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Abstract 

Background: The genotyping of sequence variants typically involves as a first step the 

alignment of sequencing reads to a linear reference genome. Because a linear reference 

genome represents only a small fraction of sequence variation within a species, reference 

allele bias may occur at highly polymorphic or diverged regions of the genome. Graph-based 

methods facilitate to compare sequencing reads to a variation-aware genome graph that 

incorporates a collection of non-redundant DNA sequences that segregate within a species. 

We compared accuracy and sensitivity of graph-based sequence variant genotyping using 

the Graphtyper software to two widely used methods, i.e., GATK and SAMtools, that rely on 

linear reference genomes using whole-genomes sequencing data of 49 Original Braunvieh 

cattle. 

Results: We discovered 21,140,196, 20,262,913 and 20,668,459 polymorphic sites using 

GATK, Graphtyper, and SAMtools, respectively. Comparisons between sequence variant 

and microarray-derived genotypes showed that Graphtyper outperformed both GATK and 

SAMtools in terms of genotype concordance, non-reference sensitivity, and non-reference 

discrepancy. The sequence variant genotypes that were obtained using Graphtyper had the 

lowest number of mendelian inconsistencies for both SNPs and indels in nine sire-son pairs 

with sequence data. Genotype phasing and imputation using the Beagle software improved 

the quality of the sequence variant genotypes for all tools evaluated particularly for animals 

that have been sequenced at low coverage. Following imputation, the concordance between 

sequence- and microarray-derived genotypes was almost identical for the three methods 

evaluated, i.e., 99.32, 99.46, and 99.24 % for GATK, Graphtyper, and SAMtools, 

respectively. Variant filtration based on commonly used criteria improved the genotype 

concordance slightly but it also decreased sensitivity. Graphtyper required considerably 

more computing resources than SAMtools but it required less than GATK.    

Conclusions: Sequence variant genotyping using Graphtyper is accurate, sensitive and 

computationally feasible in cattle. Graph-based methods enable sequence variant 

genotyping from variation-aware reference genomes that may incorporate cohort-specific 

sequence variants which is not possible with the current implementations of state-of-the-art 

methods that rely on linear reference genomes.  

Keywords: Sequence variant genotyping, Genome graph, Variation-aware graph, cattle, 

Whole-genome sequencing 
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Introduction 

The sequencing of important ancestors of many cattle breeds revealed millions of sequence 

variants that are polymorphic in dairy and beef populations [1–4]. In order to compile an 

exhaustive catalog of polymorphic sites that segregate in Bos taurus, the 1000 Bull 

Genomes consortium was established [5, 6]. The 1000 Bull Genomes Project imputation 

reference panel facilitates to infer sequence variant genotypes for large cohorts of 

genotyped animals thus enabling genomic investigations at nucleotide resolution [5, 7–9]. 

Sequence variant discovery and genotyping typically involves two steps that are carried out 

successively [10–13]: first, raw sequencing data are generated, trimmed and filtered to 

remove adapter sequences and bases with low sequencing quality, respectively, and aligned 

towards a linear reference genome using, e.g., Bowtie [14] or the Burrows-Wheeler 

Alignment (BWA) software [15]. The aligned reads are subsequently compared to the 

nucleotide sequence of a reference genome in order to discover and genotype polymorphic 

sites using, e.g., SAMtools [16] or the Genome Analysis Toolkit (GATK) [17–19]. Variant 

discovery may be performed either in single- or multi-sample mode. The accuracy (i.e., 

ability to correctly genotype sequence variants) and sensitivity (i.e., ability to detect true 

sequence variants) of sequence variant discovery is higher using multi-sample than single-

sample approaches particularly when the sequencing depth is low [20–24]. However, the 

genotyping of sequence variants from multiple samples simultaneously is a computationally 

intensive task, particularly when the sequenced cohort is large and diverse and had been 

sequenced at high coverage [19]. The multi-sample sequence variant genotyping approach 

that has been implemented in the SAMtools software has to be restarted for the entire cohort 

once new samples are added. GATK implements two different approaches to multi-sample 

variant discovery, i.e., the UnifiedGenotyper and HaplotypeCaller modules, with the latter 

relying on intermediate files in gVCF format that include probabilistic data on variant and 

non-variant sites for each sequenced sample. Applying the HaplotypeCaller module allows 

for separating variant discovery within samples from the estimation of genotype likelihoods 

across samples. Once new samples are added to an existing cohort, only the latter needs to 

be performed for the entire cohort, thus enabling computationally efficient parallelization of 

sequence variant genotyping in a large number of samples. 

Sequence variant genotyping approaches that rely on alignments to a linear reference 

genome have limitations to variant discovery, because a haploid reference sequence does 

not reflect variation within a species. As a result, read alignments may be erroneous 

particularly at genomic regions that differ substantially between the sequenced individual 
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and the reference sequence, thus introducing reference allele bias, flawed genotypes, and 

false-positive variant discovery around indels [25–27]. Aligning reads to population- or 

breed-specific reference genomes may overcome most of these limitations [28–30]. 

However, considering multiple (population-specific) linear reference genomes with distinct 

genomic coordinates complicates the biological interpretation and annotation of sequence 

variant genotypes across populations [31].  

Genome graph-based methods consider non-linear reference sequences for variant 

discovery [31–35]. A variation-aware genome graph may incorporate distinct (population-

specific) reference sequences and known sequence variants. Recently, the Graphtyper 

software has been developed in order to facilitate sequence variant discovery from a 

genome graph that has been constructed and iteratively augmented using variation of the 

sequenced cohort [32]. So far, sequence variant genotyping using variation-aware genome 

graphs has not been evaluated in cattle. 

An unbiased evaluation of the accuracy and sensitivity of sequence variant genotyping is 

possible when high confidence sequence variants and genotypes are accessible that were 

detected using genotyping technologies and algorithms different from the ones to be 

evaluated [36]. For species where such a resource is not available, the accuracy of 

sequence variant genotyping may be evaluated by comparing sequence variant to 

microarray-derived genotypes (e.g., [2, 24]). Due to the ascertainment bias in SNP chip 

data, this comparison may overestimate the accuracy of sequence variant discovery 

particularly at variants that are either rare or located in less-accessible genomic regions [37, 

38]. 

In this study, we compare sequence variant discovery and genotyping from a variation-

aware genome graph using Graphtyper to two state-of-the-art methods (GATK, SAMtools) 

that rely on linear reference genomes in 49 Original Braunvieh cattle. We compare 

sequence variant to microarray-derived genotypes in order to assess accuracy and 

sensitivity of sequence variant genotyping for each of the three methods evaluated. 

Results 

Following quality control (removal of adapter sequences and low-quality bases), we aligned 

more than 13 billion paired-end reads (2 x 125 and 2 x 150 basepairs) from 49 Original 

Braunvieh cattle to the UMD3.1 assembly of the bovine genome. On average, 98.44% 

(91.06-99.59%) of the reads mapped to the reference genome. 4.26% (2.0-10.91%) of the 

mapped reads were flagged as duplicates and not considered for further analyses. The 

average sequencing depth per animal was 12.75 and it ranged from 6.00 to 37.78. The 
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average sequencing depth of 31 samples was above 12-fold. Although the re-alignment of 

sequencing reads around indels is no longer required when sequence variants are 

genotyped using the latest version of GATK (v 4), it is still recommended to improve the 

genotyping of indels using SAMtools. To ensure a fair comparison of the three tools 

evaluated, we realigned the reads around indels on all BAM files and used the re-aligned 

files as a starting point for our comparisons (Figure 1). The sequencing read data of 49 

cattle were deposited at the European Nucleotide Archive (ENA) (http://www.ebi.ac.uk/ena) 

under primary accession PRJEB28191.  

Figure 1 Schematic representation of three sequence variant discovery and 
genotyping methods evaluated. 

According to the best practice recommendations for sequence variant discovery using 
GATK, the VQSR module should be applied to distinguish between true and false positive 
variants. Because this approach requires a truth set of variants which is not (publicly) 
available for cattle, the VQSR module was not considered in our evaluation.  

Sequence variant discovery and genotyping 

Polymorphic sites (SNPs, short insertions and deletions) were discovered and genotyped in 

the 49 animals using either GATK (version 4), Graphtyper (version 1.3) or SAMtools (version 

1.8). All software programs were run using default parameters and workflow descriptions for 

variant discovery (Figure 1, also see Material and Methods). Only autosomal sequence 

variants were considered to evaluate the accuracy and sensitivity of sequence variant 

genotyping. Because variant filtering has a large impact on the accuracy and sensitivity of 

fastp

Reads QC

BWA mem

Map to UMD 3.1 reference

Samblaster, Sambamba

Duplicate marking 
Coordinate sort

GATK 3.8

Indel realignment

GATK 4

BQSR

Analysis-ready BAM

SAMtools

GenomicsDBImport

Consolidate gVCFs

SAMtools mpileup

Compute genotype 
likelihoods

BCFtools call

Call and genotype 
variants

HaplotypeCaller

Call variants per-sample

GenotypeGVCFs

Joint genotyping in 
cohort

GATK Graphtyper

Data pre-processing Variant discovery and genotyping

Genotype variants

Genotyping step 2 

Prune complex variation in 
the genome graph

Genotyping step 1

Variation identification from 
augmented UMD 3.1 graph

Variant identification from 
linear UMD 3.1 reference

Discovery step 1

VCF 

VCF 

Discovery step 2

VCF 

Raw FASTQ reads

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 7, 2019. ; https://doi.org/10.1101/460345doi: bioRxiv preprint 

https://doi.org/10.1101/460345
http://creativecommons.org/licenses/by/4.0/


 6 

sequence variant genotyping [39, 40], we evaluated both the raw variants that were detected 

using default parameters for variant discovery (Figure 1) and variants that remained after 

applying filtering criteria that are commonly used but may differ slightly between different  

software tools. Please note that GATK was run with filtering parameters suggested when 

applying Variant Quality Score Recalibration (VQSR) is not possible.    

Using default parameters for variant discovery for each software program evaluated, the 

number of polymorphic sites discovered was 21,140,196, 20,262,913, and 20,668,459 using 

GATK, Graphtyper and SAMtools, respectively (Table 1). The vast majority (86.79%, 

89.42% and 85.11%) of the detected variants were biallelic SNPs. Of the 18,594,182, 

18,120,724 and 17,592,038 SNPs detected using GATK, Graphtyper and SAMtools, 

respectively, 7.46%, 8.31% and 5.02% were novel, i.e., they were not among 102,091,847 

polymorphic sites of the most recent version (150) of the Bovine dbSNP database. The 

transition to transversion (Ti/Tv) ratio of the detected SNPs was 2.09, 2.07 and 2.05 using 

GATK, Graphtyper and SAMtools, respectively. Using GATK revealed four times more 

multiallelic SNPs (246,220) than either SAMtools or Graphtyper.  

The number of indels identified was 2,478,489, 2,044,585, and 3,076,421 using GATK, 

Graphtyper, and SAMtools, respectively, and 26.78%, 29.15%, and 41.75% of them were 

novel. SAMtools revealed the highest number and proportion (14.9%) of indels. Between 12 

and 14% of the detected indels were multiallelic. While Graphtyper and GATK identified 

more (12%) deletions than insertions, the ratio was almost equal using SAMtools.  

On average, each Original Braunvieh cattle carried between 7 and 8 million variants that 

differed from the UMD3.1 reference genome. Of those, between 2.4 and 2.6 million SNPs 

were homozygous for the alternate allele, between 3.8 and 4.7 million SNPs were 

heterozygous and between 0.7 and 1 million were indels (Table 2). 

An intersection of 15,901,526 biallelic SNPs was common to all sequence-variant discovery 

tools evaluated (Figure 2A), i.e., between 85.51 and 90.39% of the detected SNPs of each 

tool, and 466,029 (2.93%, Ti/Tv: 1.81) of them were novel, i.e., they were not present in 

dbSNP 150. The Ti/Tv-ratio of the common SNPs was 2.22. SAMtools had the largest 

number of SNPs in common with the other two tools (90.39%). The number of private SNPs, 

i.e., SNPs that were detected by one but not the other tools was highest for GATK and 

lowest for Graphtyper. 
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Table 1 Numbers of different types of autosomal sequence variants detected in 49 Original Braunvieh cattle using three sequence 
variant genotyping methods (Full) and subsequent variant filtration based on commonly used criteria (Filtered). 

 

 

 

 Full Filtered  
 GATK Graphtyper SAMtools GATK Graphtyper SAMtools  
Variants 21,140,196 20,262,913 20,668,459 19,761,679 17,679,155 18,871,549 
 
SNPs 18,594,182 18,120,724 17,592,038 17,248,593 15,777,446 16,272,917 
  Not in dbSNP  1,387,781       1,505,586 882,575 867,838 564,326 570,901 
  Biallelic 18,347,962 18,053,396 17,528,249 17,111,806 15,730,153 16,218,714 
  Multi-allelic 246,220 67,328 63,789 136,787 47,293 54,203 
  Ti/Tv ratio 2.09 2.07 2.05 2.17 2.18 2.16 
SNP array (%)       
   BovineHD  99.46 99.61 99.32 99.21 98.79 98.85 
   Bovine SNP50  99.14 99.26 99.12 98.91 98.87 98.90 
 
Indels 2,478,489 2,044,585 3,076,421 2,445,766 1,826,808 2,598,632 
  Not in dbSNP 663,831 596,137 1,279,162 639,219 456,752 979,291 
  Biallelic 2,166,352 1,753,391 2,704,413 2,133,840 1,571,195 2,310,386 
  Multi-allelic 312,137 291,194 372,008 311,926 255,613 288,246 
  Insertion/Deletion 0.88 0.88 1 0.88 0.88 0.99 
       
Complex variation 67,525 97,604 0 67,320 74,901 0 
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Table 2 Average number of autosomal variants identified per animal using three sequence variant genotyping methods.  

The number of variants is presented for the three tools evaluated before (Full) and after (Filtered) applying recommended filters to identify and 
exclude low quality variants. 

 

 

 

 

 

 

 

 

 

 

 Full Filtered  
  

GATK 
 

 
Graphtyper 

 
SAMtools 

 
GATK 

 

 
Graphtyper 

 
SAMtools 

Total biallelic SNPs 6,324,455 7,384,058 6,617,948 6,105,674 6,533,711 6,564,229 
     Heterozygous 3,890,351 4,758,297 4,187,882 3,744,336 4,074,011 4,147,033 
     Homozygous ALT 2,434,104 2,625,761  2,430,066 2,361,338 2,459,700 2,417,196 
Ti/Tv 2.17 2.13 2.11 2.20 2.14 2.13 
Total biallelic indels 693,697 767,261 1,007,420 691,765 697,637 960,218 
      Heterozygous 390,495 441,172 616,981 388,622 391,856 593,417 
      Homozygous ALT 303,202 326,089 390,439 303,143 305,781 366,801 
Singletons 49,166 23,406 32,810 41,408 17,999 32,398 
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Figure 2 Number of biallelic SNPs (A) and indels (B) identified in 49 Original 
Braunvieh cattle using three sequence variant genotyping methods.  

Blue horizontal bars represent the total number of sites discovered for each method. Vertical 
bars indicate private and common variants detected by the methods evaluated. 
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The number of biallelic indels (Figure 2B) that was common to all tools evaluated was 

1,299,467 and 98,931 (13.13%) of those were novel, i.e., they were not present in dbSNP 

150. The intersection of the three tools was considerably smaller for indels than SNPs. 

Graphtyper had the highest proportion of indels in common with the other tools (74.11%). 

SAMtools discovered the highest number (2,704,413) of biallelic indels and most of them 

(41.26%) were not detected using either GATK or Graphtyper. GATK (21.2 %) and 

Graphtyper (12.38%) discovered less private indels than SAMtools.  

Sequence variant genotyping using Graphtyper is accurate 

The 49 sequenced animals were also genotyped using either Illumina BovineHD or Illumina 

BovineSNP50 Bead chips. Genotype concordance, non-reference sensitivity and non-

reference discrepancy were calculated using array-called and sequence variant genotypes 

at corresponding positions. The genotype concordance is a measure for the proportion of 

variants that have identical genotypes in the microarray and whole-genome sequencing 

data. The non-reference sensitivity is the proportion of microarray-derived variants that were 

also detected in the sequencing data. Non-reference discrepancy reflects the proportion of 

sequence variants that have genotypes that differ from the microarray-derived genotypes 

(see Additional file 4 for more details on how the different metrics were calculated). All 

metrics were calculated both for raw and filtered variants either before or after applying the 

algorithm implemented in the Beagle software for haplotype phasing and imputation.  

In the raw data, the proportion of missing non-reference sites was 1.90%, 0.56%, and 0.47% 

using GATK, Graphtyper, and SAMtools, respectively. The genotype concordance between 

the sequence- and microarray-derived genotypes was higher (P<0.005) using Graphtyper 

(97.72%) than either SAMtools (97.68%) or GATK (95.99%) (Table 3). For the three tools 

evaluated, the genotype concordance was higher at homozygous than heterozygous sites, 

particularly in animals that have been sequenced at low depth (Additional file 1). In order to 

take the variable proportions of missing genotypes in the sequence variants into account, we 

calculated non-reference sensitivity and non-reference discrepancy. Non-reference 

sensitivity was almost identical using Graphtyper (98.26%) and SAMtools (98.21%). 

However, non-reference sensitivity was clearly lower using GATK (93.81%, P < 0.001). Non-

reference discrepancy was lower using Graphtyper (3.53%) than either SAMtools (3.6%, P = 

0.003) or GATK (6.35%, P < 0.001).  

Next, we analysed the proportion of opposing homozygous genotypes for SNPs and indels 

in nine sire-son pairs that were included among the sequenced animals (Table 4). We 

observed that SNPs that were discovered using either Graphtyper or SAMtools had almost a 
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similar proportion of genotypes with mendelian inconsistencies in the full and filtered 

datasets, whereas the values were two times higher using GATK. The proportion of 

opposing homozygous genotypes was higher for indels than SNPs for all tools evaluated. 

However, it was lower using Graphtyper than either GATK or SAMtools in the full and filtered 

datasets. Using filtering parameters that are commonly applied for the three tools evaluated 

(see Material & Methods), we excluded 1,378,517 (6.52%, Ti/Tv 1.24), 2,583,758 (12.75%, 

Ti/Tv 1.47) and 1,796,910 (8.69%, Ti/Tv 1.36) variants due to low mapping or genotyping 

quality from the GATK, Graphtyper, and SAMtools datasets, respectively. The genotype 

concordance between sequence- and microarray-derived genotypes was slightly higher in 

the filtered than raw genotypes, but the non-reference sensitivity was less in the filtered than 

raw genotypes indicating that the filtering step also removed some true variant sites from the 

raw data (Table 3). The filtering step had barely an effect on the proportion of mendelian 

inconsistencies detected in nine sire-son pairs (Table 4).  

Beagle genotype refinement improved the genotype quality  

We used the Beagle software to refine the primary genotype calls and infer missing 

genotypes in the raw and filtered datasets. Following imputation, the quality of the sequence 

variant genotypes increased for all tools evaluated particularly in cattle where the 

sequencing coverage was less than 12-fold (Figure 3). The largest increase in the 

concordance metrics was observed for the sequence variants obtained using GATK (Table 3 

& 4). Following imputation, the variants identified using Graphtyper had significantly higher 

quality (P < 0.05) in eight out of ten metrics evaluated.  

 

The quality of the sequence variant genotypes, particularly before Beagle genotype phasing 

and imputation, was influenced by the various depth of coverage in the 49 sequenced 

samples of our study (Figure 3). When we restricted the evaluations to 31 samples with an 

average sequencing depth above 12-fold, the three tools performed almost identical 

(Additional file 5). However, Graphtyper was significantly (P < 0.05) better in 12 (out of total 

20 metrics) than either GATK or SAMtools. When 18 samples with an average sequencing 

depth less than 12-fold were considered, the differences observed in the three metrics were 

more pronounced between the three tools. In samples with low sequencing coverage, 

Graphtyper performed significantly (P < 0.05) better than either GATK or SAMtools in all 

concordance metrics both before and after filtering and Beagle imputation except for the 

non-reference sensitivity.  
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Table 3 Comparisons between array-called and sequence variant genotypes.  

Genotype concordance, non-reference sensitivity and non-reference discrepancy (in percentage) was calculated between the genotypes from 
the Bovine SNP Bead chip and sequence–derived genotypes for 49 Original Braunvieh cattle considering either the raw or imputed (imp) 
sequence variant genotypes before (full) and after (filtered) variants were filtered based on commonly used criteria. Asterisks denote that the 
best value (italic) differs significantly from the other two values (* P £ 0.05, ** P £ 0.01, *** P £  0.001).  

 

 

Table 4 Proportions of opposing homozygous genotypes observed in nine sire-son pairs.  

The ratio (in percentage) was calculated using autosomal sequence variants considering either the raw or imputed (imp) sequence variant 
genotypes before (full) and after (filtered) variants were filtered based on commonly used criteria. Asterisks indicate that the best value (italic) 
differs significantly from the other two values (* P £ 0.05, ** P £ 0.01, *** P £  0.001).  

 

 

 

 

 

  
Genotype concordance Non-reference sensitivity Non-reference discrepancy 
full filtered full filtered full filtered 

raw imp  raw imp raw imp raw imp raw imp raw imp 
GATK 95.99*** 99.32*** 96.02*** 99.39*** 93.81*** 99.36 93.67*** 99.15 6.35*** 1.05*** 6.3*** 0.95*** 
Graphtyper 97.71 99.46 97.75 99.52 98.26 99.35 97.91 99.00*** 3.53 0.83 3.47 0.73 
SAMtools 97.68*** 99.24*** 97.7* 99.29*** 98.21 99.35 97.53*** 98.67*** 3.6** 1.17*** 3.56** 1.09*** 

  SNPs indels 
  full filtered full filtered 
  raw imp raw imp raw imp raw imp 
Bovine HD SNP array 0.001 
GATK 0.73* 0.15* 0.72* 0.13* 0.98* 0.24* 0.99* 0.21* 
Graphtyper 0.36 0.11 0.36 0.11 0.54 0.13 0.54 0.13 
SAMtools 0.33 0.28* 0.32 0.25* 0.67 0.54* 0.61 0.57* 
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Figure 3 Accuracy and sensitivity of sequence variant genotyping at different 
sequencing depth.  

Genotype concordance, non-reference sensitivity and non-reference discrepancy were 
calculated for 49 Original Braunvieh cattle considering either raw (red) or filtered and 
imputed (blue) sequence variant genotypes. The grey points represent overlays of the 
results from the other methods. 

Computing requirements 

The multi-sample sequence variant genotyping pipelines that were implemented using either 

GATK or SAMtools were run separately for each chromosome in single-threading mode. The 

SAMtools mpileup module took between 3.07 and 11.4 CPU hours and it required between 

0.12 and 0.25 gigabytes (GB) peak random-access memory (RAM) per chromosome. To 

genotype 20,668,459 sequence variants in 49 animals, SAMtools mpileup required 192 CPU 

hours (Figure 4). 
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For GATK, we submitted 1421 parallel jobs of the HaplotypeCaller module (i.e., one job for 

each animal and chromosome) that required between 3.9 and 12.3 GB RAM and between 

0.36 and 11 CPU hours to complete. To process 29 chromosomes in 49 samples, the 

HaploytpeCaller module required a total of 2428 CPU hours. Subsequently, we ran the 

GATK GenomicsDBImport module which required between 7.98 and 20.88 GB RAM and 

between 2.81 and 19.31 CPU hours per chromosome. GATK Joint Genotyping required 

between 4.33 and 17.32 GB of RAM and between 1.81 and 14.01 hours per chromosome. 

To genotype 21,140,196 polymorphic sequence variants in 49 animals, the GATK pipeline 

required a total of 2792 CPU hours (Figure 4).  

The Graphtyper pipeline including the construction of the variation graph and the genotyping 

of sequence variants was run in parallel for 2538 non-overlapping segments of 1 million 

base-pairs as recommended by Eggertson et al. [32]. The peak RAM required by 

Graphtyper was between 1 and 3 GB per segment. Twelve segments for which Graphtyper 

either ran out of memory or did not finish within the allocated time were subdivided into 

smaller segments of 10 Kb and subsequently re-run (Additional file 2). The genotyping of 

20,262,913 polymorphic sites in 49 animals using our implementation of the Graphtyper 

pipeline took a total of 1066 CPU hours (Figure 4).  

 

Figure 4 Computing time required to genotype all autosomal sequence variants in 49 
Original Braunvieh cattle.    

The runtime of GATK and Graphtyper is shown for the different steps (see Figure 1 for more 
details). 
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The computing resources required by SAMtools and GATK increased linearly with 

chromosome length. The computing time required to genotype sequence variants was highly 

heterogeneous along the genome using Graphtyper. The average CPU time per 1 Mb 

segment was 0.42 hours, but it varied in between 0.196 and 10.11 hours. We suspected that 

flaws in the reference genome might increase the complexity of the variation-aware graph 

and that the construction of the graph might benefit from an improved assembly. To test this 

hypothesis, we re-mapped the sequencing reads to the recently released new bovine 

reference genome (ARS-UCD1.2, 

https://www.ncbi.nlm.nih.gov/assembly/GCF_002263795.1) and repeated the graph-based 

sequence variant discovery. We indeed observed a decrease in the computing time required 

to genotype polymorphic sites (particularly at chromosomes 12, 27 and 29) and a more 

uniform runtime along the genome possibly indicating that graph-based variant discovery in 

cattle will be faster and more accurate from highly contiguous reference sequences (Figure 

5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Sequence variant genotyping on chromosome 12 using Graphtyper.  

Computing time required (A) and number of variants discovered (B) for bovine chromosome 
12 using Graphtyper. Each dot represents an interval of 1 million basepairs. Blue and red 
colour represents values for the UMD3.1 and ARS-UCD1.2 versions of the bovine assembly. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 7, 2019. ; https://doi.org/10.1101/460345doi: bioRxiv preprint 

https://doi.org/10.1101/460345
http://creativecommons.org/licenses/by/4.0/


 16 

Discussion 

We used either Graphtyper, SAMtools, or GATK to discover and genotype polymorphic 

sequence variants in whole genome sequencing data of 49 Original Braunvieh cattle that 

have been sequenced at between 6 and 38-fold genome coverage. While SAMtools and 

GATK discover variants from a linear reference genome, Graphtyper locally re-aligns reads 

to a variation-aware reference graph that incorporates cohort-specific sequence variants 

[32]. Our graph-based variant discovery pipeline that has been implemented using the 

Graphtyper software used the existing bovine reference sequence to construct the genome 

graph. The graph was subsequently augmented with variants that were detected from linear 

alignments of the 49 Original Braunvieh cattle. The use of more sophisticated genome 

graph-based approaches that have been developed very recently facilitates to map raw 

sequencing reads directly against a genome graph without the need to first align reads 

towards a linear reference [34]. While genome graph-based variant discovery has been 

explored recently in mammalian-sized genomes [27, 31, 32, 35], our work is the first to apply 

graph-based sequence variant genotyping in cattle.  

In order to evaluate graph-based variant discovery in cattle, we compared accuracy and 

sensitivity of Graphtyper to SAMtools and GATK, i.e., two state-of-the-art methods on linear 

reference genomes that have been evaluated thoroughly in many species including cattle [2, 

20]. We ran each tool with default parameters for variant discovery and applied commonly 

used or recommended filtration criteria. However, our evaluation of the software tools may 

suffer from ascertainment bias because we relied on SNPs that have been included in 

Bovine SNP arrays, i.e., they are located predominantly at well accessible regions of the 

genome [37, 38, 41]. Thus, the global accuracy and sensitivity of sequence variant discovery 

might be overestimated in our study. However, this ascertainment bias is unlikely to affect 

the relative performance of the methods evaluated. 

In 49 Original Braunvieh cattle, sequence variant genotyping was more accurate using 

Graphtyper than either GATK or SAMtools. The difference in accuracy is small between the 

three tools particularly when samples are sequenced at an average coverage higher than 

12-fold (Additional file 5). Yet, Graphtyper performed significantly better than GATK and 

SAMtools for samples sequenced at medium (>12-fold) or low (<12-fold) coverage indicating 

that genome graph-based variant discovery in cattle is accurate across a wide range of 

sequencing depth. GATK might perform better than observed in our study when the VQSR 

module is applied to train the variant filtration algorithm on true and false variants [42]. 

However, to the best of our knowledge, the required sets of true and false variants are not 
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available in cattle. An intersection of variants detected by different sequence variant 

genotyping software may be considered as a truth set (e.g., [43]) and compiling such a set is 

possible using the 49 samples from our study. However a truth set that has been 

constructed from the data that are used for evaluation is likely to be depleted for variants 

that are difficult to discover in the target data set, thus preventing an unbiased evaluation of 

variant calling [36]. Variants from the 1000 Bull Genomes project [5, 6] could potentially 

serve as a truth/training set. However, variants from the 1000 Bull Genomes project were 

detected from short read sequencing data using either GATK or SAMtools, i.e., technologies 

and software that are part of our evaluation, thus precluding an unbiased comparison of 

variant discovery between GATK, SAMtools and Graphtyper [36]. Vander Jagt et al. [44] 

showed in a subset of samples from the 1000 Bull Genomes Project that VQSR has barely 

an effect on the concordance metrics calculated in our study. Interestingly, the proportion of 

opposing homozygous genotypes in sire/offspring pairs was slightly higher in their study  

using GATK VQSR than GATK hard-filtering as used by the 1000 Bull Genomes Project 

[44]. Considering that the quality of the truth/training sets has a large impact on the 

capabilities of VQSR and that high-confidence variants are currently not publicly available for 

cattle, we ran GATK using filtering parameters recommended when VQSR is not possible. 

 

Irrespective of the method evaluated, we observed heterozygous under-calling in animals 

that have been sequenced at low coverage, i.e., heterozygous variants were erroneously 

genotyped as homozygous due to an insufficient number of sequencing reads supporting the 

heterozygous genotype [10, 45–47]. In agreement with previous studies [2, 5], Beagle 

imputation improved genotype concordance and reduced heterozygous under-calling 

particularly in cattle that had been sequenced at low coverage. After the imputation step, the 

genotype concordance, non-reference sensitivity, and non-reference discrepancy of the 

three tools was almost identical, indicating that genotyping sequence variants from samples 

with medium coverage is possible at high accuracy (at least for common variants in more-

accessible regions of the genome) using either of the three tools evaluated and subsequent 

Beagle error correction. While such conclusions have been drawn previously for SAMtools 

and GATK [2, 20], our findings demonstrate that the genotype likelihoods estimated from the 

Graphtyper software are also compatible with and benefit from the imputation algorithm 

implemented in the Beagle software. Considering that sequence data are enriched for rare 

variants that are harder to impute than common variants from SNP microarrays [48], the 

benefits from Beagle error correction might be overestimated in our study. An integration of 

phasing and imputation of missing genotypes directly in a graph-based variant genotyping 

approach would simplify sequence variant genotyping from variation-aware graphs [31, 49, 

50].  
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Using Graphtyper for variant genotyping and Beagle for genotype refinement enabled us to 

genotype sequence variants in 49 Original Braunvieh cattle at a genotypic concordance of 

99.52%, i.e., higher than previously achieved using either GATK or SAMtools for variant 

calling in cattle that had been sequenced at similar genome coverage [2–5, 20, 51], 

indicating that graph-based variant discovery might improve sequence variant genotyping. 

However, applying the filtration criteria that have been recommended for Graphtyper [32] 

removed more variants from the Graphtyper (12.75%) than either GATK (6.52%) or 

SAMtools (8.69%) datasets. Fine-tuning of the variant filtering parameters is necessary to 

further increase the accuracy and sensitivity of sequencing variant genotyping, particularly 

for Graphtyper [39, 40]. Moreover, the accuracy and sensitivity of graph-based variant 

discovery may be higher when known variants are considered for the initial construction of 

the variation graph [32]. Indeed, we observed a slight increase in genotype concordance 

(Additional file 3) when we used Graphtyper to genotype sequence variants from a variation-

aware genome-graph that incorporated bovine variants listed in dbSNP 150. However, 

additional research is required to prioritize a set of variants to augment bovine genome 

graphs for different cattle breeds [52].  

Using microarray-derived genotypes as a truth set may overestimate the accuracy of 

sequence variant discovery particularly at variants that are rare or located in less accessible 

regions of the genome. Moreover, it does not allow for assessing accuracy and sensitivity of 

indel discovery because variants other than SNPs are currently not routinely genotyped with 

commercially available microarrays. Estimating the proportion of opposing homozygous 

genotypes between parent-offspring pairs may be a useful diagnostic metric to detect 

sequencing artefacts or flawed genotypes at indels [53]. Our results show that genotypes at 

indels are more accurate using Graphtyper than either SAMtools or GATK because 

Graphtyper produced less opposing homozygous genotypes at indels in nine sire-son pairs 

than the other methods both in the raw and filtered datasets. These findings are in line with 

Eggertsson et al. [32], who showed that the mapping of the sequencing reads to a variation-

aware graph could improve read alignment nearby indels, enabling highly accurate 

sequence variant genotyping also for variants other than SNPs. Recently, Garrison et al. [34] 

showed that graph-based variant discovery may also mitigate reference allele bias. An 

assessment of reference allele bias was, however, not possible in our study because the 

sequencing depth was too low for most samples.  

In our study, Graphtyper required less computing time than GATK to genotype sequence 

variants for 49 cattle. SAMtools required the least computing resources likely because the 

implemented mpileup algorithm produces genotypes from the aligned reads without 

performing the computationally intensive local re-alignment of the reads. However, with an 
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increasing number of samples, the multi-sample variant genotyping implementation of the 

GATK HaplotypeCaller module seems to be more efficient than SAMtools mpileup  because 

variant discovery within samples can be separated from the joint genotyping across samples 

[19, 44]. A highly parallelized graph-based variant discovery pipeline also offers a 

computationally feasible and scalable framework for variant discovery in thousands of 

samples [32]. However, the computing time for graph-based variant genotyping might be 

high in genomic regions where the nucleotide diversity is high or the assembly is flawed [35, 

54]. In our study, the algorithm implemented in the Graphtyper software failed to finish within 

the allocated time for twelve 1 Mb segments including a segment on chromosome 12 that 

contains a large segmental duplication [48, 55, 56] possibly because many mis-mapped 

reads increased graph complexity. The region on chromosome 12 contains an unusually 

large number of sequence variants and has been shown to suffer from low accuracy of 

imputation [48]. Graphtyper also failed to finish within the allocated time for a region on 

chromosome 23 encompassing the bovine major histocompatibility complex which is known 

to be rich in diversity. Our results show that Graphtyper may also produce genotypes for 

problematic segments when they are split and processed in smaller bits. Moreover, most of 

these problems disappeared when we considered the latest assembly of the bovine 

genome, possibly corroborating that more complete and contiguous genome assemblies 

may facilitate more reliable genotyping from variation-aware graphs [37, 57].  

Conclusion 

Genome graphs facilitate sequence variant discovery from non-linear reference genomes. 

Sequence variant genotyping from a variation-aware graph is possible in cattle using 

Graphtyper. Sequence variant genotyping at both SNP and indels is more accurate and 

sensitive using Graphtyper than either SAMtools or GATK. The proportion of mendelian 

inconsistencies at both SNP and indels is low using Graphtyper indicating that sequence 

variant genotyping from a variation-aware genome graph facilitates accurate variant 

discovery at different types of genetic variation. Considering highly-informative variation-

aware genome graphs that have been constructed from multiple breed-specific de-novo 

assemblies and high-confidence sequence variants facilitates more accurate, sensitive and 

unbiased sequence variant genotyping in cattle. 
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Methods 

Animal Selection 

We selected 49 Original Braunvieh OB bulls that were either frequently used in artificial 

insemination or explained a large fraction of the genetic diversity of the active breeding 

population. Semen straws of the bulls were purchased from an artificial insemination center 

and DNA was prepared following standard DNA extraction protocols.  

Sequencing data pre-processing 

All samples were sequenced at either Illumina HiSeq 2500 (30 animals) or Illumina HiSeq 

4000 (19 animals) instruments using 150 basepair paired-end sequencing libraries with 

insert sizes between 400 and 450 basepairs. Quality control (removal of adapter sequences 

and bases with low quality) of the raw sequencing data was carried out using the fastp 

software (version 0.19.4) with default parameters [58]. The filtered reads were mapped to 

the UMD3.1 version of the bovine reference genome [59] using BWA mem (version 0.7.12) 

[15] with option -M to mark shorter split hits as secondary alignments, otherwise the default 

parameters were applied. Optical and PCR duplicates were marked using Samblaster 

(version 0.1.24) [60]. The output of Samblaster was converted into BAM format using 

SAMtools view (version 1.3) [16] and subsequently coordinate sorted using Sambamba 

(vesion 0.6.6) [61]. We used the GATK (version 3.8) RealignerTargetCreator and 

IndelRealigner modules to realign reads around indels. The realigned BAM files served as 

an input for GATK base quality score recalibration using 102,092,638 unique positions from 

the Illumina BovineHD SNP chip and Bovine dbSNP version 150 as known variants. The 

mosdepth software (version 0.2.2) [62] was used to extract the number of reads covering a 

genomic position.  

Sequence variant discovery  

We followed the best practice guidelines recommended for variant discovery and genotyping 

using GATK (version 4.0.6) with default parameters for all commands [17, 18, 24]. First, 

genotype likelihoods were calculated separately for each sequenced animal using GATK 

HaplotypeCaller [19], resulting in files in gVCF (genomic Variant Call Format) format for 

each sample [63]. The gVCF files from 49 samples were consolidated using GATK 

GenomicsDBImport. Subsequently, GATK GenotypeGVCFs was applied to genotype 

polymorphic sequence variants for all samples simultaneously.  

Graphtyper (version 1.3) was run in multi-sample mode as recommended in Eggertsson et 

al. [32]. Because the original implementation of Graphtyper is limited to the analysis of the 
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human chromosome complement, we cloned the Graphtyper GitHub repository 

(https://github.com/DecodeGenetics/graphtyper), modified the source code to allow 

analyzing the cattle chromosome complement and compiled the program from the modified 

source code (see Additional file 6). The Graphtyper workflow consisted of four steps that 

were executed successively. First, sequence variants were identified from the read 

alignments that were produced using BWA mem (see above). Next, these cohort-specific 

variants were used to augment the UMD3.1 reference genome and construct the variation-

aware genome graph. Subsequently, the sequencing reads were locally re-aligned against 

the variation-aware graph. A clean variation graph was produced by removing unobserved 

haplotypes paths from the raw graph. In the final step, genotypes were identified from the re-

aligned reads in the clean graph. The Graphtyper pipeline was run in segments of 1 million 

base-pairs and whenever the program failed to genotype variants for a particular segment 

either because it run out of memory or exceeded the allocated runtime of twelve hours, the 

interval was subdivided into smaller segments (10 kb).   

Our implementation of SAMtools mpileup (version 1.8) [64] was run in multi-sample mode to 

calculate genotype likelihoods from the aligned reads for all samples simultaneously. The 

parameters -E and –t were used to recalculate (and apply) base alignment quality and 

produce per-sample genotype annotations, respectively. Next, the estimated genotype 

likelihoods were converted into genotypes using BCFtools call using the -v and -m flags to 

output variant sites only and permit that sites may have more than two alternative alleles, 

respectively.  

We implemented all pipelines using Snakemake (version 5.2.0) [65]. The scripts for the 

pipelines are available via GitHub repository (https://github.com/danangcrysnanto/Graph-

genotyping-paper-pipelines). 

Sequence variant filtering and genotype refinement 

The GATK VariantFiltration module was used to parse and filter the raw VCF files. Quality 

control on the raw sequencing variants and genotypes was applied according to guidelines 

that were recommended for each variant caller. Variants that were identified using GATK 

were retained if they met the following criteria: QualByDepth (QD) > 2.0, FisherStrand < 

60.0, RMSMappingQuality (MQ) > 40.0, MappingQualityRankSumTest (MQRankSum) > 

12.5, ReadPosRankSumTest (ReadPosRankSum) > -8.0, SOR < 3.0 (SNPs) and QD > 2.0, 

FS < 200.0, ReadPosRankSum > 20.0, SOR < 10.0 (indels). For the variants identified using 

SAMtools, the thresholds that have been applied by the 1000 bull genomes project [5] were 

considered to remove variants with indication of low quality. Variants were retained if they 

met the following criteria: QUAL > 20, MQ > 30, ReadDepth (DP) > 10, DP < median(DP) + 
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3*mean(DP). Moreover, SNPs were removed from the data if they had the same positions 

as the starting position of an indels. The output of Graphtyper was filtered to only include 

variants that met the criteria recommended by Eggertsson et al. [32]: ABHet < 0.0 |  ABHet > 

0.33, ABHom < 0.0 | ABHom > 0.97, MaxAASR > 0.4, and MQ > 30. 

We used Beagle (version 4.1) [66] to improve the raw sequence variant genotype quality 

and impute missing genotypes. The genotype likelihood (gl) mode of Beagle was applied to 

infer missing and modify existing genotypes based on the phred-scaled likelihoods (PL) of all 

other non-missing genotypes of the 49 Original Braunvieh animals of our study.  

Evaluation of sequence variant genotyping 

To ensure consistent variant representation across the different sequence variant 

genotyping methods evaluated, we applied the vt normalize software (version 0.5) [67]. 

Normalized variants are parsimonious (i.e., represented by as few nucleotides as possible) 

and left aligned [67]. The number of variants detected and Ti/Tv ratios were calculated using 

vt peek [67] and BCFtools stats [64]. The intersection of variants that were common to the 

tools evaluated was calculated and visualized using BCFtools isec [64] and the UpSet R 

package [68], respectively.  

Mendelian inconsistencies were calculated as the proportion of variants showing opposing 

homozygous genotypes in nine parent-offspring pairs that were included among the 49 

sequenced animals. For this comparison, we considered only sites where the genotypes of 

both sire and son were not missing. 

All 49 sequenced cattle were also genotyped using either Illumina BovineHD (N=29) or 

BovineSNP50 (N=20) Bead chips comprising 777,962 and 54,001 SNPs, respectively. The 

average genotyping rate at autosomal SNPs was 98.91%. In order to assess the quality of 

sequence variant genotyping, the genotypes detected by the different variant calling 

methods were compared to the array-called genotypes in terms of genotype concordance, 

non-reference sensitivity and non-reference discrepancy [24, 41], see Additional file 4 for 

more details on the metrics. Non-parametric Kruskal-Wallis tests followed by pairwise 

Wilcoxon signed-rank tests were applied to determine if either of the three metrics differed 

significantly between the three tools evaluated. 

Computing environment and statistical analysis 

All computations were performed on the ETH Zurich Leonhard Open Cluster with access to 

multiple nodes equipped with 18 cores Intel Xeon E5-2697v4 processors (base frequency 

rated at 2.3 GHz) and 128 GB of random-access memory. Unless otherwise stated, the R 
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(version 3.3.3) software environment [69] was used for statistical analyses and ggplot2 

(version 3.0.0) [70] was used for data visualisation.  
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Additional files 

Additional file 1  

File format: pdf 
Description: Concordance of heterozygous and alternate homozygous genotypes. (a) The 
average concordance across 49 Original Braunvieh cattle and the concordance at the 
different sequencing depth based on the (b) raw and (c) imputed datasets.  
 

Additional file 2  
File format: xlsx 
Description: Twelve 1 Mb regions where Graphtyper initially failed to genotype sequence 
variants because the algorithm either ran out of memory or exceeded the allocated runtime 
(12 hours). Graphtyper eventually produced genotypes for the sequence variants when 
these regions were re-run in 10 kb segments. 
 

Additional file 3  
File format: tiff 
Description: Accuracy and sensitivity of sequence variant genotyping on bovine 
chromosome 25 from a variation-aware genome graph that incorporated 2,143,417 dbSNP 
variants as prior known variants. 

 

Additional file 4  
File format: tiff 
Description: Properties of the different metrics used for the evaluation of sequence variant 
genotyping accuracy. The metrics were calculated using the sum of the red cells as 
numerator and the cells within the green frame as denominator. 

 

Additional file 5  

File format: xlsx 
Description: Sequence variant genotyping quality for 18 and 31 animals that had been 
sequenced at less and more than 12-fold sequencing coverage, respectively. Asterisks 
indicate that the best value (italic) differs significantly from the other two values (* P £ 0.05, 
** P £ 0.01, *** P £  0.001).  

 
Additional file 6  
File format: pdf 
Description: Description to compile a Graphtyper version modified for the cattle chromosome 
complement.  
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