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Lay Summary 

High levels of insulin, cholesterol and sugar in the blood of people with fatty 
liver are major drivers of disease progression towards NASH. This study found 
that mice lacking the FAP enzyme are less prone to metabolic malfunctions 
including high blood sugar, insulin resistance and fatty liver when on a high-fat, 
high-sugar, high-cholesterol diet. Therefore, we predict that an appropriate FAP 
inhibitory compound could provide similar metabolic benefits. 
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Abstract 

 
Background & Aims:  Fibroblast activation protein-a (FAP) is a post-proline 
peptidase closely related to dipeptidyl peptidase-4. FAP degrades bioactive 
peptides including fibroblast growth factor-21 (FGF-21) and neuropeptide Y. 
We examined metabolic outcomes of specific genetic ablation of FAP and its 
enzyme activity in a mouse model of diet-induced obesity (DIO) causing fatty 
liver. 

Methods:  Wildtype (WT) and genetically modified FAP deficient mice that 
specifically lacked either the FAP protein or FAP enzyme activity received 
chow, or an atherogenic diet for 8 to 20 weeks of DIO. 
 
Results: FAP deficient male and female mice in the DIO model were more 
metabolically healthy than controls. The FAP deficient mice had less glucose 
intolerance, liver lipid, adiposity, insulin resistance, pancreatic and plasma 
insulin, pancreatic b-cell hyperplasia, serum alanine transaminase and 
circulating cholesterol compared to wild type controls. Furthermore, FAP 
deficiency lowered respiratory exchange ratio and greatly increased 
intrahepatic non-esterified free fatty acids, indicative of increased lipolysis and 
b-oxidation. Concordantly, lipogenic genes (Pparg, Gck, Acc, Fasn) and hepatic 
triglyceride and fatty acid uptake genes (Cd36, Apoc3, Ldlr) and plasma low-
density lipoprotein cholesterol were downregulated. Glucagon like peptide-1 
levels were unaltered. FAP was localized to human pancreatic b-cells and 
pancreas from diabetes mellitus patients contained elevated FAP activity. 
Comparable data from a FAP gene knockout mouse and a novel mouse lacking 
FAP enzyme activity indicated that these metabolic changes depended upon 
the enzymatic activity of FAP. These changes may be driven by FGF-21, which 
was upregulated in livers of FAP deficient DIO mice. 
 
Conclusion: This is the first study to show that specific genetic ablation of FAP 
activity or protein protects against DIO-driven glucose intolerance, 
hyperinsulinaemia, insulin resistance, hypercholesterolaemia and liver 
steatosis in mice and provide mechanistic insights. 
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Introduction  

Fibroblast Activation Protein-alpha (FAP) is a unique extracellular serine 
protease of the dipeptidyl peptidase-4 (DPP4) family. FAP degrades many 
bioactive peptides [1]. Neuropeptide Y (NPY) and fibroblast growth factor-21 
(FGF-21) are physiological substrates [1-6]. FAP expression is very low in 
normal adult tissues [7, 8] but elevated in cirrhosis [8, 9] and non-alcoholic 
steatohepatitis (NASH) [10], and greatly upregulated in activated fibroblasts at 
sites of tissue remodeling [9]. FAP may be pro-fibrotic in lung [11]. FAP has no 
fundamental effect on the immune system [12]. 

DPP4, the closest relative of FAP, is the best-characterised member of the 
DPP4 family. DPP4 inhibitors are a successful therapy for type 2 diabetes 
mellitus [13]. Depleting DPP4 enzyme activity decreases glucose intolerance, 
insulin resistance, obesity and liver steatosis in mice [14-18], mainly due to 
increased active glucagon like peptide-1 (GLP-1) and altered lipid metabolism. 

The role of FAP in energy metabolism is unexplored. A recent study found that 
non-selective FAP inhibition using Val-boro-Pro improved glucose tolerance 
and insulin sensitivity, lowered body weight, food intake, adiposity and 
cholesterol and increased energy expenditure [6]. Because Val-boro-Pro is 
non-selective, those effects could be due to inhibition of other DPPs including 
DPP4, and so investigations using FAP-selective approaches are needed. FAP 
cleaves several hormones [3, 19] and rapidly inactivates FGF-21 in human and 
increases FGF-21 degradation in mouse [1, 5, 6, 20]. FGF-21 improves glucose 
and insulin homeostasis and energy metabolism in non-alcoholic fatty liver 
disease (NAFLD). 

With specific molecular genetic deficiency of FAP in two mouse strains and a 
model of diet-induced obesity (DIO), insulin resistance and liver steatosis, we 
found that FAP deficiency lessens glucose intolerance, insulin resistance and 
steatosis. Our mechanistic investigations indicated that FAP deficiency acts 
differently to DPP4, by increasing fat burning and with increased Fgf-21 and 
Lipin-1 expression, and increased FGF-21, and greater ACC phosphorylation.  
 
 
METHODS:  
 
Ethics: 
 
Studies involving human islets accorded with approval LNR/15/WMEAD/386 
from the Western Sydney Health District Ethics Committee. Studying de-
identified human pancreas samples from the nPOD tissue consortium was 
approved by the Tufts University Health Science Campus Institutional Review 
Board. 
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All animal handling and experimental procedures were approved by the Animal 
Ethics Committees of the University of Sydney and the Sydney Local Health 
District (SLHD) under protocol 2013-017 or the Garvan Institute/St Vincent’s 
Hospital Animal Experimentation Ethics Committee under protocol 11/41. Mice 
in experiments were housed in animal facilities of SLHD, Centenary Institute or 
Garvan Institute in compliance with the Australian Code of Practice for the Care 
and Use of Animals for Scientific Purpose. Wild type (WT) C57BL/6J mice were 
obtained from either the Animal Resource Center (ARC; Perth, WA, Australia) 
or Australian BioResources (Moss Vale, NSW, Australia).  
 
The FAP gene knockout (gko) mouse strain, which lacks FAP protein [21] (gift 
from Boehringer Ingelheim, Germany), were backcrossed twice onto C57BL/6J 
for more than seven generations [12]. The new FAP gene knock-in (gki) mouse 
strain was generated as described in Fig.S1. All ES clones and mice were 
screened and verified by Southern Blot analyses (Fig. S2A-D). FAPgki mice 
lacked FAP enzyme activity (Fig. S2E) but retained cell surface expression of 
FAP protein (Fig. S3). Age-matched adult male and female mice were housed 
at 21oC under a 12 h light 12 h dark cycle, offered water and food ad libitum, 
as described [22, 23]. HFD was purchased (Cat. No. SF03-020; Specialty 
Feeds) unless specified as in-house HFD (see Supplementary Methods). 
 
Glucose and insulin tolerance tests: 
For glucose tolerance test (GTT) and insulin tolerance test (ITT), mice were 
fasted for 6 hours (8am-2pm) [24]. GTT used D-glucose at 2 g/kg (Gibco TM, 
Auckland, NZ) administered by either oral gavage or intraperitoneal (ip) as 
stated. ITT used ip insulin (recombinant NovoRapid® insulin; 0.75 U/kg, Novo 
Nordisk, New Zealand, or 0.5 U/kg human insulin, Sigma-Aldrich 
CasNo.11061-68-0). Glucose was measured in tail vein blood using an Accu-
Chek Glucometer (Roche, Diagnostics GmbH, Mannheim, Germany).  
 
Organ collection: 
Mice were euthanized by carbon dioxide inhalation. Blood was collected by 
cardiac puncture in anti-coagulant free 1 mL Z-serum capillary blood collection 
tubes (Catalogue No.450474; Greiner Bio-One GmbH, Kremsmunster, 
Austria). After 30-60 min for clotting, blood was centrifuged for 5 min at 3000 x 
g for -80 °C serum storage. Liver, abdominal white adipose tissue (WAT) and 
interscapular brown adipose tissue (BAT) were weighed and samples were 
snap frozen or formalin-fixed. Identical liver lobes were sampled from each 
mouse for each procedure. 
 
Blood biochemistry and hormone analyses: 
Liver function tests, which included alanine transaminase (ALT), aspartate 
aminotransferase (AST) and circulating cholesterol, were performed on serum 
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samples by the Clinical Biochemistry Department of RPAH. Serum insulin was 
measured using a rat/mouse insulin ELISA kit according to manufacturer’s 
instructions (CatNo.EZRMI-13K; Merck Millipore, Darmstadt, Germany). 
Circulating adiponectin was measured by ELISA kit (Catalogue No. 80569; 
Crystal Chem, IL, USA). Spectrophotometric measurements used a POLARstar 
Omega plate reader (BMG Labtech, Offenburg, Germany). Insulin resistance 
was estimated according to the Homeostasis Model Assessment (HOMA-IR). 
The calculations were done with fasting blood glucose (mmol/l) and serum 
insulin (pmol/l) using the HOMA calculator (www.dtu.ox.ac.uk/homacalculator/ 
The University of Oxford; Accessed 30th October 2014).  
 
Histology and immunohistochemistry: 
Tissue embedding and Haematoxylin-Eosin (H&E) and Sirius Red staining [22, 
25] were performed by the Histopathology Department, University of Sydney. 
Immunohistochemistry procedures on mouse tissues have been described 
previously [23, 25, 26].  
 
Human islet recovery, dispersion and immunocytochemistry 
Human islets isolated as described [27] were suspended in RPMI1640 media, 
11 mM glucose, 10% fetal bovine serum for overnight incubation then dispersed 
in TrypLE Express for 3 min, briefly dissociated into single cells by pipetting, 
resuspended into 5 volumes of supplemented RPMI1640, then placed on glass 
coverslips. After overnight incubation, cells were washed twice in Wash Buffer 
(0.1% BSA in PBS with 0.01% sodium azide), fixed at ambient temperature for 
20 min with 4% paraformaldehyde in PBS, then washed twice in Wash Buffer 
before antigen retrieval in 0.1% SDS for 5 min. Cells were washed, then 
blocked for 1h with Serum-Free Protein Block (DAKO, X0909) before overnight 
staining with guinea pig anti-insulin (DAKO, A0564) and mouse anti-glucagon 
(Sigma, SAB4200685), 3 washes, staining with fluorescently-labelled anti-
guinea pig and anti-mouse secondary antibodies, and mounting onto 
microscope slides with Prolong Diamond Antifade Mountant containing DAPI 
(Thermo Fisher, P36965). Slides were imaged using a Leica SP8 confocal 
microscope. 
 
Semi-quantitative oil red O (ORO) assay: 
Total liver lipid was measured by ORO semi-quantitative assay, as previously 
described [22]. The ORO stock solution 0.25% (wt/vol) was freshly diluted in 
10% dextran at 6:4 (ORO: dextran) then 30-50 mg (ww) liver was homogenized 
and incubated in the ORO working solution for 1 h. After washing with 60% 
isopropanol to remove excess dye, the dye incorporated into lipid was extracted 
in 99% isopropanol. Absorbance at 520 nm was measured alongside an ORO 
standard curve. 
 
Non-esterified free fatty acid (NEFA) measurement: 
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The NEFA C kit (Wako Diagnostics, Osaka, Japan) was used as instructed by 
the manufacturer. Liver lipid for the NEFA assay was extracted from snap 
frozen liver tissue in isopropanol (50 mg ww/mL).  
 
Real-time quantitative polymerase chain reaction (qPCR): 
RNA extraction used TRIzol (Cat no. 15596026; Invitrogen), 0.5 μg RNA was 
reverse transcribed to cDNA using Superscript® VILOTM cDNA synthesis kit 
(Cat no. 11754; Invitrogen), real-time qPCR with Taqman® gene expression 
assays (Applied Biosystems; Table S1) was performed using the Stratagene® 
Mx3000P™ System (La Jolla, CA, USA) and gene expression quantified using 
standard curves, as described previously [12, 23, 28]. 
 
Indirect calorimetry:  
Indirect calorimetry was applied to age-matched female WT and FAPgko mice 
on chow for 20 weeks or in-house HFD [23] for 12 weeks. Whole-body oxygen 
consumption rate (VO2) and respiratory exchange ratio (RER) of individual mice 
were measured using an eight-chambered indirect calorimeter (Oxymax series; 
Columbus Instruments, Columbus, OH) as previously described [29]. 
 
FAP enzyme activity assay: 
Fresh frozen mouse tissue and human pancreas samples from the nPOD 
Consortium tissue bank were homogenized in ice-cold lysis buffer. Human 
pancreas in lysis buffer (50 mM Tris-HCL pH 7.5, 10% glycerol, 5 mM EDTA, 1 
mM DTT) was homogenized at 10 mL/g, and assayed at 1 mg protein/mL with 
100 μM 3144-AMC [30]. Otherwise, the lysis buffer was 50 mM Tris-HCl pH 7.6, 
1 mM EDTA, 10% glycerol, 1% Triton-X114, with complete protease inhibitors 
(Roche, Basel, Switzerland) and the soluble supernatant retained for FAP 
enzyme activity assay, performed using 100 μg (protein) of tissue lysate and 
fluorogenic substrate 3144-AMC at 150 μM, as described previously [7]. 
 
Immunoblotting:  
The 3T3-L1 cells were differentiated into adipocytes as described [31]. These 
adipocytes were incubated with full-length or FAP-cleaved FGF-21 at 500 
ng/mL. FGF-21 was pre-incubated with PBS or recombinant FAP (substrate: 
enzyme ratio = 5:1) for 2 h, with or without FAP-selective inhibitor ARI-3099 
[32] at 5 µM. Immunoblots of FGF-21, Erk, phosphorylated Erk (p-Erk) ACC, p-
ACC, PGC-1α and β-actin were performed on lysates of tissues or of cells. 
 
Faecal lipid: 
Faecal pellets were collected from mouse bedding (n = 3 cages per group) at 
19 weeks of HFD and faecal fat quantified as described [33]. 0.5 g of faeces 
was dissolved in 2 mL deionized water overnight at 4°C then homogenized by 
vortexing, then lipid extraction was performed with methanol-chloroform (2:1 
v/v). The extracted lipophilic layer (lower chloroform phase) was vacuum dried 
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at 45°C for 2 h. The dry pellet (lipid) was weighed to calculate faecal lipid as 
mg lipid per g faeces.  
 
Statistical analysis: 
Statistical analyses in GraphPad Prism (v.7) used non-parametric Mann-
Whitney U test and significance was assigned to p-values less than 0.05. 
 
 
RESULTS  
 
FAPgko mice were protected against HFD induced impaired glucose 
homeostasis and insulin resistance 
On chow diet, FAPgko and WT mice had similar glucose tolerance (Fig. 1A). In 
contrast, from 8 weeks of HFD, FAPgko mice were resistant to the impaired 
glucose tolerance seen in WT mice (Fig. 1B-D).  These female FAPgko mice 
were able to decrease blood glucose faster than WT mice from 30 minutes after 
oral glucose challenge (Fig. 1B-D). Concordantly, FAPgki mice on HFD for 12 
weeks also had improved glucose tolerance compared to WT HFD controls 
(Fig. 1E-F). This improved glucose tolerance was seen in both male and female 
FAP deficient mice (Fig. S4, Fig. 1). 
 
On chow diet, FAPgko mice had insulin tolerance levels similar to WT mice 
(Fig. 2A and 2D). However, at 20 weeks of HFD, insulin manifested significantly 
greater glucose lowering efficacy in FAPgko mice than WT mice  (Fig. 2B-D). 
FAPgki mice on 16 weeks of HFD had a similarly improved insulin tolerance 
(Fig. 2E-F). These data suggest that obesity-linked insulin resistance in mice 
requires FAP enzyme activity.  
 
WT HFD mice exhibited a 3-fold increase in random plasma insulin level at 8 
and 20 weeks of HFD compared to WT chow mice, indicative of 
hyperinsulinemia (Fig. 3 A-B). Both FAPgko chow and FAPgko HFD mice 
maintained insulin levels similar to the chow fed WT mice, showing that FAPgko 
mice were resistant to HFD induced hyperinsulinemia (Fig. 3A-B). Moreover, 
FAPgki HFD mice resisted hyperinsulinemia (Fig. 3C) and, concordantly, 
exhibited less pancreatic b-cell hypertrophy compared to WT (Fig. 3D; Fig. S5).  
 
HOMA was used as a surrogate method for estimating insulin resistance. The 
relationship between glucose and insulin in the basal state reflects the balance 
between hepatic glucose output and insulin secretion. HOMA-IR scores were 
0.84±0.13 and 0.68±0.09 on chow and 2.38±0.37 and 0.58±0.07 on HFD from 
WT and FAPgko mice, respectively. Thus, FAPgko mice on either diet had 
similar HOMA IR values as WT chow mice, indicating that FAPgko mice were 
protected against the obesity linked insulin resistance that occurred in the WT 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 4, 2018. ; https://doi.org/10.1101/460279doi: bioRxiv preprint 

https://doi.org/10.1101/460279


FAP	in	NAFLD	 	 BioRxiv	2Nov	2018	

	 10	

HFD mice. Similarly, HOMA-IR was 1.23±0.21 in WT and 0.62±0.33 in FAPgki 
mice on HFD. Therefore, HFD-induced insulin resistance, observed in WT 
mice, requires FAP enzyme activity. 
 
FAPgko mice were protected from HFD induced liver steatosis 
Chow fed WT and FAPgko mice had similar liver histology, healthy hepatocytes 
and normal liver architecture (Fig. 4A-B). Eight weeks of HFD promoted onset 
of liver steatosis, as evidenced by the presence of intrahepatic vacuoles (clear 
areas) (Fig. 4C; arrows) and elevated Oil-Red O stain (Fig. S6) in WT mice. 
Macro and microvesicular steatosis occurred in WT mice, however FAPgko 
mice had fewer macrovesicular and very little microvesicular steatosis 
compared to WT HFD mice (Fig. 4D). The macrovesicular steatosis in FAPgko 
mice was mainly localized near the portal tracts, whereas in the central zone 
surrounding the central vein hepatocytes and other histological features were 
normal.  
 
At 20 weeks of HFD, WT mice exhibited extensive steatosis with hepatocyte 
ballooning accompanied by reduced hepatic sinusoidal spaces (Fig. 4E; 
arrows). In contrast, FAPgko mice had significantly less steatosis and 
hepatocyte ballooning (Fig. 4F). The macrovesicular steatosis was mainly 
localized near the portal tracts, with healthy hepatocytes and normal histology 
surrounding the central vein. Similarly, male FAPgki mice had less liver 
steatosis compared to WT mice on HFD (Fig. 4G-H). Oil-Red O analysis 
showed less lipid in FAPgko liver, compared to WT liver, after 20 weeks of HFD 
(Fig. S6). These results show that FAPgko mice were protected from HFD 
induced liver steatosis.  
 
HFD did not induce liver inflammation or fibrosis in either WT or FAPgko mice, 
as evident from both H&E and Sirius red stained sections (Fig. 4C-F; Fig. S7). 
Measures of hepatic damage, ALT and AST, were elevated in HFD fed mice 
(Fig. 5A, B). However, FAPgko mice exhibited lesser increases in ALT and AST 
compared with WT mice, suggesting that the FAPgko mice were protected 
against HFD induced liver injury. Tissue macrophage densities were low in 
liver, BAT and WAT, but greater in FAPgki than WT liver (Fig. S8).  
 
Increased circulating total cholesterol exacerbates liver steatosis and 
inflammation and is a crucial driver towards NASH. FAPgko and FAPgki mice 
on HFD had lower circulating total cholesterol (Fig. 5C) and LDL cholesterol 
(Fig. 5D) compared to WT mice.  
 
FAP deficiency lessened adiposity 
FAPgko mice and WT mice had similar body weights on chow. FAPgko mice 
on HFD had mildly less body weight and body weight gain compared to WT 
(Fig. S9A, B). FAPgki mice on in-house HFD had less body weight but similar 
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rate of weight gain as WT mice (Fig. S9C, D). Both FAPgko and FAPgki HFD 
mice had less white adipose tissue (WAT) compared to WT HFD mice (Fig. 6A-
E). Among the three abdominal fat depots collected for WAT, the most 
significant difference was seen in the gonadal WAT. FAPgki HFD mice had 
30% less gonadal WAT than WT HFD mice (p<0.005) (Fig. 6E), and had 
elevated plasma adiponectin (Fig. 6G, H).  
 
FAPgko and FAPgki HFD mice had less brown adipose tissue (BAT) compared 
to WT HFD mice (Fig. 6C, F). FAP enzyme activity was greater in BAT from 
WT HFD mice compared to WT chow mice (Fig. 7A). There was no difference 
in FAP activity in WAT and pancreas in the WT chow versus WT HFD mice. 
WT HFD mouse liver had less FAP activity compared to WT chow liver (Fig. 7). 
 
Weight matched FAPgko mice had improved glucose tolerance compared to 
WT mice, on the in-house HFD (Fig. S9A-D). Moreover, regression analysis of 
GTT glucose AUC against body weight and adiposity showed that FAPgko and 
FAPgki mice had less glucose AUC than WT mice of comparable body weights 
and adiposity on either HFD (Fig. S10). With or without a body weight 
difference, FAPgko mice had improved liver histology compared to WT mice at 
20 weeks of in-house HFD (Fig. 4A, B; Fig. S7A, B). Thus, the role of FAP in 
glucose homeostasis and liver steatosis in diet-induced obesity is independent 
of body weight gain or adiposity.  
 
The major mechanism of metabolic improvement in DPP4 deficient mice is 
believed to be prevention of the rapid inactivation of GLP-1 by DPP4 [14, 15, 
34, 35]. Thus, the active form of circulating GLP-1 accumulates in DPP4 gko 
mice. In contrast, GLP-1 levels were comparable in FAPgko and WT mice on 
chow, or on HFD when fasting or following a glucose challenge (Fig. S11A). 
Therefore, the improved glucose homeostasis in FAPgko mice was not driven 
by preservation of active GLP-1.  
 
Deletion of FAP did not result in compensatory regulation of related enzymes. 
Intrahepatic mRNA expression of Dpp4, Dpp8 and Dpp9 were unchanged 
compared to WT mice on chow or HFD, and were, as expected, abundant (Fig. 
S12). Intrahepatic Dpp9 expression was significantly less in HFD compared to 
chow fed mice (Fig. S13). Furthermore, Dpp9 expression strongly correlated 
with Dpp4 and Chrebp expression in both WT and FAPgko liver (Fig. S13B, C). 
 
Differential intrahepatic expression of genes associated with lipogenesis 
and triglyceride and fatty acid uptake.  
De novo lipogenesis contributes to the pathophysiology of NAFLD as it 
contributes almost one third of the accumulated intrahepatic triglycerides in 
hepatosteatosis. Peroxisome proliferator-activated receptor gamma (Pparg) 
and glucokinase (Gck) are key genes involved in de novo lipogenesis [36, 37]. 
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Intrahepatic lipogenic gene downregulation on HFD included Gck in FAPgko 
and FAPgki mice and Pparg in FAPgko mice, compared to WT mice (Fig. 8A, 
B, F), implying that FAP is an upstream regulator of de novo lipogenesis.  
 
Cd36 and Apoc3 are major components of triglyceride and fatty acid transport 
[38, 39]. On HFD, intrahepatic gene downregulation of Cd36 occurred in 
FAPgko and FAPgki mice and of Apoc3 in FAPgko mice, compared to WT HFD 
mice (Fig. 8C, D, G). Downregulation of Ldlr, Acc, Fasn and Cpt1 in FAP 
deficiency (Fig. 8M) may also have contributed to lowered steatosis. CD36 
immunopositivity in hepatocytes was less in FAPgki than WT liver (Fig. S14), 
concordant with the decrease in mRNA.  
 
Lipin-1 is a regulator of liver lipid metabolism, insulin sensitivity and glucose 
homeostasis [40, 41]. On HFD, intrahepatic Lipin-1 expression was upregulated 
in FAPgko and FAPgki mice compared to WT mice  (Fig. 8E,I), suggesting that 
the mechanism by which FAP deficiency decreased insulin resistance and liver 
lipid includes Lipin-1.  
 
Decreased Srebp1-c (lipogenic gene) and increased Ppara (lipolytic gene) are 
thought to be the key gene expression changes responsible for decreased 
lipogenesis in DPP4 gko mice [14]. We observed no change in Srebp1-c and 
Ppara in FAPgko and FAPgki mice compared to WT mice on HFD (Fig. S11B-
E).  
 
Elevated FGF-21 in FAP deficient mice 
The level of active FGF-21 increases in mice treated with an inhibitor of FAP 
enzyme activity [6], Therefore, Fgf-21 upregulation (Fig. 8N) was possibly the 
most important differentially expressed gene, as it suggests that FAP deficiency 
upregulates Fgf-21 expression in addition to suppressing FGF-21 degradation. 
The increased intrahepatic FGF-21 protein and its correlation with glucose AUC 
(Fig. 9A, B) may derive from both mechanisms, or gene transcription alone. 
Showing that FAP can prevent FGF-21 driven Erk phosphorylation in 3T3-L1 
cells (Fig. 9C) further suggests that metabolic outcomes in FAP deficient mice 
are FGF-21 mediated. However, p-Erk levels were not altered in WAT (Fig. 9D), 
so there are probably additional mechanisms involved. 
 
FAPgko mice had increased lipid metabolism 
By indirect calorimetry, FAPgko and WT mice showed similar physical activity 
and energy expenditure on both chow and HFD (Fig. S15A-B). Therefore, the 
improved glucose and lipid metabolism in FAPgko mice was probably not 
associated with increased energy expenditure. 
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The RER represents the ratio of O2 consumption to CO2 production. FAPgko 
mice exhibited significantly less RER compared with WT mice, on either chow 
or HFD (Fig. 10A-D), which indicates a shift towards b-oxidation of lipid, rather 
than deriving energy from carbohydrate. 
 
NEFA, also called free fatty acids, are generated by lipolysis, primarily in 
adipose tissue. Consistent with the RER data, FAPgko mice on either chow or 
HFD had elevated intrahepatic NEFA compared to WT mice on HFD (Fig. 10), 
which is concordant with increased intrahepatic lipid burning and less adipose 
tissue in FAPgko compared to WT mice. 
 
Elevated fat oxidation is generally associated with elevated phosphorylation of 
ACC, which was observed in most of the FAPgki mice, and was not associated 
with PGC1a (Fig. 9E, F).  
 
There was no difference in food intake between the two genotypes (data not 
shown). Faecal fat was measured as an indicator of fat absorption. No 
difference in faecal fat was detected in FAPgko compared to WT mice (WT = 
72.93 ± 2.21 mg/g faeces; FAPgko = 70.27 ± 4.16 mg/g faeces), suggesting 
that FAP deficiency did not alter fat absorption.  
 
Elevated pancreatic FAP in human diabetes   
Human pancreas samples from both type I and type II diabetes had elevated 
FAP enzyme activity compared to controls (Fig. 11A; Table S2.). FAP was co-
localised to b-cells and not a-cells from human pancreas (Fig. 11B). 
 
 
Discussion  
 
This study revealed a novel regulatory role of FAP in energy metabolism, and 
many aspects of this role. We showed for the first time that FAP is upregulated 
in pancreas from humans with diabetes and that FAP is present in pancreatic 
b-cells. We present the first demonstration that a specific FAP deficiency can 
reproducibly protect both male and female mice from obesity induced metabolic 
conditions. These include liver steatosis, hyperinsulinaemia, pancreatic b-cell 
hyperplasia, glucose intolerance, hypercholesterolaemia, visceral adiposity, 
elevated ALT and depressed adiponectin (Fig. S16). We further showed that 
loss of the enzymatic activity of FAP is sufficient to produce these outcomes, 
because a genetically modified mouse strain that lacks only the enzymatic 
activity of FAP recapitulated the phenotype of the global FAP knockout mice. 
The observed increases in intrahepatic lipid oxidation, FGF-21 and Lipin-1 and 
Fgf-21 expression in FAP deficiency appear to be key mechanisms by which 
FAP regulates energy metabolism. The evidence here indicates that FAP is an 
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upstream regulator of lipogenesis and lipolysis and that FAP enzyme activity is 
required for hyperinsulinaemia in our DIO model. The findings were robust; 
derived from two FAP deficient mouse strains and several fat-laden diets. 
 
FAP deficiency caused downregulated microvesicular steatosis, which is the 
more severe form of steatosis that is associated with liver injury, fibrosis 
progression and insulin resistance [42], so this was probably the cause of 
lowered ALT and AST. Macrovesicular steatosis rarely progresses to fibrosis 
[43]. Mitochondrial b-oxidation protects against microvesicular steatosis [43]. 
The reduced RER, increased intrahepatic NEFA, reduced microvesicular 
steatosis and elevated ACC and p-ACC point to increased b-oxidation in FAP 
deficient liver. Moreover, the reduced RER indicates a greater lipid to 
carbohydrate ratio as energy sources and increased intrahepatic NEFA and 
ACC are consistent with increased lipolysis. These data suggest that FAP 
negatively regulates b-oxidation, which would promote insulin resistance in 
obesity. Therefore, it is probable that improved b-oxidation in FAP deficient liver 
decreased the insulin resistance. The reduced sizes of WAT and BAT in FAP 
deficient mice are consistent with increased b-oxidation also occurring in 
adipose tissue. Showing that FAP regulates FGF-21 driven cytoplasmic 
signaling in 3T3-L1 cells points to FGF-21 as a mechanistic link between FAP 
and lipid regulation. 
 
Our discovery that ablating the FAP enzyme activity is sufficient to generate 
these metabolic outcomes indicates that these outcomes are driven by 
bioactive natural substrates of FAP. The known metabolism-associated 
substrates of FAP are FGF-21, GLP-1, NPY and PYY [1, 3, 5, 20], and possibly 
nucleobindin-1 [44].  We showed here that GLP-1 activity is not altered and so 
is unlikely to be a physiological substrate of FAP. FGF-21 is a physiological 
substrate of FAP in primates [20] and mouse [6], and so FGF-21 is possibly the 
most relevant FAP substrate. We very significantly also found that FAP 
deficiency drives up Fgf-21 expression, so FAP exerts two mechanisms of 
upregulating FGF-21. Mouse FGF-21 is poorly hydrolysed by FAP but FAP-
mediated cleavage accelerates inactivation of murine FGF-21 [6, 20]. The 
changes in adiposity are small and food intake was unaltered, so appetite 
regulation by NPY, PYY or nucleobindin-1 are less likely mechanisms of FAP 
action.  
 
The increased pancreatic FAP levels in human diabetes, the detection of FAP 
in pancreatic b-cells, and the limited b-cell hyperplasia in FAP deficient mice 
suggest that mechanisms by which FAP regulates glucose and insulin 
homeostasis may primarily occur in the pancreas. FGF-21 is a physiological 
FAP substrate [20] and its secretion is regulated by glucagon [45]. The 
hepatokine FGF-21 regulates lipid metabolism, increases intrahepatic 
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mitochondrial b-oxidation and decreases liver steatosis [46]. Adiponectin, which 
was elevated in FAP deficient mice, can mediate FGF21 action [47]. Thus, 
FGF-21 may be a key component of the mechanism by which FAP regulates 
energy metabolism (Fig. S16).  
 
The physiological and metabolic improvements in FAP deficient mice were 
associated with altered intrahepatic expression of lipid metabolism genes. 
Lipin-1 downregulates insulin resistance and FGF-21 increases b-oxidation. 
PPARg and glucokinase are lipogenic and CD36 and Apoc3 are essential for 
fatty acid and triglyceride uptake in the liver. These genes are upregulated in 
mouse models of obesity and liver steatosis and are implicated in human 
NAFLD [36, 37, 39, 48]. CD36 was downregulated at both protein and message 
levels, so CD36 regulation is probably downstream from FAP. Hence, less de 
novo lipogenesis, less triglyceride and fatty acid uptake and improved 
regulation of glucose and fatty acid metabolism could be responsible for less 
liver steatosis in FAP deficient livers. 
 

DPP4 is the enzyme structurally most similar to FAP. DPP4 inhibition is a 
successful treatment for type 2 diabetes and is able to prevent liver steatosis 
and fibrosis [13, 18, 25, 49, 50]. The metabolic outcomes in the FAP deficient 
mice were similar to those in DPP4 gko and DPP4 inhibitor treated DIO mice 
[14, 15, 51]. Recently, a comparable phenotype has been observed in DIO mice 
treated with the non-selective FAP inhibitor Val-boro-Pro (Talabostat; PT100) 
[6]. Notably, the metabolic benefits of FAP downregulation are evident at 8 
weeks or more of HFD and not chow in both the inhibitor – treated mice [6] and 
our genetically modified mice. 
 
We found that FAP has mechanisms of action that are distinct from DPP4. 
DPP4 deficient mice in DIO have increased levels of active GLP-1, less food 
intake, increased energy expenditure, lower body weight, decreased Srebp1-c 
and increased Ppara [14, 15 , 17]. In contrast, these parameters were not 
involved in FAP deficient mice. Thus, FAP and DPP4 are associated with 
different pathways in energy homeostasis. 
 
FAP has previously been found only in activated fibroblasts, so the new 
observation of its expression in b-cells commences a paradigm shift in 
understanding FAP functions. In DIO, FAP is probably acting on non-
extracellular matrix substrates derived from b-cells and neighbouring cells, 
perhaps some that were identified in our recent degradomics study [1]. FAP is 
relatively abundant in mouse serum, so that is probably a major site of substrate 
degradation, including FGF-21. The dominant source of circulating FAP in 
healthy individuals, or in DIO, is not known. 
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Several genes involved in energy metabolism pathways, including fatty acid 
uptake, lipoprotein metabolism, adipokine transport and gluconeogenesis, are 
altered in DPP9 enzyme deficient neonate liver [52]. Val-boro-Pro inhibits both 
FAP and DPP9. In particular, intrahepatic Lipin-1, which downregulates insulin 
resistance, is differentially expressed in the Dpp9 deficient mouse [52], fibrotic 
DPP4 deficient mice [25] and FAP deficient DIO mice (Fig. 9). These data 
together with our findings that intrahepatic DPP9 strongly correlated with Dpp4 
and Chrebp and that Dpp9 expression was downregulated in DIO mice suggest 
that DPP4 gene family members FAP, DPP4 and DPP9 each have important, 
distinct roles in energy metabolism. 
 
Conclusion 
In conclusion, this study revealed a novel function of FAP in regulating energy 
metabolism. We provide strong evidence that complete deficiency of FAP 
activity is beneficial and protected mice from DIO-induced impaired glucose 
homeostasis, hyperinsulinaemia and liver steatosis (Fig. S16). The evidence 
that FAP and DPP4 exert their functions through independent pathways imply 
that these enzymes may synergise in regulating metabolism. This novel role of 
FAP in metabolic disease together with the known benefit of DPP4 inhibition 
suggest that combined therapy targeting both FAP and DPP4 may offer 
potential for treatment of metabolic syndrome/diabetes. 
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Figure Legends:  
 
Fig. 1. Improved glucose tolerance in FAP deficient DIO mice. Blood 
glucose following oral (A-D) or intraperitoneal (E-F) GTT at 20 weeks of chow 
(A), 8 weeks of HFD (B), 20 weeks of HFD (C), 12 weeks of in-house HFD (E), 
and glucose AUC (D, F), in female FAPgko (A-D) or male FAPgki (E-F) mice 
compared to WT mice. Individual replicates (D, F). Mean ± SEM (A-F). n=5-6 
mice per group. *p<0.05 versus genotype-matched controls using Mann-
Whitney U test. 
 
Fig. 2. Insulin sensitivity in FAP deficient DIO mice. Insulin tolerance test 
(ITT), showing blood glucose following an intraperitoneal ITT at 20 weeks of 
chow (A), 8 weeks of HFD (B), 20 weeks of HFD (C), 16 weeks of in-house 
HFD (E) and glucose AUC (D, F) in female FAPgko (A-D) or male FAPgki (E-
F) mice, and WT controls. Individual replicates and mean ± SEM. n= 5-6 mice 
per group. *p<0.05 by Mann-Whitney U test. 
 
Fig. 3. FAP deficient DIO mice were protected against insulin resistance. 
FAPgko (A-B) and FAPgki (C-D) mice following 8 weeks (A) or 20 weeks (B) of 
HFD or 12 weeks of in-house HFD (C-D) did not have elevated circulating 
insulin (A-C), and had less b-cell hypertrophy (D). Basal insulin level was 
measured in overnight - fasted female (A-B) or male (C-D) mice. Individual 
replicates and mean ± SEM. n=5-6 mice per group. *p<0.05, **p<0.01 by Mann-
Whitney U test. 
 
Fig. 4. FAP deficient DIO mice were protected from HFD induced liver 
steatosis. Representative liver sections (H&E) from WT (A, C, E, G), FAPgko 
(B, D, F) and FAPgki (H) mice at 20 weeks of chow (A-B), 8 weeks of HFD (C-
D), 20 weeks of HFD (E-F), or 17 weeks of in-house HFD (G-H). Arrows indicate 
macrovesicular (black) and microvesicular (white) steatosis. CV=central vein. 
Scale bars=200 µm.  
 
Fig. 5. FAP deficient DIO mice were protected from HFD induced liver 
injury. ALT (A), AST (B), total cholesterol (C), LDL cholesterol (D) from WT 
and FAPgko (A-C) and FAPgki (D) overnight-fasted mice at 20 weeks of HFD 
(A-C) or 12 weeks of in-house HFD (D), and chow controls. Individual replicates 
and mean ± SEM. n=10-12. *p<0.05, **p<0.01 by Mann-Whitney U test. 
 
Fig. 6. Less adiposity in FAP deficient DIO mice. Compared with WT, 
FAPgko mice (A-C) and FAPgki mice (D-H) had less abdominal white adipose 
tissue (WAT) and interscapular brown adipose tissue (BAT) as a percentage of 
body weight. rWAT = retroperitoneal WAT, pWAT = perirenal WAT, gWAT = 
gonadal WAT. Serum adiponectin concentration (G) and normalized to visceral 
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fat weight (H) in WT and FAPgki mice at 12 weeks of in-house HFD. Individual 
replicates and mean ± SEM. 20 weeks of HFD, n = 10-12 females (A-C), or 17 
weeks of in-house HFD, n=12-14 males (D-H). *p<0.05, **p<0.01, ***p<0.001. 
 
Fig. 7. FAP activity in WT mice at 20 weeks of diet. Tissue (A, B) and plasma 
(C) samples from 5-6 female WT mice per group. Individual replicates and 
mean ± SEM. *p<0.05 
 
Fig. 8. Differential intrahepatic mRNA expression of energy metabolism 
genes in FAP deficient DIO mice compared to WT mice. After 20 weeks of 
HFD mice were fasted overnight and most (A-F, H-M) were re-fed for 4 h. n=7-
10 male (A-F, H-M) or 4-5 female (G) mice per group. Transcripts relative to 
housekeeper gene b-actin (A-F, H-M) or 18S (G). Individual replicates and 
mean ± SEM. *p<0.05. 
 
Fig. 9. Increased hepatic FGF-21 expression in FAPgki mice and 
enhanced Erk signalling in 3T3-L1 cells. (A) Immunoblots of liver lysates 
from HFD fed WT and FAPgki mice showed increased FGF-21 expression in 
FAPgki mice (normalized to β-actin; n=10 per group). (B) Correlation of FGF-
21 immunoblotting densitometry with GTT AUC. (C) 3T3-L1 cells that had been 
differentiated into adipocytes were incubated with full-length or FAP-cleaved 
FGF-21 at 500 ng/mL. FGF-21 was pre-incubated with PBS or recombinant 
FAP (substrate: enzyme ratio = 5:1) for 2 h, with or without FAP-selective 
inhibitor 3099 at 5 µM. Phosphorylated Erk (p-Erk) and total Erk (t-Erk) 
immunoblots and densitometry. Immunoblots are representative of two 
independent experiments. (D) Immunoblots of epididymal white adipose tissue 
(WAT) lysates from WT and FAPgki DIO mice showed increased Erk 
phosphorylation in FAPgki mice (n=5 per group). Densitometry data is p-Erk: t-
Erk ratios. (E, F) ACC and PGC-1α immunoblots of liver lysates from WT and 
FAPgki DIO mice, with densitometry depicted as ratios of p-ACC: t-ACC (E) 
and PGC-1α:β-actin (F). N=10 per group. 
 
Fig. 10. Respiratory exchange ratio and intrahepatic NEFA. Time course of 
respiratory exchange ratio (RER, an index of oxidative fuel) at 12 weeks of in-
house HFD and 20 weeks chow (n=6-8 female mice per group) (A, C). Average 
RER from 24 hours, light phase (7am to 6pm) and dark phase (7pm to 6am) 
(B, D). Intrahepatic NEFA, as fold change from the WT chow average, was 
measured following 20 weeks of chow or HFD then overnight fasting (E). Mean 
±SEM (A, C), or individual replicates and mean ±SEM (B, D, E). *p<0.05. 
 
Fig. 11. FAP in human pancreas: upregulation in diabetic pancreas and 
expression in pancreatic b-cells. FAP enzyme activity in pancreatic tissue 
extracts from individual controls and humans with type 1 or type 2 diabetes (A; 
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mean ±SEM). Immunostaining for FAP (red), insulin (green; b-cells), glucagon 
(purple; a-cells) and DAPI (blue; nuclei) on human pancreatic cells on 
coverslips (B).  
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Fig. 10 (Continued; E)
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Fig. 11 B
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