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ABSTRACT 

Cantharidin (CTD) is a potent anticancer small molecule produced by several species of blister beetle. It 
has been a traditional medicine for the treatment of warts and tumors for many decades. CTD suppresses 
the tumor growth by inducing apoptosis, cell cycle arrest, and DNA damage. It is a known inhibitor of 
PP2A and PP1. In this study, we identified new molecular targets of CTD using Saccharomyces 
cerevisiae as a model organism which expresses a Cantharidin Resistance Gene (CRG1). CRG1 encodes a 
SAM-dependent methyltransferase that inactivates CTD by methylation. CTD alters lipid homeostasis, 
cell wall integrity, endocytosis, adhesion, and invasion in yeast cells. We found that CTD specifically 
affects the phosphatidylethanolamine (PE) associated functions which can be rescued by supplementation 
of ethanolamine (ETA) in the growth media. CTD also perturbed ER homeostasis and cell wall integrity 
by altering the GPI-anchored protein sorting. The CTD dependent genetic interaction profile of CRG1 
revealed that Cdc1 activity in GPI-anchor remodeling is the key target of CTD, which we found to be 
independent of PP2A and PP1. Furthermore, our experiments with human cells suggest that CTD 
functions through a conserved mechanism in higher eukaryotes as well. Altogether, we conclude that 
CTD induces cytotoxicity by targeting Cdc1 activity in GPI-anchor remodeling in the endoplasmic 
reticulum (ER).  

INTRODUCTION 

Glycosylphosphatidyl inositol (GPI) anchor biosynthesis is an essential and conserved pathway in 
eukaryotes. GPI-anchoring is a type of post-translational modification of proteins destined to the plasma 
membrane or cell wall. This modification takes place in the endoplasmic reticulum (ER) which acts as a 
signal for sorting of the proteins to the cell surface. The GPI-anchored protein sorting occurs via ER-
Golgi traffic system (1). The GPI-anchor biosynthesis takes place in the inner-membrane of ER through a 
series of enzymatic reactions, which is subsequently incorporated onto the C-terminus of protein (1). 
Post-synthesis, the GPI-anchor undergoes several steps of modifications in ER (yeast) or Golgi 
(mammals). This sequential process of modifications is called GPI-anchor remodeling. Bst1, Cdc1, Ted1, 
Per1, Gup1, and Cwh43 are the key factors, which mediate the process of GPI-anchor remodeling in yeast 
(1,2). Cdc1 acts as a Mn+2-dependent ethanolaminephosphate (EtNP) phosphodiesterase that removes 
EtNP from the first mannose of the GPI (3,4). CDC1 is a homolog of human PGAP5 and is essential for 
cell survival (4,5). Therefore, different point mutants have been created to characterize the CDC1 
function (3,4,6). Previous studies have reported that cdc1-314 mutant exhibits defect in GPI-anchored 
protein sorting, temperature sensitivity, cell wall damage, actin depolarization, increased Ca+2 ion 
signaling, and unfolded protein response (UPR) (3,4). GPI-anchored proteins have diverse biological 
functions in different organisms. In yeast, they regulate cell wall biosynthesis, flocculation, adhesion, and 
invasion (7). In protozoa (Trypanosoma brucei), GPI-anchored proteins form a protective layer on the cell 
surface, which helps in the virulence of the parasite (8,9). In plants, it is required for the cell wall 
biosynthesis, developmental morphogenesis, pollen tube germination, etc. (2). In mammals, it regulates 
embryogenesis, fertilization, immune response, neurogenesis, etc. (2,9). GPI-anchored proteins are also 
associated with the progression, invasion, and metastasis of malignant cells (10-12). A few GPI-anchored 
proteins have been found to serve as markers for the specific stages of tumors (13,14). 

Cantharidin (CTD) is a terpenoid produced by blister beetles as a defense molecule. The people 
of a few Asian countries have been using it as a traditional medicine for the treatment of warts and 
molluscum contagiosum for more than 2,000 years (15). In the last few decades, many studies have 
demonstrated the anticancer property of CTD. It has been shown to inhibit the growth of hepatocellular 
carcinoma (16), leukemia (17), pancreatic (18), colorectal (19), gallbladder (20), oral (21), and breast 
cancer (22). The serine-threonine protein phosphatases, PP1 and PP2A, are the only reported molecular 
targets of CTD (23,24). The inhibition of PP2A causes cell cycle arrest (25,26) and apoptosis (27,28). 
CTD also impairs different cellular processes such as heat shock response (29), autophagy (22), DNA 
damage response, and mitogen-activated protein kinase (MAPK) signaling (18,21). One of these studies 
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also demonstrated a PP2A or PP1 independent alteration in heat shock response (29), suggesting the 
existence of additional molecular targets of CTD (29,30). Most of the studies performed with CTD were 
based on mammalian cell lines, making it difficult to decipher a conserved mechanism of action of the 
drug due to their tissue-specific origin and differential gene regulation. Hence, yeast (Saccharomyces 
cerevisiae) serves as an appropriate model system to identify the conserved molecular targets of the drug 
(31-33). Previous studies showed that yeast YHR209W gene was essentially required for CTD resistance 
(34), which was subsequently named as Cantharidin Resistant Gene (CRG1) (35). Later on, Crg1 was 
characterized as an S-adenosylmethionine (SAM) dependent methyltransferase that detoxifies CTD by 
methylation (30). Deletion of CRG1 enables the identification of the molecular targets of CTD more 
easily, so, we utilized budding yeast as a model organism to dissect the molecular mechanism of CTD 
toxicity. 

Our study was focused on the identification of the conserved cellular pathways targeted by CTD. 
Interestingly, we found that CTD impaired the GPI-anchored protein sorting by targeting the remodeling 
process in ER. More specifically, it affected the Cdc1 activity leading to multiple cellular changes such as 
missorting and aggregation of GPI-anchored proteins, temperature sensitivity, cell wall damage, and 
decreased UPR. Most of the CTD-induced phenotypes observed in yeast cells were also reproducible in 
human cells. Our comprehensive genetic and cell biology based experiments revealed that the Cdc1 
activity is a molecular target of CTD in eukaryotic cells. Overall, we identified the GPI-anchor 
remodeling as a direct target of CTD. 

RESULTS 

Supplementation of ethanolamine (ETA) suppresses the cytotoxic effect of CTD 

Previous studies have shown that CTD treatment affects the lipid homeostasis in budding yeast by 
inhibition of the elongation of short-chain phospholipids to long-chain phospholipids (30). The 
phospholipid imbalance can be restored with exogenous supplementation of the precursor molecules. For 
example, supplementation of ETA and choline (CHO) activates the synthesis of 
phosphatidylethanolamine (PE) and phosphatidylcholine (PC), respectively, via an alternative pathway, 
i.e., the Kennedy Pathway (Fig. 1F) (36). Inositol (INO) and serine (SER) enter into the canonical 
pathways of phosphatidylinositol (PI) and phosphatidylserine (PS) biosynthesis, respectively (Fig. 1F) 
(37,38). Based on these phenomena, we sought to identify the specific phospholipid affected by CTD. We 
supplemented the medium with specific precursor molecules, ETA, CHO, and INO, with or without CTD 
and measured the growth of wild type (WT) and crg1Δ strains (Fig. 1A). CTD exposure produced a lethal 
effect on crg1Δ mutant compared to WT (30). However, ETA supplementation completely rescued the 
growth of the crg1Δ strain from CTD cytotoxicity (Fig. 1A, S1A–D). On the other hand, CHO and INO 
supplementation failed to rescue the growth of crg1Δ strain in CTD-containing medium (Fig. 1A). This 
observation suggests that CTD specifically targets PE. The exclusive rescue in the growth of the CTD-
treated cells by ETA supplementation was a surprising phenomenon, because PE and PC, both are 
synthesized in the same pathway (37). Thus, we believe that CTD may not affect the PE biosynthesis 
pathway, but it might be altering the PE-associated structures or functions. PE plays an essential role in 
maintaining membrane and cell wall integrity under heat stress (38,39); so, we examined the fitness 
profile of WT and crg1Δ strains in heat stress (37°C) with a permissible dose of CTD (2μM). 
Interestingly, we found complete inhibition of growth of crg1Δ mutant at 37°C in the presence of CTD, 
whereas the growth was unaffected at optimum (30°C) or below the optimum (25°C) temperature (Fig. 
1B). CTD cytotoxicity was suppressed again at 37°C by supplementation of ETA (Fig. 1C). PE 
biosynthesis takes place in mitochondria and Golgi/vacuole with the help of Psd1 and Psd2, respectively 
(40). A major fraction (>90%) of the net PE in a cell is synthesized by Psd1 in mitochondria (40), so we 
created a double-deletion mutant, crg1Δpsd1Δ, to check synthetic lethality between PSD1 and CRG1 in 
the presence of CTD. For this purpose, WT, crg1Δ, psd1Δ, and crg1Δpsd1Δ strains were grown in CTD-
containing medium. We found that the crg1Δpsd1Δ mutant was hypersensitive to CTD than crg1Δ, 
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suggesting that PE is essentially required to tolerate CTD toxicity (Fig. 1D, S1E–H). crg1Δpsd1Δ mutant 
followed the same trend at higher temperature as well (37°C) (Fig. 1E). The synthetic lethality between 
CRG1 and PSD1 in the presence of CTD suggests an essential role of PE to tolerate CTD toxicity. These 
observations suggest that CTD affects the PE-associated functions (Fig. 1F); therefore, enhanced 
synthesis of PE helps to overcome the CTD toxicity. 

CTD alters ER homeostasis by inhibition of UPR 

ER is the organelle for the synthesis of the major phospholipids. Imbalance in the phospholipid 
composition of lipid bilayer membrane is reported to induce ER stress (41-44). Existing evidence 
suggests that CTD also perturbs ER-synthesized phospholipids (30); thus, we proposed that CTD might 
be altering the ER homeostasis. We examined ER stress in crg1Δ cells in the presence of CTD. Firstly, 
WT and crg1Δ cells were co-treated with CTD and ER stress (or UPR) inducers, dithiothreitol (DTT) or 
tunicamycin (TM), to check if there was any synergistic effect between the two molecules. For this, we 
chose a permissible dose of CTD (4μM) for the crg1Δ mutant, at which it survived, but survival was 
lower than that of the WT. Both the strains were spotted on CTD-containing medium, with and without 
TM or DTT. Interestingly, the co-treatments (CTD + TM and CTD + DTT) inhibited the growth of crg1Δ 
cells more severely compared to only CTD treatment (Fig. 2A, S1I–L). The synergistic lethal effect on 
the growth of crg1Δ cells upon co-treatments suggests that CTD perturbs ER homeostasis. Next, we 
measured UPR by β-galactosidase assay with the help of UPRE-LacZ reporter plasmid (45,46). We found 
that the basal level of UPR was lower in crg1Δ cells compared to WT, and CTD treatment further 
inhibited UPR in both the strains (WT and crg1Δ) (Fig. 2B). Since ETA supplementation rescues the 
yeast cells from CTD toxicity, we decided to measure UPR upon ETA supplementation. Surprisingly, 
ETA supplementation could not rescue UPR inhibited by CTD (Fig. 2B), suggesting that CTD inhibits 
UPR via a distinct mechanism independent of PE in ER. To get more insight into this mechanism, UPR 
was measured upon co-treatments of cells with CTD+DTT and CTD+TM. We found decreased UPR 
levels in crg1Δ cells upon DTT and TM treatment (Fig. 2C). Moreover, CTD treatment strongly inhibited 
UPR induced by DTT or TM in WT as well as crg1Δ mutant (Fig. 2C). Consistent with these 
observations, we also found a slight inhibition of HAC1 mRNA splicing in crg1Δ cells compared to WT. 
The splicing of HAC1 mRNA was further inhibited in both the strains, WT and crg1Δ, upon CTD 
treatment (Fig. 2D). DTT and TM treatment strongly induced HAC1 mRNA splicing; however, the 
presence of CTD with DTT or TM suppressed HAC1 mRNA splicing strongly in crg1Δ cells (Fig. 2D). 
These results suggest that CTD inhibits UPR by making an obstruction in HAC1 mRNA splicing, 
although the mechanism remains unclear. 

 Our results suggest that CTD exposure leads to ER stress that cannot be rescued by ETA 
supplementation. The ER-lumen maintains higher oxidation potential with the help of low GSH:GSSG 
ratio (1:1 to 3:1) compared to the high GSH:GSSG ratio (30:1 to 100:1) of the cytosol (47). GSH provides 
a redox buffer for the catalytic activity of the protein-folding enzymes in ER (48,49). The imbalance in 
GSH:GSSG ratio in ER impairs oxidative protein folding that causes ER stress (50,51). Based on these 
previous findings, we predicted that CTD induced ER stress might be due to imbalance in GSH:GSSG 
ratio in ER. To test this hypothesis, we checked the effect of GSH on CTD toxicity. We used the 
permissible dose of CTD (4μM) for crg1Δ mutant and supplemented the medium with a high dose of 
GSH and NAC. We found that the growth of crg1Δ mutant was suppressed in the presence of either of the 
two reducing molecule, GSH or NAC, along with CTD. However, GSH or NAC alone did not show any 
effect on the growth of crg1Δ mutant (Fig. 2E). Furthermore, the supplementation of ETA did not rescue 
the growth of crg1Δ mutant upon CTD+GSH or CTD+NAC treatments. This result supports the previous 
observation where, upon ETA supplementation, UPR suppressed by CTD treatment could not be rescued 
(Fig. 2B). Similar observations were also made in liquid growth culture (Fig. S2A–F). Next, we measured 
UPR using β-galactosidase assay. Interestingly, we observed that GSH or NAC supplementation results in 
the reduction in UPR in WT and crg1Δ cells (Fig. 2F). As CTD treatment also inhibits UPR, we observed 
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severe reduction in UPR upon co-treatments with CTD+GSH or CTD+NAC (Fig. 2F). We also found an 
inhibition in HAC1 mRNA splicing upon addition of GSH and NAC (Fig. 2G). The splicing of HAC1 
mRNA decreased robustly when the cells were co-treated with CTD+GSH or CTD+NAC (Fig.2G). These 
observations suggest that CTD-mediated inhibition of UPR is probably due to imbalance in ER-redox 
homeostasis, which gets enhanced with the addition of GSH. It also explains the reason why ETA 
supplementation failed to rescue the UPR. 

CTD exposure perturbs the cell wall integrity via ER stress 

Yeast cell wall biosynthesis and maintenance largely depend on functional ER (7,52,53). 
Dysfunctional ER affects the synthesis, modifications, folding, and transport of the proteins destined to 
the plasma membrane or cell wall. Based on our results, we proposed that CTD induced ER stress could 
also perturb cell wall integrity. To examine the effects of CTD on cell wall integrity, we measured chitin 
content in the cell wall of WT and crg1Δ cells by Calcofluor white (CFW) staining (54). We found 
substantial increase in chitin content in crg1Δ cells upon CTD treatment, suggesting that CTD treatment 
induced cell wall damage (Fig. S3A). To get more insight on the effect of CTD on cell wall integrity, we 
co-treated the cells with CTD and cell wall perturbing agents, Congo red (CR) and CFW. We used a 
permissible dose of CTD (4μM) in combination with cell wall perturbing agents to measure the growth of 
WT and crg1Δ cells. We found that crg1Δ mutant did not grow in either of the co-treatments (CTD+CR 
or CTD+CFW), whereas the growth was unaffected in individual treatments (Fig. 3A). We also 
supplemented sorbitol (SRB) into the medium to maintain the osmotic balance across the cell membrane. 
SRB rescued the growth of crg1Δ mutant upon CTD+CFW treatment, but not upon CTD+CR treatment. 
That suggests the CTD+CR-induced cell wall damage is irreversible, although the mechanism remains to 
be identified (Fig. 3A). We obtained similar results in liquid growth culture under similar conditions (Fig. 
S3B–E). Yeast cell wall damage is sensed by many sensor proteins residing in the cell wall, which in turn 
activate downstream signaling via Slt2 (55). Activation of Slt2 triggers the transcription of cell wall 
maintenance genes via Rlm1 and Swi4-Swi6 transcription factors (52,56). Hence, we did western blot 
analysis of Slt2 phosphorylation in WT and crg1Δ cells upon CTD treatment. We observed increased 
phosphorylation of Slt2 in crg1Δ cells upon CTD treatment at 25°C. Slt2 phosphorylation increased 
further when the cells were grown at 37°C, and CTD treatment induced Slt2 phosphorylation robustly in 
crg1Δ cells at this temperature (Fig. 3B). As we knew that CTD cytotoxicity could be neutralized by ETA 
supplementation, we decided to measure Slt2 phosphorylation in CTD-treated cells supplemented with 
ETA. We observed a significant decrease in Slt2 phosphorylation upon ETA supplementation in CTD-
treated cells (Fig. 3B). This result suggests that ETA-mediated rescue in growth against CTD toxicity 
(Fig. 1A, C and Fig. S1A–D) might occur via cell wall maintenance. Next, we challenged the WT and 
crg1Δ cells with the combined treatment of CTD and UPR inducers (DTT and TM) to measure the 
synergistic effect on Slt2 phosphorylation. We found strong induction in Slt2 phosphorylation upon co-
treatments with CTD+DTT or CTD+TM compared to individual treatments (CTD/DTT/TM) (Fig. 3C). 
This observation suggests that CTD-induced cell wall damage might be due to ER stress. Furthermore, we 
checked Slt2 phosphorylation upon co-treatments with CTD+GSH and CTD+NAC. We found that both 
the co-treatments did not cause any significant change in Slt2 phosphorylation compared to CTD alone. 
Moreover, only GSH or NAC did not cause any change in Slt2 phosphorylation (Fig. 3D), suggesting 
some unknown mechanism of GSH-induced ER stress unlike DTT, TM, and CTD. We conclude that 
CTD perturbs cell wall integrity via ER stress. 

CTD alters GPI-anchored protein sorting 

To identify the major pathway affected by CTD treatment, we did functional clustering (57) of 
the genetic interactors of CRG1 which show synthetic lethality in the presence of CTD (30). We found 
that the majorly affected pathways were associated with ER-Golgi traffic system (Table S4). Yeast cell 
wall biosynthesis and maintenance mainly depend on the GPI-anchored proteins, sorted by ER-Golgi 
traffic system (1,7,58). PE also plays a crucial role in the regulation of this traffic system (4,7,44,58). 
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Thus, we hypothesized that the CTD-induced cell wall damage might be due to the defect in GPI-
anchored protein sorting. We decided to study the GPI-anchored protein sorting upon CTD treatment. We 
used Gas1-GFP as a model GPI-anchored protein and tracked its localization in WT and crg1Δ cells upon 
CTD treatment (3,4,59). We observed that CTD induced missorting and aggregation of Gas1-GFP in 
crg1Δ cells (Fig. 4A). Additionally, Gas1-GFP expression decreased significantly after CTD treatment in 
crg1Δ mutant probably due to the degradation of the aggregated proteins (Fig. 4B) (60-62). We also 
observed band shift of Gas1-GFP upon CTD treatment in crg1Δ mutant, suggesting a distinct mechanism 
affecting the maturity of GPI-anchored proteins (Fig. 4B). Supplementation of ETA completely rescued 
the sorting of Gas1-GFP in CTD-treated crg1Δ cells (Fig. 4A).This might be the reason for ETA-
mediated rescue in cell wall integrity (Fig. 3B). Furthermore, we measured DTT extractable cell surface 
proteins (CSPs) integrated into the cell wall and plasma membrane through GPI-anchors. These proteins 
were extracted as described previously(63). We found a high yield of CSPs from CTD-treated crg1Δ cells 
compared to WT cells. However, the supplementation of ETA restored the cell surface proteins to normal 
level, equal to that of WT (Fig. S4A, B). High yield of CSPs from CTD-treated crg1Δ cells maybe due to 
inappropriate anchorage to cell wall or cell membrane, hence, they are easily extractable from the surface. 
In contrast, ETA supplementation re-stabilizes the binding of the GPI-anchors, reversing the phenotype to 
normal and equivalent to WT. To further ascertain the role of CTD on GPI-anchor biosynthesis, we 
checked the genetic interaction of CRG1 with a few GPI anchor biosynthesis genes (GPI2, GPI13, and 
MCD4) (1). Since, these genes are essential for the cell survival, we used their heterozygous deletion 
mutants (gpi2Δ/GPI2, gpi13Δ/GPI13, and mcd4Δ/MCD4). We deleted CRG1 to create double-deletion 
mutants, crg1Δ/Δgpi2Δ/GPI2, crg1Δ/Δgpi13Δ/GPI13, and crg1Δ/Δmcd4Δ/MCD4, and performed growth 
assay uponCTD treatment. Surprisingly, the double-deletion mutants (crg1Δ/Δgpi2Δ/GPI2, 
crg1Δ/Δgpi13Δ/GPI13, and crg1Δ/Δmcd4Δ/MCD4) showed better growth compared to single-deletion 
mutant, crg1Δ/Δ, in CTD-treated medium (Fig. 4C, D and Fig. S3F–I). That suggests that the molecular 
target of CTD maybe downstream of the GPI biosynthesis cascade (4). We conclude that CTD alters the 
GPI-anchored protein sorting which can be rescued by ETA supplementation. 

Cdc1-mediated GPI-anchor remodeling is the major target of CTD 

GPI-anchor remodeling is the step successive to biosynthesis. Based on the results discussed 
above, we hypothesized that GPI-anchor remodeling might be the target of CTD (30). We performed 
experiments to find synthetic lethality between CRG1 and GPI-anchor remodeling genes (CDC1, PER1, 
and GUP1). Firstly, we deleted CRG1 in the mutants of remodeling factors (per1Δ, gup1Δ, cdc1-310, 
cdc1-314, per1Δcdc1-314, and gup1Δcdc1-314) and measured their fitness profile upon CTD treatment. 
We found that the double mutants (crg1Δcdc1-314, crg1Δcdc1-310, crg1Δgup1Δ, and crg1Δper1Δ) were 
hypersensitive to CTD compared to the single mutants (crg1Δ, per1Δ, gup1Δ, cdc1-310, and cdc1-314) 
(Fig. 5A). Additionally, the triple mutants (crg1Δper1Δcdc1-314 and crg1Δgup1Δcdc1-314) showed even 
more sensitivity to CTD than single or double mutants (Fig. 5A and Fig. S5). Interestingly, two different 
alleles of CDC1 (cdc1-310 and cdc1-314) showed contrasting phenotypes. cdc1-314 showed synthetic 
lethality,whereascdc1-310 showed a dose-dependent behavior. It showed synthetic rescue at lower dose 
and synthetic lethality at higher dose (Fig. 5A and Fig. S5). We also checked their fitness profile upon 
CTD treatment at a higher temperature (37°C), and we found that cdc1 mutants showed temperature 
sensitivity, while the growth of per1Δ and gup1Δ was unaffected (Fig. 5B) (3,4). However, the double 
mutants crg1Δgup1Δ and crg1Δper1Δ were found to be hypersensitive compared to the single-deletion 
mutant crg1Δ at a very low dose of CTD (0.25μM) (Fig. 5B). The results suggest that CRG1 shows 
synthetic lethality with GPI-anchor remodeling genes, stronger with CDC1 than PER1 or GUP1 in the 
presence of CTD. Based on our results and genetic interaction study performed between CDC1 and 
MCD4 (4), we propose that down regulation of GPI-anchor biosynthesis genes or decreased GPI 
biosynthesis can rescue the growth defect of the mutants lacking GPI-anchor remodeling, perhaps by 
decreasing the GPI traffic on the remodeling factors. Because of the dynamic behavior of cdc1 alleles 
(cdc1-314 and cdc1-310) against CTD, we hypothesized that the Cdc1 activity could be a specific target 
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of CTD in the remodeling process (Fig. 5A and Fig. S5, S6C–F). As the activity of Cdc1 is Mn+2-
dependent (3,5,6), we decided to examine the effect of CTD by controlling Mn+2 concentration in the 
medium. We added the di-ionic chelator EGTA into the medium along with CTD and checked the fitness 
profile of the mutants. We observed that the growth of single and double mutants (crg1Δ, crg1Δcdc1-310, 
and crg1Δcdc1-314) was suppressed gradually with increasing concentration of EGTA (Fig. 5C and Fig. 
S6A). Moreover, exogenous supplementation of MnCl2 recovered the growth of crg1Δcdc1-310 mutant in 
CTD-treated medium (Fig. 5D and Fig. S6B, G–J). In this study, the two cdc1 alleles exhibit reproducible 
phenotype in a distinct condition than that reported previously (3,6). In summary, we conclude that CRG1 
and CDC1 work in two different axes: CRG1 works as a guard to resist CTD, while CDC1 participates in 
the remodeling process. Loss of CRG1 results in the increased availability of active CTD that impaired 
the remodeling process by targeting the Cdc1 activity (Fig. 5E). Although both the genes work in two 
different axes, they are required in parallel to tolerate CTD toxicity. We conclude that Cdc1 activity is 
essential to tolerate CTD cytotoxicity, and it may serve as a mechanistic target of the drug. 

CTD-induced phenotypes strongly correlate with loss of Cdc1 activity 

Analysis of the phenotypes observed in this study and the investigations conducted previously 
suggest that CTD treatment induces phenotypes similar to cdc1 mutants (cdc1-314, cdc1-310, etc.) 
(3,4,30). To get further evidence to support this, we employed genetics and cell biology-based 
experimental approaches. First, we measured the Slt2 phosphorylation upon CTD treatment. We observed 
that cdc1-314 mutant showed increased phosphorylation of Slt2 compared to WT in untreated condition. 
On the other hand, CTD treatment induced the Slt2 phosphorylation in crg1Δ, cdc1-314, and crg1Δcdc1-
314 (Fig. 6A). Though CTD induced Slt2 phosphorylation in all the three mutants, the maximum level 
was measured in the double mutant crg1Δcdc1-314. We also observed decreased UPR in cdc1-314 due to 
inhibition of HAC1 mRNA splicing in untreated condition (Fig. 6B) (4). The splicing of HAC1 mRNA 
decreased synergistically in the double mutant crg1Δcdc1-314 with and without CTD treatment (Fig. 6B). 
Furthermore, we observed a defect in GPI-anchored protein sorting (Gas1-GFP) in cdc1-314 (Fig. 6C) 
(3,4), which became worse if treated with CTD (Fig. 6C). Additionally, we found decreased expression of 
Gas1-GFP in cdc1-314 (4). Interestingly, CTD treatment further decreased Gas1-GFP expression in 
crg1Δ and crg1Δcdc1-314 (Fig. 6D and Fig. 4B). We found synergistic effect in all four phenotypes: Slt2 
phosphorylation, UPR, Gas1-GFP localization, and Gas1-GFP expression, suggesting that Cdc1 might be 
a specific target of CTD.   

Next, we measured the growth of GPI-anchor remodeling mutants in presence of CTD or anti-
oxidants with increasing temperature. We found that the mutants of GPI remodeling genes (per1Δ, gup1Δ, 
cdc1-310, cdc1-314, per1Δcdc1-314, and gup1Δcdc1-314) were sensitive to a higher dose of CTD, and 
the sensitivity increased with increasing temperature (Fig. S7). We also found these mutants to be 
hypersensitive to reducing environment developed by supplementation of GSH or NAC into the medium 
(Fig. S7). The sensitivity to GSH as well as NAC increased again with elevated temperature. This result 
suggests that redox balance plays an essential role in remodeling process of the GPI-anchors. These 
results also provide an explanation for the synergistic lethal phenotype generated by the co-treatments 
with CTD+GSH or CTD+NAC (Fig. 2E). Additionally, ETA supplementation did not rescue the growth 
defect of cdc1-314 and cdc1-310 at higher temperature (Fig. S7), suggesting that ETA-mediated rescue in 
Gas1-GFP sorting in CTD-treated cells did not occur via the GPI-anchor remodeling mechanism. The 
hypersensitivity of the single mutant cdc1-314 to the higher doses of CTD indicates the involvement of a 
CRG1-independent pathway targeted by the drug (Fig. S7). We also observed that a higher dose of CTD 
(300μM) altered Gas1-GFP sorting even in WT (Fig. S8A). Furthermore, to investigate whether CTD-
induced alteration in GPI-anchored protein sorting was PP2A/PP1-dependent or not (24), we analyzed 
Gas1-GFP localization in sit4Δ (PP2A) and GLC7/glc7Δ (PP1) strains (Fig. S8B). We did not find any 
defect in Gas1-GFP localization in both the mutants, implying the CTD-induced alteration in GPI-
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anchored protein sorting was independent of PP2A and PP1. Over all, the CTD-induced phenotypes 
strongly correlate to that of cdc1-314 allele, perhaps CTD targets Cdc1 activity.    

CTD alters GPI-anchored protein sorting in human cancer cells 

The pathway for the biosynthesis and sorting of GPI-anchored proteins is conserved from yeast to 
higher eukaryotes (1,64). Therefore, we reasoned that the fundamental mechanism of action of CTD 
would be similar in yeast and human cells. To study the GPI-anchored protein sorting in human cells, we 
used GFP-CD59 as a model GPI-anchored protein (5). We observed that CTD induced aggregation of 
GFP-CD59 in HeLa cells, while the untreated cells showed normal distribution of the protein (Fig. 7A, 
S8C). This observation suggests that the molecular mechanism of action of CTD is conserved from yeast 
to human cells. Furthermore, we also checked the total expression of GFP-CD59 in HeLa cells upon 
treatment with CTD. Unlike yeast, we did not find any change in GFP-CD59 expression (Fig. 7B), 
suggesting a distinct mechanism for the clearance of aggregated proteins in human cells. Next, we 
measured the phosphorylation of p44/42 (a human homologue of yeast Slt2). We found a significant 
induction in p44/42 phosphorylation in HeLa and HepG2 cells upon CTD treatment (Fig. 7C). CTD 
treatment also decreased the XBP1 mRNA expression (Fig. 7D), suggesting that the down regulation of 
UPR is similar to yeast cells (Fig. 2B, C) (65). To rescue the cells from CTD toxicity, we supplemented 
ETA, CHO and INO into the Dulbecco’s modified Eagles medium (DMEM). Interestingly, ETA 
supplementation rescued the HepG2 cells from CTD-induced cell death, but the rescue of HeLa cells was 
not significant (Fig. 7E, F), suggesting a cell-type-specific utilization of ETA due to different origin. On 
the other hand CHO and INO supplementation could not rescue the human cells (Fig. S11A,B,C,D) from 
CTD toxicity as observed in yeast cells (Fig1, A). Since the phenotypes induced by CTD treatment in 
human and yeast cells are quite similar, we propose a conserved mechanism of action of CTD in 
eukaryotes.  

DISCUSSION 

GPI-anchored proteins control essential biological functions in animal cells by regulating the 
cell–to-cell communication, adhesion, and signal transduction (2,9). GPI-anchored proteins are also 
shown to be involved in tumorigenesis and metastasis (10-12). Targeting an essential cellular pathway is 
one of the key aspects of anticancer chemotherapeutics. In this study, employing extensive genetic and 
cell biological approaches, we identified Cdc1 (yeast homologue of human PGAP5)-mediated GPI-anchor 
remodeling as a mechanistic target of CTD in addition to PP2A and PP1. Biochemical validations will 
further support our observations.  

CTD has been shown to disturb phospholipid homeostasis in crg1Δ mutant (30). To understand 
the underlying mechanism of its action, we screened the crg1Δ mutant for the auxotrophy of different 
phospholipids upon CTD treatment. This approach helped us to conclude that CTD specifically affects 
PE, which can be rescued by exogenous supplementation of ETA. CTD treatment induced phenotypes 
similar to psd1Δ (39,44), and we found that PSD1 was synthetically lethal in combination withCRG1 
under CTD stress. The reason of PE auxotrophy upon CTD treatment may be either inhibition of PE 
biosynthesis or alteration in PE-associated structures e.g. GPI-anchors. The biosynthesis of PC mainly 
depends on the availability of PE in ER, which suggests that PE deficiency can lead to the deficiency of 
PC as well (66). However, the supplementation with PC did not rescue the growth defect induced upon 
CTD treatment. Thus, we conclude that CTD probably alters the PE-associated structures or functions 
rather than PE biosynthesis. PE deficiency is also known to induce ER stress and UPR in yeast (44). 
Contrarily, we found decreased UPR upon CTD treatment in the absence as well as presence of the UPR 
inducers (TM and DTT). Our further investigations revealed that the drop in UPR upon CTD treatment 
was due to alteration in ER-redox homeostasis and Cdc1 activity (4) where we found that increased GSH 
level or lack of Cdc1 activity diminished UPR. The oxidative environment in ER is maintained by low 
GSH:GSSG (1:1 to 3:1) ratio for correct folding and modifications of the proteins (47,49,50). Our study 
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demonstrates that the oxidative environment is also essential for the process of GPI-anchor remodeling 
(Fig. S7). ER is the site of synthesis and fate determination of the secretory proteins in the cell. 
Biosynthesis and maintenance of the yeast cell wall majorly depends on these secretory proteins (1).We 
believe that the CTD-induced cell wall damage (30,34) is due to alteration in ER homeostasis. The 
synergistic lethal effect of CTD with ER stress inducers (Heat, DTT, and TM) and cell wall perturbing 
agents (CR and CFW) support this hypothesis. CTD-induced Slt2 phosphorylation also increases 
synergistically with ER stress inducers. Thus, we conclude that CTD-induced ER stress triggers cell wall 
damage. We also found rescue from CTD-induced cell wall damage upon ETA supplementation, the 
reason of which is the restoration of the GPI-anchored protein sorting (38,44). However, we do not know 
the exact mechanism by which the increased PE level restores the GPI-anchored protein sorting against 
CTD. 

Next, we investigated the molecular mechanism for the ER stress and cell wall damage upon 
CTD treatment. The genetic interaction profile of CRG1 suggests that the ER-Golgi traffic system is a 
major pathway affected by CTD (30). In yeast cells, the proteins that travel from the ER to cell wall are 
mostly the GPI-anchored proteins. GPI-anchored proteins constitute a major part of the total cell wall 
proteins and are required for the biosynthesis and maintenance of the yeast cell wall (1,2,7,58,64). 
Alteration in biosynthesis or sorting of GPI-anchored proteins induce ER stress and cell wall damage (4). 
Interestingly, we observed mis-sorting and aggregation of the GPI-anchored protein (Gas1-GFP) upon 
CTD treatment. CRG1 showed synthetic rescue with GPI-anchor biosynthesis genes (GPI2, GPI13, and 
MCD4) and synthetic lethality with GPI-anchor remodeling genes (GUP1, PER1,and CDC1) upon CTD 
stress, indicating that the CTD alters GPI-anchored protein sorting by targeting the remodeling process 
(4). These results also support the genetic interaction profile of CRG1 reported previously (30). Besides, 
we identified CDC1 as an additional new gene that showed synthetic lethality with CRG1 in the presence 
of CTD. CDC1 encodes for Mn+2-dependent mannose-EtNP phosphodiesterase required for the removal 
of EtNPfrom the first mannose of the GPI-anchor (4). The crg1Δcdc1-314 double mutant shows strong 
sensitivity to CTD compared to crg1Δ and cdc1-314 single mutants. The triple mutant strainscrg1Δ 
per1Δcdc1-314 and crg1Δgup1Δcdc1-314 were found to be even more sensitive to CTD compared to 
single (crg1Δ, per1Δ, gup1Δ, cdc1-310, and cdc1-314) and double mutants (crg1Δper1Δ and 
crg1Δgup1Δ), suggesting that GPI-anchor remodeling is the major target of CTD. On the contrary, 
another allele of CDC1, cdc1-310, shows a dynamic phenotype upon CTD treatment. It shows synthetic 
rescue at lower dose and synthetic lethality at higher dose of CTD. Such dynamic and contrasting 
phenotypes of the two different alleles of CDC1 suggest a possibility of direct interaction of the enzyme 
with the small molecule CTD. To get more evidence in support of this hypothesis, we manipulated the 
Mn+2concentrations in the medium. We found that CTD toxicity enhanced with decreasing concentrations 
of Mn+2 in the medium and vice versa, indicating an essential requirement of the Cdc1 activity to tolerate 
the CTD toxicity. Based on these results, we believe that CTD inhibits Cdc1 activity. CTD shows 
stronger affinity to Cdc1-314 than Cdc1-310, probably due to the specific protein confirmation. Previous 
studies suggest that CTD acts as a potent inhibitor of protein phosphatasesPP2A and PP1 (23,24,67). 
However, our observations suggest that it can also inhibit lipid phosphatases such as Cdc1. CTD-
dependent synthetic lethality of SAC1 (phosphatidylinositol phosphate phosphatase) with CRG1 supports 
this hypothesis (30,68). Furthermore, the sit4Δ (PP2A) and GLC7/glc7Δ (PP1) mutants do not show any 
defect in GPI-anchored protein sorting, suggesting that CTD-induced alteration in GPI-anchored protein 
sorting is independent of its known protein targets PP2A and PP1 (23,24,30). Furthermore, we also found 
that the higher dose of CTD induces the same phenotypes in WT and cdc1-314 as it does in crg1Δ mutant 
at sub-lethal dose, suggesting that CTD targeted pathways are independent of CRG1. 

The enzymes involved in GPI-anchor biosynthesis and remodeling in yeast are mostly conserved 
in higher eukaryotes, suggesting that CTD can act through a similar mechanism in higher eukaryotes. To 
validate the existence of a conserved mechanism of CTD toxicity, we extended our studies to human cell 
lines HeLa and HepG2. We observed similar phenotypes induced by CTD in human cells. We found 
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missorting and aggregation of GPI-anchored GFP-CD59 in the cytoplasm of HeLa cells upon CTD 
treatment, which was very similar to that of Gas1-GFP in yeast. Similarly, CTD also induced 
phosphorylation of p44/42 (yeast Slt2), supporting the previous observations of CTD-mediated activation 
of different MAPKs (18,21). We also found decreased expression of XBP1 (yeast HAC1) upon CTD 
treatment which might be via ATF6 signaling that regulates the target gene XBP1 (65). The similar 
phenotypes produced by CTD in yeast and human cell lines suggest that the drug functions through a 
conserved mechanism.  

Our study provides explanations to various observations reported upon CTD treatment in 
different organisms. CTD-induced alteration in GPI-anchored protein sorting can be a reason for the 
acantholysis (69-71) and inhibition of cancer metastasis (12). CTD-induced perturbation in adhesion, 
morphogenesis, and membrane trafficking in Candida albicans may be due to alteration in GPI-anchored 
protein sorting (72). The G2/M cell cycle arrest by CTD (18,19,67) is probably due to inhibition of Cdc1 
activity as the loss of Cdc1 functions also induces G2/M cell cycle arrest (73). CTD has been a traditional 
medicine to cure warts and molluscum contagiosum caused by viral infections. Our study suggests that 
CTD can be further explored as an antiviral or antiprotozoan drug, utilizing its property of altering ER-
Golgi traffic system (8,15,74). 

Since CTD targets a conserved and essential pathway, its exposure can also lead to lethal side effects. 
Therefore, the drug delivery is required to be very specific. A cancer- or tumor-specific delivery of CTD 
is the only way to make it a successful chemotherapeutic anticancer drug. Similarly, the poisoning of 
cattle foods by the contamination with the blister beetle is another big challenge, as there is no antidote 
available against the beetle toxin. Our study suggests ETA can serve as a potent antidote against CTD 
poisoning. In summary, we identified a novel target of CTD in addition to PP2A/PP1 and a potent 
antidote that neutralizes its lethal toxic effect. 

MATERIALS AND METHODS 

Yeast strains, plasmids and growth conditions  

Unless otherwise stated, Saccharomyces cerevisiae strains, used in this study were isogenic with 
S288c (BY4741 or BY4743). All the strains, plasmids and primers used in this work are listed in Tables: 
S1-S3 respectively. Yeast strains were grown in Synthetic Complete (SC) or Yeast Peptone Dextrose 
(YPD) media at 30oC, maintaining the optimum growth excluding some temporal stress conditions. 
Various reagents used in different experiments were purchased from Sigma, Merck, Himedia, Invitrogen, 
BioRad and Applied Biosystems.  

Growth sensitivity assays 

Serial dilution assay: Equal number (OD600 = 1.0) of overnight grown yeast cells were serially diluted, 
10 fold for 5 times, and then spotted on SC agar media. The spotted cells were incubated at different 
temperatures according to the various experimental conditions. 

Growth curve assay: Equal number (OD600 = 0.2) of exponentially growing yeast cells were inoculated 
in 96-well plates with and without different treatments and grown for 23-28h in the automated plate 
reader (Biotek) acquiring reading at OD600 in an interval of every 30 minutes. 

Preparation of yeast whole cell protein extract for western blot analysis 
Protein extraction from yeast cells was done by following the TCA protein extraction protocol 

(75). The equal number of cells were harvested and washed twice with 20% of TCA. Cell pellets were re-
suspended in 20% of TCA with an equal volume of glass beads and vortexed rigorously to lyse the cells. 
TCA precipitated protein extract was washed with ethanol, resuspended in 0.5M of Tris-Cl (pH 7.5) with 
1X loading buffer. The sample was boiled at 100oC for 10 minutes and centrifuged at maximum for 10 
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minutes to remove the debris. The supernatant was taken ahead for western blot analysis. The primary 
antibodies used in this study for immunoblotting experiments were: Anti-phospho-p44/42 (Cell Signaling, 
Catalog 4370), Anti-Mpk1 (Santa Cruz Biotechnology Inc., Catalog SC-6803), Anti-GFP (Sigma, 
Catalog G1544), Anti-GAPDH (Cell Signaling, Catalog 5174S). Primary antibody used against Tbp1 was 
polyclonal antisera raised in rabbit. 
Cell surface protein extraction 

Yeast cells were washed twice with sodium phosphate buffer (0.1 M, pH 8.0). Wash-out solution 
was kept at 4oC. Collected cells were re-suspended again in sodium phosphate buffer with 2mM of DTT 
and incubated at 4oC for 2h maintaining gentle agitation. Now the cells were pelleted down by 
centrifugation, and the supernatant along with the washout fraction was precipitated using 20% TCA in 
the final volume. TCA precipitated cell surface proteins were separated via 8%- SDS-PAGE and stained 
with 0.1 % CBBR (63). 
RNA extraction, cDNA synthesis and qPCR for HAC1 mRNA splicing 

RNA isolation was performed by using the heat/freeze RNA isolation protocol (76). Briefly; cells 
were grown until mid-exponential phase, harvested by centrifugation and washed twice with 1xPBS. 
Harvested cells were lysed with 1% of SDS in AE buffer (50mM Sodium acetate, 10mM EDTA, pH 5.3). 
An equal volume of acidic phenol of pH 4.2 was added, incubated at 65oC for 4 minutes followed by 
freezing at -85oC for 4 minutes, centrifuged for 2 minutes at maximum speed to separate the aqueous 
layer. The aqueous phase was mixed with equal volume of phenol:chloroform:isoamyl alcohol (PCI; 
25:24:1) and separated again from the phenol phase. The total RNA present in aqueous phase was 
precipitated by adding sodium acetate (0.3M) and 2.5 volume of absolute ethanol. The cDNA synthesis 
was done by following the standard protocol provided by iScript™ cDNA Synthesis Kit (BioRad, Catalog 
1708891). HAC1 mRNA splicing was measured using primer specified in Table S3, following the PCR 
conditions as described previously (53). 

β-galactosidase assay  

Exponentially growing yeast cells were harvested and washed twice with Lac-Z buffer (10mM 
KCl, 1mM MgSO4, 50mM β-mercaptoethanol, and 100mM NaPO4, pH 7.0). Cells were lysed using 
0.01% SDS, and 22.7% chloroform in Lac-Z buffer in final volume of 250μl. Subsequently 500 μl of 
ONPG (2mg/ml) was added and incubated at 30oC till the appearance of pale yellow color. The reaction 
was quenched by adding 500μl of sodium bicarbonate (1M). The reaction mixture was centrifuged at 
maximum speed for 15 minutes, and the supernatant was collected to measure the absorbance at the 
wavelength of 420nm. Miller unit for the β-galactosidase activity was determined by applying the 
formula: Miller Unit = [OD420/OD600*Time (Min)]*1000 (45). 

Fluorescence microscopy 

Fluorescence microscopy was done to study the sorting of GPI-anchored protein (Gas1-GFP) 
with or without CTD. Yeast cells were grown in YPD medium for different time points and harvested by 
centrifugation (6000rpm, 2 minutes, 4oC). Cell pellets were resuspended in PBS and kept on ice at least 
for 30 minutes (59). Gas1-GFP localization was observed using the ZEISS-Apotome.2 fluorescence 
microscope under 60x oil emulsion objective lens. For the microscopic localization study of the EGFP-F-
CD59, the overnight grown HeLa cells with 50% confluency were treated with CTD (5μM) for 12 hours 
and visualized under 20x emulsion oil objective lens (5). 

Cell culture and maintenance of Human cell lines 
Human cell lines (HeLa and HepG2) were maintained in Dulbecco’s modified Eagle’s medium 

(DMEM, Lonza) having 10% fetal bovine serum (FBS, Gibco) and antibiotics,i.e., penicillin (100U/ml) 
and streptomycin (100μg/ml). Both the cell lines were grown at 37oC with 5% CO2. 

Cell survival assay 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 2, 2018. ; https://doi.org/10.1101/460253doi: bioRxiv preprint 

https://doi.org/10.1101/460253


Cantharidin targets GPI-anchor remodeling 

12 

 

Percentage survivability of the cells against CTD exposure was measured by MTT assay. HeLa 
and HepG2 cells were seeded in 96 well plate equal in number (5000 cells) in each well. Cells were 
incubated for 24 h. Media was removed, and fresh media was added to the cells, simultaneously cells 
were also challenged with CTD with or without supplementation of ETA for 48 h. 10μl of MTT solution 
(5mg/ml in 1xPBS) was added and incubated at growth conditions for four hour. 100μl of DMSO was 
added and mixed well. Absorbance was recorded at 570nm using microplate reader (Biotek) (16). 

Statistical data analysis 

Statistical analysis for all the data of this study was performed by using GraphPad Prism-5 
software. Each graph shows the individual data points with mean value as a horizontal green line. The 
error bars represents mean±SD of minimum three individual repeats. We applied Two-way ANOVA, 
Bonferroni post test where *= p<0.05, **= p<0.01 and ***= p<0.001 and ns=p>0.05. 
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Figure 1: CTD specifically targets PE in crg1Δ cells. A, B, C, and E: Growth sensitivity assays. Equal
number of cells were serially diluted and spotted on SC agar media. Images were captured after 72h of
incubation.  (A) Supplementation of ETA rescues crg1Δ mutant from CTD toxicity. Phospholipid
precursors: ETA, INO, and CHO were added into SC agar media with or without CTD. WT and crg1Δ
cells spotted and incubated at 30oC. (B) CTD toxicity increases with rising temperature .WT and crg1Δ
cells were spotted on SC agar media containing CTD and incubated at different temperatures (25oC, 30oC,
37oC). (C) ETA supplementation rescues the crg1Δ mutant from CTD toxicity at higher temperature. WT
and crg1Δ cells were spotted on SC agar media containing CTD with and without ETA supplementation,
and incubated at different temperatures (25oC, 30oC, 37oC). (D&E) CRG1 shows synthetic lethality with
PSD1 under CTD stress. (D) Growth curve assay. Equal number of cells of WT, crg1Δ, psd1Δ and
crg1Δpsd1Δ were grown at 30oC with or without CTD in liquid media. OD600 was measured at the time
interval of 30 minutes using an automated plate reader for 23h. (E) WT, crg1Δ, psd1Δ and crg1Δpsd1Δ
cells were spotted on SC agar media containing CTD with or without ETA, and incubated at two different
temperatures (25oC and 37oC). (F) Phospholipid biosynthesis pathways in yeast (37,66,77,78). INO and
SER in media are directly utilized to synthesize PI and PS with help of Pis1 and Cho1, respectively. PE
and PC biosynthesis has two pathways: (i) Canonical biosynthesis of PE/PC: It takes place in
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mitochondria and ER. The first reaction starts in ER where Cho2 synthesizes PS from serine (SER). PS is
transported to mitochondria where Psd1 catalyses its decarboxylation to synthesize PE. (Similar
mechanism also takes place in Golgi and vacuole by Psd2 which contributes very minor fraction of the
net PE content). Next, PE is transported again to ER where Cho2 and Opi3 convert it into PC via a
sequence of methylation reactions. (ii) Non-canonical PE or PC synthesis: It is also called as Kennedy
pathway. In this pathway, externally supplemented precursors (ETA/CHO) are utilized and converted into
PE or PC, respectively, via series of enzymatic reactions.  

 

 

Figure 2: CTD treatment inhibits UPR by alteration of the ER-redox homeostasis. (A) UPR inducers
(DTT/TM) synergistically enhance CTD toxicity. Equal number of serially diluted WT and crg1Δ cells
were spotted on CTD containing SC agar media with or without DTT/TM in presence or absence of ETA,
and incubated at 30oC for 72h. (B) CTD inhibts UPR. WT and crg1Δ strains transformed with pPW344
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(UPRE-LacZ) plasmid, were grown in SC-URA media at 30oC. Cells were treated with CTD (6μM) with 
or without ETA (2.5mM) at the mid-exponential phase (OD600 = 0.8) and incubated for 2h. β-
galactosidase assay was performed to measure the UPR. The graph shows scattered plot of each data 
point of individual experiment (dot/square) with mean (horizontal green line) ± SD (error bars). Statistical 
analysis was done with GraphPad Prism-5, applying Two-way ANOVA, Bonferroni post test where *= 
p<0.05, **= p<0.01 and ***= p<0.001 and ns=p>0.05. (C) CTD inhibits UPR in presence of DTT and 
TM. WT and crg1Δ strains carrying pPW344 vector were grown till the mid-exponential phase and 
treated with CTD (3μM) in combination of DTT (0.5mM) or TM (0.25μg/mL) for 2h. β-galactosidase 
assay was performed to measure the UPR. The graph shows scattered plot of each data point of individual 
experiment (dots/squares) with mean (green line) ± SD (error bars). Statistical analysis was done using 
GraphPad Prism-5, applying Two-way ANOVA, Bonferroni post test where *= p<0.05, **= p<0.01 and 
***= p<0.001 and ns=p>0.05. (D) CTD inhibits HAC1 mRNA splicing. WT and crg1Δ strains were 
grown in the condition mentioned above (C) and HAC1 mRNA splicing was measured by RT-PCR. (E) 
GSH or NAC supplementation enhances the CTD cytotoxicity. Equal number of WT and crg1Δ cells 
were serially diluted and spotted on CTD containing SC agar media with or without reducing agents 
(GSH and NAC) in presence or absence of ETA, incubated at 30oC for 72h. (F) GSH and NAC 
supplementation reduces UPR. WT and crg1Δ strains transformed with pPW344 (UPRE-LacZ) were 
grown in SC-URA media at 30oC till mid-exponential phase. The cells were treated with CTD (3μM) in 
presence of absence of GSH (20mM) or NAC (20mM) for 2h and processed for β-galactosidase assay. 
The graph shows scattered plot of each data point of individual experiment with mean±SD (error bars). 
Statistical analysis was done using GraphPad Prism-5, applying Two-way ANOVA, Bonferroni post test 
where *= p<0.05, **= p<0.01 and ***= p<0.001 and ns=p>0.05. (G) GSH and NAC supplementation 
enhances the CTD mediated inhibition of HAC1 splicing. WT and crg1Δ cells were grown in SC media at 
30oC till mid-exponential phase under same conditions mentioned above (F) and the HAC1 mRNA 
splicing was measured by RT-PCR. 
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Figure 3: CTD induced ER-stress perturbs the cell wall integrity. (A) CTD and cell wall perturbing
agents (CR or CFW) are synergistically lethal to crg1Δ mutant. Equal number of WT and crg1Δ cells
were serially diluted and spotted on SC agar media containing CTD with and without CR or CFW. The
cells were incubated at 30oC for 72 h. B, C, and D: Western blot analysis of the Slt2 phosphorylation.
Whole cell lysates were prepared from WT and crg1Δ cells grown in different conditions. Tbp1 was taken
as a loading control. (B) CTD induced cell wall damage increases with heat stress. WT and crg1Δ strains
were grown at two different temperatures, 24oC and 37oC till mid-exponential phase (0.8 OD600) then
treated with CTD in presence or absence of ETA for 2h. (C) CTD induced cell wall damage increases
with UPR induction. WT and crg1Δ strains were grown at 24oC till mid-exponential phase and treated
with CTD with or without DTT or TM for 2h. (D) GSH or NAC supplementation doesn’t affect CWI
pathway. WT and crg1Δ strains were grown at 24oC till mid-exponential phase, and then treated with
CTD in presence or absence of GSH and NAC for 2h.  
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Figure 4: CTD alters GPI-anchored protein sorting. (A) CTD treatment induces missorting of Gas1-
GFP. WT and crg1Δ cells were transformed with YEp24-GAS1-GFP plasmid. Cells were grown in YPD
at 30oC till mid exponential phase, treated with CTD with or without ETA and incubated for 6h before
imaging. Sub-cellular localization of Gas1-GFP was observed by using ZEISS-Apotome fluorescence
Microscope. (B) CTD treatment decreases Gas1-GFP expression. WT and crg1Δ strains expressing Gas1-
GFP were grown in YPD at 30oC till mid exponential phase, and then treated with CTD. Cells were
harvested after 3h and 6h incubation to analyze the expression of Gas1-GFP using anti-GFP antibody.
Tbp1 was used as a loading control. (C&D) GPI biosynthesis genes show synthetic rescue with CRG1
under CTD stress. (C) Growth curve assay to compare the sensitivity of crg1Δ/Δ, gpi2Δ/GPI2,
gpi13Δ/GPI13, mcd4Δ/MCD4, crg1Δ/Δgpi2Δ/GPI2, crg1Δ/Δgpi13Δ/GPI13 and crg1Δ/Δmcd4Δ/MCD4
mutants to CTD. (D) Growth sensitivity spot assay of WT, crg1Δ/Δ, gpi2Δ/GPI2, gpi13Δ/GPI13,
mcd4Δ/MCD4, crg1Δ/Δgpi2Δ/GPI2, crg1Δ/Δgpi13Δ/GPI13 and crg1Δ/Δmcd4Δ/MCD4 mutants. Equal
number of WT and mutant cells were serially diluted and spotted on the CTD containing SC agar media.
The spotted cells were incubated at 30oC for 72 hr. 
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Figure 5: CTD targets Cdc1 activity involved in GPI-anchor remodeling. A, B, C, and D: Growth
sensitivity assay. Equal numbers of serially diluted cells of WT and indicated mutants were spotted on SC
agar media with various treatments. Images were captured after 72h of incubation. (A) CRG1 shows
synthetic lethality with GPI-anchor remodeling genes under CTD stress. Spot assay on media with
increasing doses of CTD (1μM to 8μM) followed by incubation at 25oC. (B) CRG1 shows synthetic
lethality with GPI-anchor remodeling genes under CTD and heat stress. Spot assay on media containing
CTD with or without ETA and the cells were incubated at 25oC and 37oC. (C) Mn2+ chelation increases
CTD toxicity. Yeast strains indicated above were spotted on media containing CTD with and without
EGTA and incubated at 25oC. (D) Mn2+ supplementation decreases CTD toxicity. Yeast strains indicated
above were spotted on media containing CTD and MnCl2 and incubated at 25oC. (E) Schematic
representation of CTD dependent genetic interaction of CRG1 with GPI-anchor remodeling genes: PER1,
GUP1 and CDC1.CRG1 show synthetic lethality with PER1, GUP1 and CDC1. cdc1-310 shows dose
dependent interaction with crg1Δ; synthetic rescue at lower dose (2μM to 4μM) and synthetic lethality at
higher dose (6μM to 8μM). 
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Figure 6: CTD treatment mimics CDC1 mutation (cdc1-314). (A) CTD treatment induces Slt2
phosphorylation in crg1Δ and cdc1-314 mutant. Western blot analysis of Slt2 phosphorylation in WT,
crg1Δ, cdc1-314 and crg1Δcdc1-314 strains. Cells were grown at 25oC till mid-exponential phase, and
then treated with CTD for 2h.  (B) Synergistic inhibition of HAC1 mRNA splicing in crg1Δcdc1-314
mutant upon CTD treatment. RT-PCR analysis of HAC1 mRNA in WT, crg1Δ, cdc1-314 and crg1Δcdc1-
314 mutants. The cells were grown at 25oC till mid exponential phase and then treated with CTD for 2h.
(C) CTD induces Gas1-GFP miss-sorting. Sub-cellular localization of Gas1-GFP in WT, crg1Δ, cdc1-314
and crg1Δcdc1-314. Cells were transformed with YEp24-GAS1-GFP and grown in YPD media with and
without CTD treatment for 6hr at 25oC. (D) CTD decreases expression level of Gas1-GFP. Western blot
analysis of Gas1-GFP expression in cells described in (C).  
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Figure 7: Conserved mechanism of CTD cytotoxicity in human cancer cells (HeLa and HepG2). (A)
CTD alters GPI-anchored protein sorting. Microscopic visualization of GFP-CD59, stably expressing in
HeLa cells with or without CTD treatment for 12h. (B) CD59 expression is unaffected with CTD
treatment. Western blot analysis of GFP-CD59 expression in HeLa cells treated with CTD for 12h. (C)
CTD treatment induces p44/42 (Slt2) phosphorylation. Western Blot analysis of p44/42 phosphorylation
in HeLa and HepG2 cell lines after CTD treatment for 48h. (D) CTD treatment downregulates XBP1
expression. Semi qRT-PCR analysis of XBP1 expression in HeLa and HepG2 cell lines treated with CTD
for 48h. (E) ETA supplementation rescues HepG2 cells from CTD cytotoxicity. MTT cell survival assay
of HepG2 cells treated with CTD, supplemented with increasing concentrations of ETA. (F) ETA
supplementation doesn’t rescue HeLa cells from CTD cytotoxicity. MTT cell survival assay of HeLa cells
treated with CTD, supplemented with increasing concentrations of ETA. 
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Figure 8: Schematic model illustrating the molecular targets and mechanism of CTD toxicity in
yeast and higher eukaryotes. (A) The model describes yeast Crg1 as a key defense molecule, localized
in the cytoplasm which protects the cell from CTD induced cytotoxicity by methyltransferase activity.
Loss of Crg1 enhances the binding of CTD to its molecular targets and perturbs the related biological
functions. In the absence of Crg1, CTD enters into the ER and disturbs the ER homeostasis by altering the
GSH:GSSG ratio and GPI-anchor remodeling leading to missorting and aggregation of the proteins in the
cytoplasm. (B) An illustration of the GPI anchor remodeling process in budding yeast. The C-terminal
end of the protein is transferred to the ethanolaminephosphate of the third mannose of the GPI-anchor,
catalyzed by a complex of enzymes GPI-transamidase. In the subsequent process Bst1 removes the acyl
group from the inositol of GPI, Cdc1 removes ethanolaminephosphate from first mannose, Per1 removes
the unsaturated fatty acid (C18:1) from the sn-2 position of the GPI-lipid, Gup1 adds C26:0 saturated
fatty acid at the sn-2 position of the GPI-lipid and at last Cwh43 replaces the diacyglycerol type lipid with
ceramide in GPI. Finally the GPI-anchor is transferred to plasma membrane or cell wall by Dfg5 or
Dcw1. In this sequence of events CTD targets Cdc1 activity resulting into mislocalization and
aggregation of GPI anchored proteins.   
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