 and Th = 0.95 as the47

training phase switch thresholds, and Ts = 10 epochs as the48

maximum training step. Within each training phase, the model49

needed to be trained for at least five steps before switching to50

the other training phase. GANai was trained for 100 epochs51

with learning rate being 0.0002, momentum being 0.5.52

GANai is deployed on Tensorflow [42] on a Linux computer53

server with eight Nvidia GTX 1080 GPU cards. It took 1554

hours to train GANai from scratch using a single GPU card. 1

Using the trained model, it took 0.2 seconds to generate a 2

synthesized image (5 images per second). 3

Figure 4 shows the discriminator prediction results on all 4

the fake pairs D(x, x′) in the first 150 steps of training. With 5

the training of D, D(x, x′) decreases. When the value of 6

D(x, x′) is below Tl (in our experiment, Tl = 0.05), GANai 7

is switched to the G-training phase. In the G-training phase, 8

D(x, x′) increases, since D is frozen and the performance of 9

G keeps increasing. When the value of D(x, x′) is higher than 10

Th (Th = 0.95), GANai is switched to the D-training phase. 11

The training and validation loss of D and G in the first 150 12

training steps are shown in Figure 5. Both the training and 13

validation loss of D decreased in every training phase, which 14

indicates the model performance of D and G was improved 15

alternatively. In the D-training phase, if the performance 16

of D is increased, the loss of D will reduce, since both 17

− log(D(x, y)) and − log(1 − D(x, x′)) are both reduced 18

(solid lines in Figure 5A). When switching from the D-training 19

to the G-training phase, α in the loss function of D flips from 0 20

to 1, which immediately turns the loss of D from a small value 21

to a high value (see the jumps located at phase turning points in 22

Figure 5A). In the G-training phase, if the performance of G is 23

increased, the performance of D will decrease, so the loss of D 24

decreases (dotted lines in Figure 5A). Figure 5B shows the loss 25

of G increases in D-training phase (due to the performance 26

improvement of D) and decreases in G-training phase, since 27

the performance of G is improved (See Section V-C). 28

C. Evaluation Metric 29

For performance evaluation, we compared GANai with 30

cGAN [22] and the patch-based histogram matching (see 31

details in supplementary section III). Instead of hiring human 32

annotators, we adopt the radiomic features for performance 33

evaluation [43], [44]. Specifically, two classes of radiomic 34

features were used for model performance evaluation, i.e., 35

2.5D texture features (i.e., gray-level co-occurrence matrix) 36

and 2.5D intensity histogram based features. In total, eight 37

radiomic features were adopted for performance evaluation 38

(see Section S2 for details). 39

Per every radiomic feature to test, we compared each 40

synthesized image and its target image, and computed the 41

absolute error and relative error using the following equations: 42

abs err(featurek,m) =

|feature(synthesized, k,m)− feature(target, k)|
feature(target, k)

(5)

where featurek is the kth radiomic feature, m is either 43

GANai or a image synthesis model to compare. 44

rel err(featurek,m1,m2) =

abs err(featurek,m1)− abs err(featurek,m2)

error(featurek,m1)
.

(6)

where m1 and m2 are two different image synthesis models. 45

For the relative error, a positive value indicates that m2 has 46

smaller error than m1, vice versa. 47
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Fig. 4: The prediction results of D on the fake image pairs (x, x′) in the first 150 steps of the alternative training. For D(x, x′), the higher
the prediction accuracy, the lower the value (D(x, x′) ∈ [0, 1]).

Fig. 5: The training loss and the validation loss of D and G in GANai in first 150 steps of training. The solid lines indicate the loss of
D in the D-training phase. The dotted lines indicate the loss of D in the G-training phase. The solid points indicate the time when GANai
switches between the D-training phase and the G-training phase.

Model stability is evaluated using the cumulative sum1

control chart (CUSUM) [45]. CUSUM is a sequential analysis2

model typically used for monitoring change detection [46]. In3

CUSUM, the differences between any two adjacent values (in4

our case, the absolute errors between any two adjacent saved5

model states) are measured and are compared with a threshold.6

CUSUM is computed as the number of the difference values7

higher than a threshold (called out-of-control points). In our8

experiment, a series of CUSUM values were generated for9

each model using multiple thresholds. The normalized sum of10

the CUSUM values, which is the smaller the better, was used11

for model stability evaluation.12

D. Performance Evaluation Results on Generator13

The absolute errors on all the tested radiomic features are14

shown in Table I. For the detailed feature-based errors, see15

Figure S7. On the texture features, the mean absolute error16

of histogram matching over all six features is 0.37. cGAN re-17

duces it to 0.13, and GANai further reduces the absolute error18

significantly to 0.08 (two sample t-test p− value ≤ 0.01). On19

the intensity histogram features, GANai decreases the absolute20

errors by 17.77% from cGAN, and 79.05% from histogram21

matching. The results indicate that GANai is significantly22

better than cGAN and patch-based histogram matching.23

TABLE I: Averaged absolute errors (SD) of (1) the texture features
and (2) the intensity histogram features computed using histogram
matching, cGAN, and GANai. In all of them, GANai has the smallest
errors (cGAN and GANai two sample t-test p− value ≤ 0.01).

Absolute Error Hist. Matching cGAN GANai
Contrast1 0.21 ±0.15 0.12 ±0.08 0.09 ±0.06

Correlation1 0.18 ±0.13 0.18 ±0.12 0.09 ±0.07

Dissimilarity1 0.15 ±0.11 0.09 ±0.06 0.06 ±0.04

Energy1 0.47 ±0.28 0.19 ±0.14 0.14 ±0.11

Entropy1 0.09 ±0.06 0.02 ±0.01 0.01 ±0.01

Homogeneity1 0.28 ±0.16 0.10 ±0.06 0.07 ±0.05

Kurtosis2 0.54 ±0.27 0.18 ±0.14 0.15 ±0.11

Skewness2 0.51 ±0.27 0.16 ±0.12 0.14 ±0.11

Table II shows the relative errors of GANai and cGAN 1

on seven sets of the validation data generated using different 2

combinations of CT acquisition parameters. A positive value 3

indicates the error of GANai is lower than cGAN, while a neg- 4

ative value indicates the error of GANai is higher than cGAN. 5

The results show that GANai outperforms cGAN on five out 6

of seven validation subsets, on which GANai decreased the 7

relative errors by 36.21% on average. For example, on the 8

texture features, GANai reduces the relative error by 54.48% 9

on the Bl64 kernel with 0.5mm slice thickness images. For 10

the detailed feature-based errors, see Figure S8-S15. 11
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TABLE II: Averaged relative errors on the texture features1 and
the intensity histogram features2 by comparing cGAN and GANai.
Positive values mean GANai is better, and negative values mean
cGAN is better. Overall, GANai has smaller errors than cGAN.

Relative Bl57 Bl57 Bl57 Bl57 Bl64 Bl64 Bl64 Overall
Error 0.5mm 1mm 1.5mm 3mm 0.5mm 1.5mm 3mm

Contrast1 -0.16 0.00 0.13 0.36 0.42 -0.46 0.34 0.25
Correlation1 0.06 0.38 0.37 0.45 0.68 -0.10 0.38 0.50
Dissimilarity1 -0.05 0.28 0.32 0.48 0.64 -0.30 0.39 0.33
Energy1 -0.19 0.35 0.34 0.55 0.11 -1.61 -0.12 0.26
Entropy1 -0.05 0.30 0.30 0.48 0.67 -0.81 0.19 0.50
Homogeneity1 -0.34 0.29 0.30 0.48 0.75 -0.85 0.26 0.30
Kurtosis2 -0.05 0.18 0.26 0.45 -1.66 -1.84 -0.48 0.17
Skewness2 -0.10 0.17 0.47 0.35 -1.66 -1.84 -0.18 0.13

Fig. 8: Prediction accuracy of Ds gradually increases during the
alternative training process of GANai.

Figure 6 shows an example of the synthesized images using1

cGAN or GANai generated after 100 training epochs. The2

GANai synthesized image is more similar to the target image,3

has sharper edges, and has fewer artifacts than cGAN. Figure 74

shows both cGAN and GANai model reaches their best5

performance after 20 epochs of training. After that, GANai6

can still maintain high synthesized image quality, but cGAN7

started to introduce artifacts.8

E. Performance Evaluation Results on Discriminator9

To evaluate the performance on the discriminator D, we10

generated a fake-pair-only dataset and used it to measure the11

prediction accuracy of all the Ds in the model training process.12

Specifically, given a fixed source image set Xval and the13

correspondent target image set Yval, each having 1,750 images,14

we generated the synthesized image set X ′val using the second15

last generator of GANai. The accuracy of every discriminator16

(such as D0 to D3 in Figure 3) in the alternative training17

process of GANai was measured with all image pairs in Xval18

and X ′val. Accuracy is defined as the proportion of (x, x′)19

that were correctly classified as the fake image pairs. Figure 820

shows the prediction accuracy of D at every training process.21

The increasing prediction accuracy shows the performance of22

D was steadily improving during the training of GANai.23

F. Performance Evaluation Results on Training Stability24

In GANai, an ensemble learning-based approach is adopted25

to increase the training stability. To demonstrate the effective-26

ness of this approach, we designed the following experiment.27

Three networks (cGAN, GANaisingleDG, and GANai) were 1

trained for 100 epochs using the same training data, where 2

GANaisingleDG is a simplified version of GANai that trains 3

the current component only based on the previous counter 4

component, without using multiple Ds or Gs. The training 5

state of every 2.5 training epochs was saved. We compared 6

all the three models using the same validation data at every 7

saved model state (Figure 9A). The normalized sum of the 8

CUSUM values of cGAN, GANaisingleDG, and GANai over 9

all the six texture features are 0.21, 0.15, and 0.13 respectively, 10

indicating GANai is the most stable model among the three. 11

Figure 9 shows the CUSUM on the contrast feature computed 12

using the gray-level co-occurrence matrix. 13

V. DISCUSSION 14

A. Training Effectiveness 15

The training data in GANai are separated into two subsets 16

for the training of G and D. Our assumption is that for certain 17

source images that are difficult to standardize, we should avoid 18

them in the G-training phase. Instead, we use them to train D. 19

To test the assumption, we trained a new GANai model called 20

GANaireverse with the opposite training data assignment (i.e., 21

G trained with Thard and D trained with Teasy). Figure 10 22

shows that the mean absolute errors of GANaireverse are 23

significantly higher than GANai on a majority of the features, 24

indicating that training data assignment is critical for improv- 25

ing GAN performance. 26

We further tested the effectiveness of the new strategies 27

developed for improving training effect. Two modified c- 28

GAN models were trained, one with dedicated training data, 29

i.e., Thard for D and Teasy for G, called cGANSpDa, and 30

the other further adopting the alternative training strategy, 31

called cGANSpDa+AI . Experimental results show that 1) 32

cGANSpDa can effectively reduce the feature-based absolute 33

errors of cGAN on a majority of the texture features, and 34

2) cGANSpDa+AI can further reduce the absolute errors on 35

texture features (Figure 11). It indicates that the new training 36

strategies developed in GANai are effective and can be adopted 37

by generic GAN models to further improve their performance. 38

B. Effectiveness of Ensemble Learning 39

GANai adopts the alternatively improving strategy to train 40

D and G so that both modules can be optimized in each 41

iteration of training. One potential problem of such full 42

optimization is that the model could be trapped at the local 43

minima instead of reaching the global optimization. One such 44

example is shown in Figure S14, where a generator has been 45

trained for more than five epochs, but it still did not result 46

in any significant improvement. It is reasonable to believe 47

that the model was trapped at a local minima. To address this 48

issue, we adopt the ensemble learning approach, i.e., GANai 49

requires a D to discriminate multiple Gs and a G to fool 50

multiple Ds. Also, we rollback to the previous training phase 51

and then retrain the model, if a satisfactory loss cannot reach 52

in a reasonable amount of time. 53
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Fig. 6: Examples of the synthesized images generated by cGAN and GANai at 100th epoch. (A) source image. (B) target image. (C) cGAN
synthesized image. (D) GANai synthesized image.

Fig. 7: Examples of the synthesized images generated by cGAN and GANai at multiple training steps. The first two columns are the source
and target images. Both cGAN and GANai reached their best performance at about 20 training epochs. The synthesized images generated
by cGAN have obvious artifacts and have less sharp edges than that of GANai. Furthermore, GANai maintained a high synthesized image
quality in the continuous training after the first 20 epochs, whereas cGAN started to introduce additional artifacts into the synthesized images.

Fig. 9: Performance evaluation on training stability. (A) the mean absolute errors of cGAN, GANaisingleDG, and GANai on the contrast
feature computed using the gray-level co-occurrence matrix. (B) the CUSUM values of cGAN, GANaisingleDG, and GANai, where the
x-axis is the threshold of CUSUM, and the y-axis is the CUSUM value. In general, GANai is the most stable model among the three.

Fig. 10: Averaged feature errors for the data effectiveness test. 1 Gray-level co-occurrence matrix, 2 Intensity Histogram. It shows that
the mean absolute errors of GANaireverse are significantly higher than GANai on a majority of the features, indicating that training data
assignment is critical for improving GAN performance.
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Fig. 11: Gray-level co-occurrence matrix feature errors of different cGAN versions. cGANSpDa was trained with dedicated training data.
cGANSpDa+AI was further adopting the alternative training strategy.

C. Validation Loss1

The validation loss of G in Figure 5B is constantly lower2

than the training loss, which is uncommon to machine learning3

tasks. This is reasonable because the loss of G is −logD(x, x′)4

computed using the prediction result on all the fake image5

pairs. As shown in Figure 4, the value of D(x, x′) on the6

validation dataset is higher than that on the training dataset.7

After taking the minus log, the validation loss is smaller than8

the training loss. However, as stated in Gulrajani et al [47],9

the loss of GANs may not associate with model performance.10

Thus, the fact that the validation loss of G is smaller than11

the training loss does not necessarily indicate whether the12

synthesized images on the validation dataset is better than13

that on the training dataset. It is also why GANai uses the14

prediction of D, rather than using the loss of G, to control the15

model training phase switch.16

D. Limitations17

While GANai, in general, performs better than traditional18

GAN models and histogram matching on texture features, its19

performance could be suboptimal on shape-based features.20

Shape-based features, such as volume, are usually determined21

by the physical setup of CT machines. For instance, a 1.5 mm22

nodule can be totally omitted in a 3 mm slice thickness scan23

due to partial volume [48].24

VI. CONCLUSION25

As a popular diagnostic image modality, CT is routinely26

used for assessing anatomical tissue characteristics. However,27

CT imaging customization poses a fundamental challenge in28

radiomics, since non-standardized imaging protocols are com-29

monplace. Image synthesis algorithms have been developed30

to integrate and standardize CT images. Among them, GAN31

models learn the data distribution of training data and generate32

synthesized images under the same distribution of the training33

images. However, GANs are not directly applicable to the CT34

image mitigation task due to the lack-of-detail problem.35

We developed a novel GAN model called GANai to mit- 1

igate the differences in radiomic features of CT images. 2

Given source images, GANai composes synthesized images 3

by specifying a high-level goal that the image features of the 4

synthesized images should be similar to those of the target 5

images. GANai introduces the alternative training strategy to 6

GAN. In each training phase, the model aims to optimize either 7

G or D while freezing the other component. A training phase 8

will stop if the current component is well trained or the training 9

step exceeds an upper bound. After that, GANai switches to 10

train the counter component. Note that just because of the 11

adoption of the alternative training strategy, new technical 12

improvements become applicable. For example, the inputs of 13

the ensemble learning (multiple states of Ds and Gs) are the 14

end products of every alternative training phase, and a new 15

loss function and dedicated training data can be specified in 16

different training phases. GANai was compared with the start- 17

of-the-art cGAN model [22] and the patch-based histogram 18

matching method [16]. The experimental results show that 19

GANai is significantly better than cGAN and patch-based 20

histogram matching on the texture and intensity histogram 21

based radiomic features. 22

In conclusion, GANai is a new GAN model for CT image 23

standardization. Its alternative training strategies are effective, 24

easy to implement, and can be adopted by the other GAN 25

models to further improve their performance. With GANai, 26

CT images from multiple medical centers can be seamlessly 27

integrated and standardized, and large-scale radiomics studies 28

can be conducted to extract comprehensive radiomic features 29

and to identify key tumor characteristics that drive disease 30

transformation, progression, and drug resistance. 31
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