1 TITLE

2 Crystal structure of human endothelin ET_B receptor in complex

3 with peptide inverse agonist IRL2500.

- 4 Chisae Nagiri^{1*}, Wataru Shihoya^{1*‡}, Asuka Inoue², Francois Marie Ngako Kadji², Junken
- 5 Aoki², Osamu Nureki^{1‡}.
- 6

7 Affiliations:

- 8 ¹ Department of Biological Sciences, Graduate School of Science, The University of Tokyo,
- 9 Bunkyo, Tokyo 113-0033, Japan.
- ² Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki,
- 11 Aoba-ku, Sendai, Miyagi 980-8578, Japan.
- 12
- 13 *These authors contributed equally to this work.
- 14 ‡To whom correspondence should be addressed. E-mail: <u>wtrshh9@gmail.com</u> (W.S.),
- 15 nureki@bs.s.u-tokyo.ac.jp (O.N.)

16 Abstract

17 Endothelin receptors (ET_A and ET_B) are G-protein coupled receptors activated 18 by endothelin-1 and are involved in blood pressure regulation. IRL2500 is a peptide-19 mimetic of the C-terminal tripeptide of endothelin-1, and has been characterized as a 20 potent ET_B-selective antagonist, which has preventive effects against brain edema. Here, 21 we report the crystal structure of the human ET_B receptor in complex with IRL2500 at 22 2.7 Å-resolution. The structure revealed the different binding modes between IRL2500 23 and ET-1, and provides structural insights into its ET_{B} -selectivity. Notably, the biphenyl 24 group of IRL2500 penetrates into the transmembrane core proximal to D2.50, stabilizing 25 the inactive conformation. Using the newly-established constitutively active mutant, we 26 clearly demonstrate that IRL2500 functions as an inverse agonist for the ET_B receptor. 27 The current findings will expand the chemical space of ETR antagonists and facilitate the 28 design of inverse agonists for other class A GPCRs.

29 Main text

30 Introduction

31 Endothelin receptors (ETR) are G-protein coupled receptors activated by vaso active peptide, endothelins¹. Two endothelin receptor subtypes (ET_A and ET_B) are widely 32 expressed in the vascular endothelium, brain, and other circulatory organs^{2,3}. Endothelin-33 34 1 (ET-1) activates the endothelin receptors (ETRs) with sub-nanomolar affinities. The activation of the ET_A receptor leads to potent and long-lasting vasoconstriction, whereas 35 36 that of the ET_B receptor induces nitric oxide-mediated vasorelaxation. Therefore, the upregulation of ET-1 is significantly related to circulatory-system diseases, including 37 pulmonary arterial hypertension (PAH)⁴⁻⁷. Moreover, the autocrine and paracrine 38 39 signaling functions of ET-1 through the ET_A receptor play a critical role in tumor growth 40 and survival⁸. Therefore, ETR antagonists have been developed for the treatment of circulatory-system diseases and cancers^{6,7}. Bosentan is the first orally-active ETR 41 antagonist^{9,10}, and is used to treat PAH. The ET_B receptor is the prominent ET receptor 42 43 subtype in the brain, with high expression levels in astrocytes¹¹. Stimulation of the ET_B 44 receptor modulates astrocytic responses, indicating its important roles in regulating astrocytic functions¹². The up-regulation of the astrocytic ET_B receptor by ET-1 increases 45 the vascular permeability and reduces the AQP4 levels, thereby aggravating vasogenic 46 47 brain edema¹¹. The application of ET_B-selective antagonists may provide preventive effects against brain edema in the acute phase of brain insults $^{13-16}$. 48

49 To date, most endothelin receptor antagonists have been developed based on 50 bosentan^{17,18}. The ETR antagonists that have been developed till now are mostly N-

51 heterocyclic sulfonamides with similar structures and molecular weights, and non-52 sulfonamide antagonists (atrasentan, ambrisentan, darusentan, and enrasentan) still retain high similarities with each other and with the sulfonamides⁷. Therefore, the ETR agents 53 are chemically very similar, and expanded chemical space should be exploited. IRL2500 54 is a peptide ETR antagonist developed based on the partial structure of ET-1¹⁹, rather than 55 bosentan. IRL2500 has been characterized as an ET_B-selective antagonist with an IC₅₀ 56 57 value of 1.2 nM²⁰, which shows higher affinity than that of bosentan. In an animal model, 58 the intracerebroventricular administration of IRL2500 attenuated cold injury-mediated 59 brain edema and disruption of the blood-brain barrier, indicating the neuroprotective effect of IRL2500^{14,15}. An understanding of the IRL2500 binding mode would facilitate 60 61 the expansion of the chemical space of ET agents.

We previously reported the crystal structures of the ET_B receptor bound to $ET-1^{21}$ and bosentan²²; however, both the binding mode and ET_B -selectivity of IRL2500 remained to be elucidated. Here, we present the crystal structure of the ET_B receptor in complex with IRL2500. This structure revealed the unique binding mode of IRL2500, which differs from those of ET-1 and bosentan. Structure-guided functional analyses clearly demonstrate that IRL2500 functions as an inverse agonist for the ET_B receptor, and thus will provide the basis for design of inverse agonists for other class A GPCRs.

- 69
- 70

71 Results

72 **Overall structure**

73 For crystallization, we used the previously established, thermostabilized ET_{B} receptor $(ET_B-Y4)^{22,23}$. The IC₅₀ value of IRL2500 for ET_B-Y4 was similar to that for the 74 wild type receptor in the TGF α shedding assay²⁴ (Fig. 1), suggesting that the 75 76 themostabilizing mutations minimally affect the IRL2500 binding. In contrast, the IC₅₀ 77 value of IRL2500 for the ET_A receptor is over 3 μ M (Fig. 1), indicating that IRL2500 has over 100-fold ET_B -selectivity, consistent with the previous pharmacological analysis²⁰. 78 79 To facilitate crystallization, we replaced the third intracellular loop (ICL3) of the receptor with minimal T4 Lysozyme²⁵ (ET_B-Y4-mT4L). Using *in meso* crystallization²⁶, we 80 81 obtained crystals of ET_B-Y4-mT4L in complex with IRL2500 (Supplementary Fig. 1a, b). In total, 58 datasets were collected and merged by the data processing system KAMO²⁷. 82 Eventually, we determined the ET_B structure in complex with IRL2500 at 2.7 Å resolution, 83 84 by molecular replacement using the antagonist-bound ET_B structure (PDB code: 5X93) 85 (Table 1).

The overall structure consists of the canonical 7 transmembrane helices (TM), the amphipathic helix 8 at the C-terminus (H8), and two antiparallel β -strands in the extracellular loop 2 (ECL2), as in the previously determined ET_B structures (Fig. 2a). The IRL2500-bound structure is similar to the bosentan-bound structure, rather than the ETl-bound structure (R.M.S.D. values for C α atoms=1.34 and 1.95 Å, respectively), reflecting the inactive conformation. We observed a remarkable difference in the conformation of ECL2. The β strands are opened up by 9 Å, as compared with those in -5 –

the ligand-free structure (Fig. 2b and Supplementary Fig. 2a), and are the widest among
the peptide-activated class A GPCRs (Supplementary Fig. 2b). This structural feature
indicates the innate flexibility of ECL2, to capture the large peptide ligand endothelin, in
the inactive conformation of the ET_B receptor.

97

98 IRL2500 binding site

99 We first describe the IRL2500 binding mode. IRL2500 consists of a tryptophan, a 3.5-dimethylbenzoyl group, and a biphenyl group¹⁹, which are connected by two peptide 100 bonds (Fig. 2c). IRL2500 binds to the transmembrane binding cleft exposed to the 101 102 extracellular side, with a clear electron density in the $F_o - F_c$ omit map (Supplementary Fig. 3a, b). The carboxylate group of the tryptophan moiety in IRL2500 forms salt bridges 103 with K182^{3.33} and R343^{6.55} (superscripts indicate Ballesteros–Weinstein numbers²⁸) (Fig. 104 105 2c, d). The tryptophan side chain of IRL2500 hydrogen bonds with the carbonyl group of the N158^{2.61} side chain, and forms extensive van der Waals interactions with N158^{2.61}, 106 K161^{2.64}, V177^{3.28}, P178^{3.29}, and F240^{4.64} (Fig. 2d). The dimethyl phenyl group of 107 108 IRL2500 forms van der Waals interactions with the hydrophobic pocket, and is surrounded by V185^{3.36}, L277^{5.42}, Y281^{5.46}, W336^{6.48}, L339^{6.51}, and H340^{6.52}. The 109 biphenyl group penetrates deeply into the receptor core proximal to D147^{2.50}, and forms 110 van der Waals interactions with D147^{2.50}, H150^{2.53}, W336^{6.48}, and S376^{7.43}. Overall, the 111 112 carboxylate of IRL2500 is specifically recognized by the positively charged residues of 113 the ET_B receptor, and the other moieties fill the space within the transmembrane binding 114 pocket.

115

To elucidate the structural basis for the ET_B -selectivity of IRL2500, we compared -6 –

116 the residues constituting the IRL2500 binding site between the ET_B and ET_A receptors 117 (Fig. 3a and Supplementary Fig. 4). Although most of the residues are conserved, three 118 residues are replaced with bulkier residues in the ET_A receptor (H150Y, V177F, and 119 S376T). These replacements may cause steric clashes with the aromatic groups of 120 IRL2500 and reduce its affinity. To investigate this hypothesis, we measured the IC_{50} 121 values of IRL2500 for the H150Y, V177F, and S346T ET_B receptor mutants. These 122 mutants showed similar responses for ET-1 in the TGF α shedding assay (Supplementary 123 Fig. 5), and only V177F showed a 4-fold higher IC₅₀ value with IRL2500 (Fig. 3b). These 124 data suggest that the V177F mutation in the ET_A receptor sterically clashes with the 125 tryptophan moiety of IRL2500 and reduces its affinity, thus partially accounting for the 126 ET_B -selectivity of IRL2500. This is consistent with the previous study, in which the 127 replacement of the tryptophan moiety with the smaller value residue in IRL2500 128 weakened its ET_B-selectivity²⁹.

129

130 Comparison of the binding modes of IRL2500, ET-1, and bosentan

131 IRL2500 is designed to mimic the Y13, F14, I19, I20, and W21 residues in ET-132 1, which play critical roles in ligand binding to the ET_{B} receptor¹⁹. The tryptophan and 133 dimethyl phenyl group of IRL2500 seem to be equivalent to W21 and I20 in ET-1, 134 respectively, while the biphenyl group of IRL2500 seems to be equivalent to F14 and I19 135 of ET-1. However, a comparison between IRL2500 and ET-1 binding revealed an unexpected difference in their binding interactions (Fig. 4a). The carboxylate of the 136 137 tryptophan in IRL2500 superimposes well with that of W21 in ET-1, and is coordinated by similar positively charged residues. The tryptophan moiety and dimethyl phenyl group 138 - 7 -

of IRL2500 superimpose well with I20 and W21 of ET-1, respectively. In contrast, the biphenyl group of IRL2500 penetrates into the receptor core, in an opposite manner to the F14 and I19 of ET-1. Overall, the electrostatic interactions between the carboxylates and the positively charged residues are conserved in IRL2500 and ET-1 binding, but the other moieties form totally distinct interactions with the receptor. The volume of the ligand binding pocket in the ligand-free structure is large, thereby allowing the aromatic moieties of IRL2500 to flip.

146 IRL2500 has distinct chemical mojeties as compared with bosentan, because 147 IRL2500 was not developed based on bosentan. To reveal the similarities and differences 148 in their binding modes, we compared the binding modes of IRL2500 and bosentan in 149 detail (Fig. 4b, c). The carboxylate of IRL2500 and the sulfonamide of bosentan are similarly coordinated by the positively charged residue R343^{6.55}, suggesting that this 150 151 electrostatic interaction is a common feature of the antagonist binding to the ET_B receptor. 152 In addition, like bosentan, the aromatic moieties of IRL2500 fit within the local 153 hydrophobic pockets in the ET_B receptor. Overall, IRL2500 has moieties that form similar 154 binding interactions to those of bosentan. However, bosentan lacks the moiety 155 corresponding to the biphenyl group of IRL2500, which deeply penetrates into the 156 receptor core. Thus, IRL2500 fits into the pocket more tightly as compared with bosentan, 157 contributing to its higher affinity.

158

159 IRL2500 function an inverse agonist for ETB

160 To obtain mechanistic insights into the receptor inactivation by IRL2500, we 161 compared the ET_B structures bound to ET-1, bosentan, and IRL2500. Previous structural -8 –

162 studies showed that ET-1 binding induces the inward moment of the extracellular portion of TM6 including W336^{6.48}, leading to receptor activation on the intracellular side²¹ (Fig. 163 5a). Bosentan binding sterically prevents the inward motion of W336^{6.48} with its 2-164 methoxyphenoxy group, and thus functions as an antagonist²² (Fig. 5b). The 165 166 dimethylphenyl group of IRL2500 superimposes well with the 2-methoxyphenoxy group 167 of bosentan and similarly prevents the inward motion. Moreover, the dimethyl phenyl and biphenyl groups of IRL2500 sandwich the W336^{6.48} side chain, tightly preventing its 168 169 inward rotation. These observations suggest that IRL2500 strongly prevents the transition 170 to the active state, as compared with bosentan, thereby possibly working as an inverse 171 agonist that reduces the basal activity.

172 To investigate the inverse agonist activity of IRL2500 for the ET_B receptor, we 173 first measured ligand-induced AP-TGFa release responses. The EC₅₀ value of the agonist 174 ET-1 was 0.11 nM, while IRL2500 and the antagonist bosentan did not change the 175 receptor activation level (Fig. 5c). These data suggested that IRL2500 does not have the 176 inverse agonist activity or that the assay is not sensitive enough to detect inverse agonist 177 activity. Indeed, we observed that the basal activity of the ET_B receptor was very low in 178 the assay (Fig. 5d) and thus we could not distinguish whether IRL2500 functions as an 179 antagonist or an inverse agonist by this assay.

180 Therefore, we tried the same assay using a constitutively active mutant of the ET_B 181 receptor. Constitutively active mutant GPCRs have been employed in pharmacological 182 characterizations of inverse agonists³⁰, because such mutant GPCRs allow the assay to 183 measure signals in a larger detection window. The substitution of the highly conserved 184 L3.43 to glutamine has been identified as a causative activating mutation in the TSHR³¹

185	and CYSLTR2 ³² genes, which are related to hyperthyroidism and uveal melanoma,
186	respectively. Therefore, we transferred the L3.43Q mutation into ET_B (ET_B -L192 ^{3.43} Q)
187	and examined its constitutive activity. We found that ET_B -L3.43Q induced spontaneous
188	AP-TGFa release in a plasmid volume-dependent manner (Fig. 5d), indicating that
189	L3.43Q works as a constitutive active mutation in the ET_{B} receptor. We evaluated the
190	dose response effects of bosentan and IRL2500, using the constitutive active mutant ET_B -
191	L3.43Q (Fig. 5e). Again, the antagonist bosentan did not change the receptor activation
192	from the baseline level, whereas IRL2500 reduced the basal activity (EC ₅₀ =1.2 nM).
193	These data indicate that IRL2500 works as a potent inverse agonist for the ET_B receptor,
194	consistent with the structural observations. The biphenyl group of IRL2500 prevents the
195	inward motion of W336 ^{6.48} and stabilizes the inactive conformation, and thus IRL2500
196	functions as an inverse agonist.
197	
198	
199	
200	
201	
202	
203	
204	
205	

206 **Discussion**

We have determined the crystal structure of the ET_B receptor in complex with the peptide compound IRL2500, and thus elucidated the detailed receptor interactions and the structural basis for its ET_B selectivity. Although IRL2500 is designed to mimic the partial structure of ET-1, the binding mode is quite different. Moreover, using the constitutively active mutant that we established in the current study, we first revealed that IRL2500 functions as a potent inverse agonist for the ET_B receptor, and provided the structural basis for the inverse agonistic mechanism.

214 Small-molecule ETR antagonists have been developed over the years; however, 215 most ETR antagonists have been designed based on bosentan. Thus, the presently 216 available ET agents are chemically very similar. IRL2500 was developed based on ET-1 217 and has totally distinct chemical moieties, as compared with bosentan. However, the 218 comparison of the IRL2500 and bosentan binding modes revealed the unexpected 219 similarity in their binding interactions. This observation suggests that the charge-220 complementary interactions in the center of the pocket form the core of the receptor-221 antagonist interactions, and the other aromatic moieties fit the local hydrophobic pocket. 222 The ligand binding pocket in the inactive ET_B structures is larger than those in other 223 GPCR structures, and thus aromatic moieties may be necessary to fit well within the 224 pocket.

We revealed that the biphenyl group of IRL2500 penetrates deeply into the receptor core proximal to $D147^{2.50}$, preventing the inward motion of W336^{6.48} in TM6, and thus IRL2500 functions as an inverse agonist (Fig. 6a). This D2.50 constitutes a

228	sodium binding site adjacent to the orthosteric site, which is highly conserved among the
229	class A GPCRs ³³ . Sodium has negative allosteric effects on ligand binding in most class
230	A GPCRs, by stabilizing the inactive conformations. Therefore, this sodium binding site
231	is the hot spot for the design of allosteric modulators and inverse agonists to fix receptors
232	in the inactive conformations. In the BLT1 structure bound to the inverse agonist BIIL260,
233	the benzamidine group of BIIL260 directly hydrogen bonds with D2.50, stabilizing the
234	inactive conformation instead of the sodium ³⁴ (Fig. 6b). The biphenyl group of IRL2500
235	superimposes well with the benzamidine group of BIIL260 (Fig. 6c). Although the
236	biphenyl group of IRL2500 does not form any hydrogen-bonding interactions with the
237	receptor, it prevents the conformational change around the D2.50 in a similar manner to
238	the benzamidine moiety of BIIL260. For the design of effective inverse agonists, the
239	biphenyl moiety would be also useful as a modulation part along with another moiety that
240	exerts specific and tight binding to the orthosteric site, as well as a benzamidine group.
241	
242	
243	
244	
245	
246	

247

248 Materials and methods

249 **Expression and purification**

250 The haemagglutinin signal peptide, followed by the Flag epitope tag 251 (DYKDDDDK) and a nine-amino-acid linker, was added to the N-terminus of the 252 receptor, and a tobacco etch virus (TEV) protease recognition sequence was introduced 253 between G57 and L66, to remove the disordered N-terminus during the purification 254 process. The C-terminus was truncated after S407, and three cysteine residues were 255 mutated to alanine (C396A, C400A, and C405A) to avoid heterogeneous palmitoylation. 256 To improve crystallogenesis, we introduced four thermostabilizing mutations () and inserted minimal T4 lysozyme²⁵ into intracellular loop 3, between L303^{5.68} and L311^{6.23} 257 $(ET_B-Y4-mT4L^{22}).$ 258

The thermostabilized construct ET_B-Y4-mT4L was subcloned into a modified 259 pFastBac vector, with the resulting construct encoding a TEV cleavage site followed by 260 a GFP-His¹⁰ tag at the C-terminus. The recombinant baculovirus was prepared using the 261 262 Bac-to-Bac baculovirus expression system (Invitrogen). Sf9 insect cells were infected with the virus at a cell density of 4.0×10^6 cells per millilitre in Sf900 II medium, and 263 264 grown for 48 h at 27 °C. The harvested cells were disrupted by sonication, in buffer 265 containing 20 mM Tris-HCl, pH 7.5, and 20% glycerol. The crude membrane fraction 266 was collected by ultracentrifugation at 180,000g for 1 h. The membrane fraction was solubilized in buffer, containing 20 mM Tris-HCl, pH 7.5, 200 mM NaCl, 1% DDM, 267 0.2% cholesterol hemisuccinate, 10 μ M IRL2500, and 2 mg ml⁻¹ iodoacetamide, for 268 1 h at 4 °C. The supernatant was separated from the insoluble material by 269

270 ultracentrifugation at 180,000g for 20 min, and incubated with TALON resin 271 (Clontech) for 30 min. The resin was washed with ten column volumes of buffer, 272 containing 20 mM Tris-HCl, pH 7.5, 500 mM NaCl, 0.1% LMNG, 0.01% CHS, 10 µM 273 IRL2500, and 15 mM imidazole. The receptor was eluted in buffer, containing 20 mM 274 Tris-HCl, pH 7.5, 500 mM NaCl, 0.01% LMNG, 0.001% CHS, 10 µM IRL2500, and 275 200 mM imidazole. The eluate was treated with TEV protease and dialysed against 276 buffer (20 mM Tris-HCl, pH 7.5, 500 mM NaCl, and 10 µM IRL2500). The cleaved GFP-His₁₀ tag and the TEV protease were removed with Co²⁺-NTA resin. The receptor 277 278 was concentrated and loaded onto a Superdex200 10/300 Increase size-exclusion 279 column, equilibrated in buffer containing 20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 280 0.01% LMNG, 0.001% CHS, and 10 µM IRL2500. Peak fractions were pooled, concentrated to 40 mg ml^{-1} using a centrifugal filter device (Millipore 50 kDa MW 281 282 cutoff), and frozen until crystallization. During the concentration, IRL2500 was added 283 to a final concentration of $100 \,\mu$ M.

284

285 **Crystallization**

The purified receptor was reconstituted into molten lipid (monoolein and cholesterol 10:1 by mass) at a weight ratio of 1:1.5 (protein:lipid). The protein-laden mesophase was dispensed into 96-well glass plates in 30 nl drops and overlaid with 800 nl precipitant solution by a Gryphon LCP robot (Art Robbins Instruments)²⁶. Crystals of ET_B-Y4-mT4L bound to IRL2500 were grown at 20°C in precipitant conditions containing 30% PEG300, 100 mM Bis-tris, pH 7.5, 150 mM sodium phosphate monobasic, and 10 mM TCEP hydrochloride. The crystals were harvested directly from - 14 -

- 293 the LCP using micromounts (MiTeGen) or LithoLoops (Protein Wave) and frozen in
- 294 liquid nitrogen, without adding any extra cryoprotectant.
- 295

296 Data collection and structure determination

297 X-ray diffraction data were collected at the SPring-8 beamline BL32XU, with 10 298 \times 15 μ m² (width \times height) micro-focused beams and an EIGER X 9M detector (Dectris). 299 Various wedge data sets (10°) per crystal were mainly collected with the ZOO system, an 300 automatic data-collection system developed at SPring-8 (K.Y., G.U., K.H., M.Y., and 301 K.H., submitted). The loop-harvested microcrystals were identified by raster scanning and subsequently analyzed by SHIKA³⁵. Each data set was indexed and integrated with 302 XDS^{36} , and the datasets were hierarchically clustered by using the correlation coefficients 303 304 of the intensities between datasets. After the rejection of outliers, 58 data sets were finally 305 merged with XSCALE³⁶. The IRL2500-bound structure was determined by molecular 306 replacement with PHASER³⁷, using the K8794-bound ET_B structure (PDB code: 5X93). Subsequently, the model was rebuilt and refined using COOT³⁸ and PHENIX³⁹. 307 308 respectively. The final model of IRL2500-bound ET_{B} -Y4-T4L contained residues 91-207, 309 214-303, and 311-403 of ET_B, 1-14 and 22-117 of mT4L, IRL2500, 6 monoolein 310 molecules, two phosphoric acids, and 41 water molecules. The model quality was MolProbity⁴⁰. 311 assessed by Figures were prepared using CueMol 312 (http://www.cuemol.org/ja/)

313

TGF*α* **shedding assay**

315 The TGF α shedding assay, which measures the activation of Gq and G12 signaling²⁴, was performed as described previously²². Briefly, a plasmid encoding an ET_B 316 317 construct with an internal FLAG epitope tag or an ET_A construct was transfected, together 318 with a plasmid encoding alkaline phosphatase (AP)-tagged TGF α (AP-TGF α), into 319 HEK293A cells by using a polyethylenimine (PEI) transfection reagent (1 µg ETR 320 plasmid, 2.5 µg AP-TGFa plasmid, and 25 µl of 1 mg/ml PEI solution per 10-cm culture 321 dish). After a one day culture, the transfected cells were harvested by trypsinization, 322 washed, and resuspended in 30 ml of Hank's Balanced Salt Solution (HBSS) containing 323 5 mM HEPES (pH 7.4). The cell suspension was seeded in a 96 well plate (cell plate) at 324 a volume of 80 µl per well and incubated for 30 min in a CO₂ incubator. For the 325 measurement of antagonist activity, IRL2500 was diluted in 0.01% bovine serum albumin 326 (BSA) and HEPES-containing HBSS (assay buffer) and added to the cell plate at a volume 327 of 10 µl per well. After 5 min, ET-1, at a final concentration of 0.2 nM, was added to the 328 cell plate at a volume of 10 μ l per well. For the measurement of agonistic activity, after 329 adding 10 μ l of the assay buffer, serially diluted ET-1 was mixed with the cells at a volume 330 of 10 μ l per well. After a 1 h incubation in the CO₂ incubator, aliquots of the conditioned 331 media (80 µl) were transferred to an empty 96-well plate (conditioned media (CM) plate). 332 Similarly, for the measurement of inverse agonist activity, the cells were mixed with 10 333 µl of the assay buffer, followed by the addition of serially diluted IRL2500, and incubated 334 for 4 h before the transfer of the conditioned media. The AP reaction solution (10 mM p-335 nitrophenylphosphate (p-NPP), 120 mM Tris-HCl (pH 9.5), 40 mM NaCl, and 10 mM

MgCl₂) was dispensed into the cell plates and the CM plates (80 μ l per well). The absorbance at 405 nm (Abs₄₀₅) of the plates was measured, using a microplate reader (SpectraMax 340 PC384, Molecular Devices), before and after a 1 h incubation at room temperature. AP-TGF α release was calculated as described previously²². The AP-TGF α release signals were fitted to a four-parameter sigmoidal concentration-response curve, using the Prism 7 software (GraphPad Prism), and the pEC₅₀ (equal to -Log₁₀ EC₅₀) and E_{max} values were obtained.

343 To measure the constitutive activity in a plasmid volume-dependent manner, HEK293 cells were seeded in a 96-well plate at a concentration of 4 x 10⁵ cells per ml in 344 345 Opti-MEM I Reduced Serum Media (Thermo Fisher Scientific), in a volume of 80 µl per 346 well. A transfection mixture was prepared by mixing the PEI transfection reagent (0.2 μ l per well) and plasmids (20 ng AP-TGF α plasmid, titrated ETR plasmid, and an empty 347 348 vector to balance the total plasmid volume) in Opti-MEM I Reduced Serum Media (20 349 μ). The mixture was added to the cells, which were then incubated for 24 h before the 350 transfer of the conditioned media. After adding the AP reaction solution, the absorbances 351 of the cells and the CM plates were measured at 20 min intervals. The AP-TGFa release 352 signals were calculated as described above, and the signal in the mock-transfected 353 conditions was set at the baseline.

- 354
- 355
- 356

357 Acknowledgements

358 The diffraction experiments were performed at SPring-8 BL32XU (proposal 2017A2527). We thank the beamline staff at BL32XU of SPring-8 (Sayo, Japan) for 359 360 technical assistance during data collection. We also thank Kouki Kawakami, Takeaki 361 Shibata and Ayumi Inoue (Tohoku University, Japan) for technical assistance in the 362 characterization of the L3.43Q-mutant ET_B receptor. This work was supported by grants 363 from the Platform for Drug Discovery, Informatics and Structural Life Science by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), JSPS 364 365 KAKENHI grants 16H06294 (O.N.), 17J30010 (W.S.), 30809421 (W.S.), 17K08264 366 (A.I.), and the Japan Agency for Medical Research and Development (AMED) grants: 367 the PRIME JP17gm5910013 (A.I.) and the LEAP JP17gm0010004 (A.I. and J.A.), and 368 the National Institute of Biomedical Innovation.

369

370 Author contributions

371 C.N. expressed, purified, and crystallized the IRL2500-bound ET_B receptor, 372 collected data, and refined the structures. W.S. designed all of the experiments, initially 373 crystallized the receptor, and refined the structure. A.I., F.M.N.K., and J.A. performed 374 and oversaw the cell-based assays. The manuscript was prepared by C.N., W.S., A.I., and 375 O.N. W.S. and O.N. supervised the research. Coordinates and structure factors have been 376 deposited in the Protein Data Bank, under the accession number XXXX for the IRL2500-377 bound structure. The X-ray diffraction images are also available at SBGrid Data Bank 378 (https://data.sbgrid.org/), under the ID YYYY.

-18-

379

380 **Competing interests**

381 The authors declare no competing interests

382 **References**

383

000		
384	1.	Yanagisawa, M. et al. A novel potent vasoconstrictor peptide produced by
385		vascular endothelial cells. Nature 332, 411–415 (1988).
386	2.	Arai, H. et al. Cloning and expression of a cDNA encoding an endothelin
387		receptor. Nature 348, 730–732 (1990).
388	3.	Sakurai, T. et al. Cloning of a cDNA encoding a non-isopeptide-selective
389		subtype of the endothelin receptor. Nature 348, 732-735 (1990).
390	4.	Channick, R. N. et al. Effects of the dual endothelin-receptor antagonist bosentan
391		in patients with pulmonary hypertension: a randomised placebo-controlled study.
392		Lancet 358 , 1119–1123 (2001).
393	5.	Rubin, L. J. et al. Bosentan therapy for pulmonary arterial hypertension. N. Engl.
394		J. Med. 346 , 896–903 (2002).
395	6.	Maguire, J. J. & Davenport, A. P. Endothelin@25 - new agonists, antagonists,
396		inhibitors and emerging research frontiers: IUPHAR Review 12. Br. J.
397		Pharmacol. 171, 5555–5572 (2014).
398	7.	Davenport, A. P. et al. Endothelin. Pharmacol. Rev. 68, 357-418 (2016).
399	8.	Rosanò, L., Spinella, F. & Bagnato, A. Endothelin 1 in cancer: biological
400		implications and therapeutic opportunities. Nat. Rev. Cancer 13, 637-651 (2013).
401	9.	Clozel, M. et al. Pathophysiological role of endothelin revealed by the first orally
402		active endothelin receptor antagonist. Nature 365, 759-761 (1993).
403	10.	Clozel, M. et al. Pharmacological characterization of bosentan, a new potent
404		orally active nonpeptide endothelin receptor antagonist. J. Pharmacol. Exp. Ther.
405		270, 228–235 (1994).
406	11.	Koyama, Y. & Michinaga, S. Regulations of Astrocytic Functions by
407		Endothelins: Roles in the Pathophysiological Responses of Damaged Brains. J.
408		Pharmacol. Sci. 118, 401–407 (2012).
409	12.	Hammond, T. R. et al. Endothelin-B Receptor Activation in Astrocytes Regulates
410		the Rate of Oligodendrocyte Regeneration during Remyelination. Cell Rep. 13,
411		2090–2097 (2015).
412	13.	Moldes, O. et al. Neuroprotection afforded by antagonists of endothelin-1
413		receptors in experimental stroke. Neuropharmacology 63, 1279–1285 (2012).
414	14.	Michinaga, S. et al. Amelioration of Cold Injury-Induced Cortical Brain Edema
415		Formation by Selective Endothelin ETB Receptor Antagonists in Mice. PLoS

416		<i>One</i> 9 , e102009 (2014).
417	15.	Michinaga, S. <i>et al.</i> Improvement of cold injury-induced mouse brain edema by
418		endothelin ET_B antagonists is accompanied by decreases in
419		matrixmetalloproteinase 9 and vascular endothelial growth factor-A. Eur. J.
420		Neurosci. 42, 2356–2370 (2015).
421	16.	Michinaga, S. et al. Delayed Administration of BQ788, an ET _B Antagonist, after
422		Experimental Traumatic Brain Injury Promotes Recovery of Blood–Brain Barrier
423		Function and a Reduction of Cerebral Edema in Mice. J. Neurotrauma 35, 1481–
424		1494 (2018).
425	17.	Palmer, M. J. Endothelin Receptor Antagonists: Status and Learning 20 Years
426		On. Prog. Med. Chem. 47, 203–237 (2009).
427	18.	Mucke, H. A. M. Small-molecule endothelin receptor antagonists: a review of
428		patenting activity across therapeutic areas. IDrugs 12, 366-375 (2009).
429	19.	Friih, T. <i>et al.</i> IRL 2500: A potent ET _B selective endothelin antagonist.
430		Bioorganic Med. Chem. Lett. 6, 2323–2328 (1996).
431	20.	Balwierczak, J. L. et al. Characterization of a potent and selective endothelin-B
432		receptor antagonist, IRL 2500. J. Cardiovasc. Pharmacol. 26 Suppl 3, S393-6
433		(1995).
434	21.	Shihoya, W. et al. Activation mechanism of endothelin ET _B receptor by
435		endothelin-1. Nature 537, 363-368 (2016).
436	22.	Shihoya, W. et al. X-ray structures of endothelin ET _B receptor bound to clinical
437		antagonist bosentan and its analog. Nat. Struct. Mol. Biol. 24, 758-764 (2017).
438	23.	Okuta, A. et al. Thermostabilization of the Human Endothelin Type B Receptor.
439		J. Mol. Biol. 428, 2265–2274 (2016).
440	24.	Inoue, A. et al. TGFa shedding assay: an accurate and versatile method for
441		detecting GPCR activation. Nat. Methods 9, 1021-1029 (2012).
442	25.	Thorsen, T. S. et al. Modified T4 Lysozyme Fusion Proteins Facilitate G Protein-
443		Coupled Receptor Crystallogenesis. Structure 22, 1657–1664 (2014).
444	26.	Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic
445		mesophases. Nat. Protoc. 4, 706–731 (2009).
446	27.	Yamashita, K., Hirata, K. & Yamamoto, M. KAMO: towards automated data
447		processing for microcrystals. Acta Crystallogr. Sect. D Struct. Biol. 74, 441-449
448		(2018).
449	28.	Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of
450		three-dimensional models and computational probing of structure-function

451		relations in G protein-coupled receptors. Methods Neurosci. 25, 366–428 (1995).
452	29.	Sakaki, J. <i>et al.</i> Discovery of IRL 3461: a novel and potent endothelin antagonist
453		with balanced ET _A /ET _B affinity. <i>Bioorg. Med. Chem. Lett.</i> 8 , 2241–2246 (1998).
454	30.	Soudijn, W., van Wijngaarden, I. & Ijzerman, A. P. Structure-activity
455		relationships of inverse agonists for G-protein-coupled receptors. Med. Res. Rev.
456		25, 398–426 (2005).
457	31.	Trülzsch, B. et al. Detection of thyroid-stimulating hormone receptor and
458		Gsalpha mutations: in 75 toxic thyroid nodules by denaturing gradient gel
459		electrophoresis. J. Mol. Med. 78, 684-691 (2001).
460	32.	Moore, A. R. et al. Recurrent activating mutations of G-protein-coupled receptor
461		CYSLTR2 in uveal melanoma. Nat. Genet. 48, 675–680 (2016).
462	33.	Katritch, V. et al. Allosteric sodium in class A GPCR signaling. Trends Biochem.
463		<i>Sci.</i> 39, 233–244 (2014).
464	34.	Hori, T. et al. Na ⁺ -mimicking ligands stabilize the inactive state of leukotriene
465		B4 receptor BLT1. Nat. Chem. Biol. 14, 262-269 (2018).
466	35.	Ueno, G. et al. Remote access and automation of SPring-8 MX beamlines. in AIP
467		Conf. Proc. 1741, 050021 (2016).
468	36.	Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125-132 (2010).
469	37.	McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40,
470		658–674 (2007).
471	38.	Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development
472		of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486-501 (2010).
473	39.	Adams, P. D. et al. PHENIX: a comprehensive Python-based system for
474		macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66,
475		213–221 (2010).
476	40.	Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular
477		crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).
478		
479		
480		
481		
482		

483 Figure Legends

484 Fig. 1. Inhibition of ET-1 binding by IRL2500.

Effect of IRL2500 on the ET-1 (0.2 nM)-induced release of AP-TGF α in HEK293 cells expressing the endothelin receptors. For each experiment, the AP-TGF α release response in the absence of IRL2500 is set at 100%. Data are displayed as means ± s.e.m. (standard error of the mean) from seven to nine independent experiments, with each performed in triplicate.

490

491 Fig. 2. ET_B structure in complex with IRL2500.

492 **a**, The overall structure of the IRL2500-bound ET_B receptor. The receptor is shown as a 493 sky blue ribbon model. IRL2500 is shown as a deep sky blue stick with a transparent 494 surface model. **b**, Superimposition of the IRL2500-bound and ligand-free ET_B structures 495 (PDB code: 5GLI), colored sky blue and light green, respectively. c, Schematic 496 representation of the interactions between ET_B and IRL2500 within 4.5 Å. The dashed 497 lines show hydrogen bonds. d, Binding pocket for IRL2500, viewed from the 498 extracellular side (over) and the membrane plane (lower). The receptor is shown in a sky 499 blue ribbon representation. IRL2500 and receptor residues involved in ligand binding are 500 shown as sticks, coloured deep sky blue and sky blue, respectively. The dashed lines show 501 hydrogen bonds.

502

503 Fig. 3. Conservation of the IRL2500 binding site.

504	a , Sequence conservation of the IRL2500 binding site between ET_{A} and ET_{B} , mapped
505	onto the IRL2500-bound structure. Conserved and non-conserved residues are coloured
506	sky blue and gray, respectively. The receptor residues involved in IRL2500 binding are
507	shown as sticks. The dashed lines show hydrogen bonds. b , Effect of IRL2500 on the ET-
508	1 (0.2 nM)-induced release of AP-TGF α in HEK293 cells expressing the mutant ET_{B}
509	receptors. For each experiment, the AP-TGF α release response in the absence of IRL2500
510	is set at 100%. Data are displayed as means \pm s.e.m. (standard error of the mean) from
511	four to six independent experiments, with each performed in triplicate.
512	

513 Fig. 4. Comparison of binding modes of IRL2500, ET-1, and bosentan.

514 **a**, Superimposition of the IRL2500- and ET-1-bound ET_B receptors (PDB code: 5GLH). 515 The ET-1- and IRL2500-bound receptors are shown as pink and sky blue ribbons, 516 respectively. IRL2500 is shown as a stick model. ET-1 is shown as a magenta ribbon with 517 stick models of the peptide residues (Y13, F14, I19, I20, and W21). b, c, Binding pockets 518 for bosentan (b) and IRL2500 (c). The bosentan-bound receptor (PDB code: 5XPR) is shown as a thin orange ribbon model. The residues involved in bosentan binding (D154^{2.57}, 519 Q181^{3.32}, K182^{3.33}, K273^{5.38}, W336^{6.48}, and R343^{6.55}) and D147^{2.50} are shown as sticks. 520 521 Bosentan is shown as an orange stick model. IRL2500 and the IRL2500-bound receptor 522 are coloured as in panel (a). The residues involved in IRL2500 binding (N158^{2.61}, K182^{3.33}, R343^{6.55}, D147^{2.50}, and W336^{6.48}) are shown as sticks. 523

524

- 24 -

525 Fig. 5. Inverse agonistic activity of IRL2500.

526	a, b, Structural changes upon ET-1 and IRL2500 binding, as compared with the bosentan-	
527	bound structure, coloured as in Fig. 4. Black arrows indicate the inward movements of	
528	TM6 and W336 ^{6.48} . c , Effects of IRL2500 and bosentan on the ET-1-induced AP-TGF α	
529	release for the ET_{B} receptor. Data are displayed as means \pm s.e.m. (standard error of the	
530	mean) from three to four independent experiments. d, Constitutive activity of ETB.	
531	HEK293 cells were transfected with titrated volume of a plasmid encoding the wild-type	
532	ET_B ($ET_B\text{-}WT$) or the L3.43Q-mutant ET_B ($ET_B\text{-}L3.43Q$) and accumulated AP-TGF α	
533	release during 24 h after transfection was measured. AP-TGF α release signal in 0 ng	
534	receptor plasmid was set as a baseline. Data are displayed as means \pm s.e.m. from three	
535	independent experiments e, Effects of IRL2500 and bosentan on the ET-1-induced AP-	
536	TGF α release for the constitutive active ET _B receptor (ET _B -L3.43Q). Data are displayed	
537	as means \pm s.e.m. from three to four independent experiments.	

538

539 Fig. 6. Structural comparison of ET_B and BLT1 in complex with inverse 540 agonists.

a, **b**, The overall structures of the IRL2500-bound ET_B receptor (**a**) and the BIIL260bound BLT1 receptor (PDB code: 5X33) (**b**). The ET_B and BLT1 receptors are shown as sky blue and light green ribbons, respectively. The inverse agonists IRL2500 and BIIL260 are shown as blue and dark green sticks, respectively. The lower panels show the binding interactions around the sodium binding site. The residues involved in ligand binding are represented with sticks. Hydrogen bonds are indicated by black dashed lines. In the -25 –

547	IRL2500-bound structure, the biphenyl group of IRL2500 forms van der Waals
548	interactions with the receptor, and does not form any hydrogen-binding interactions. In
549	the BIIL260 structure, BIIL260 forms hydrogen bonds with D66 ^{2.50} , S106 ^{3.39} , and
550	S276 ^{7.45} . c , Superimposition of the ET_B and BLT1 structures in complex with the inverse
551	agonists.
552	
553	
554	
555	
556	
557	
558	
559	
560	
561	
562	

563 Supplementary Figure Legends

564 Supplementary Fig. 1. Crystallization.

- 565 a, Gel filtration chromatogram and SDS-PAGE of the purified IRL2500-bound ET_B
- 566 receptor. **b**, Crystals of the IRL2500-bound ET_B receptor.
- 567

568 Supplementary Fig. 2. Comparison of the ECL2 structure with those of

- 569 other peptide-activated GPCRs.
- 570 **a**, Superimposition of the ET_B structures determined to date. The IRL2500-bound and
- 571 other structures are coloured sky blue and gray, respectively. b, Superimposition of the
- 572 IRL2500-bound ET_B structure with other peptide-activated class A GPCRs.
- 573

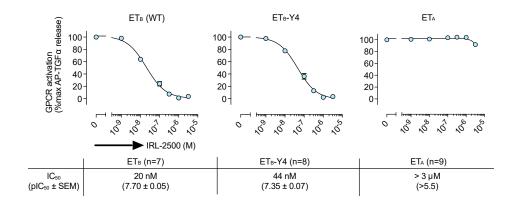
574 Supplementary Fig. 3. Electron density.

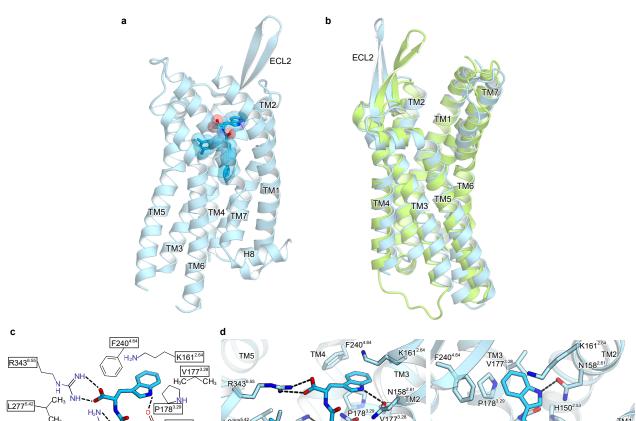
- 575 **a**, $F_o F_c$ omit maps for IRL2500, contoured at 3.0 σ . **b**, $2F_o F_c$ map around the IRL2500
- 576 binding site, contoured at 2.5σ .
- 577

578 Supplementary Fig. 4. Alignment of the human ET_A and ET_B receptors.

579 Alignment of the amino acid sequences of the human ET_B receptor (UniProt ID: P24530)

and the human ET_A receptor (P25101). Secondary structure elements for α -helices and β -


581 strands are indicated by cylinders and arrows, respectively. Conservation of the residues


582 between ET_A and ET_B is indicated as follows: red panels for completely conserved; red

- 583 letters for partially conserved; and black letters for not conserved. The residues involved
- in IRL2500 binding are indicated with squares.
- 585

586 Supplementary Fig. 5. ET-1 responses of mutant receptors.

- 587 Concentration response-curves of AP-TGFa release in the ET-1 treatment of HEK293
- 588 cells expressing the endothelin receptors. Symbols and error bars are means and s.e.m.
- 589 (standard error of the mean) of four or six independent experiments, each performed in
- 590 triplicate.

Q181

S184^{3.35}

H150^{2.53}

D147²

TM1

K182

V185

K182^{3.33} Q181

TM4

L2 TM5

S184

185³

S3767.4

\$379^{7.4}

A375

W336^{6,48}

TM7

Nagiri et al. Figure 2

N158^{2.61}

S184^{3.35}

H150^{2.53}

D147^{2.50}

НŃ

Q181^{3.32}

но^{но}

S376^{7.43}

S379^{7.46}

L339^{6.5}

Y281^{5.46}

W336^{6.48}

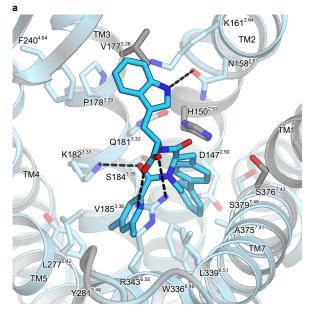
K182^{3.33}

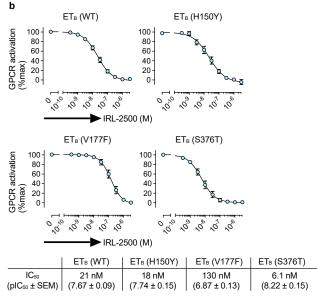
V185^{3.36}

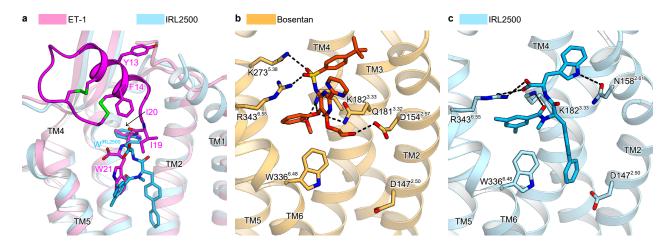
A375^{7.41}

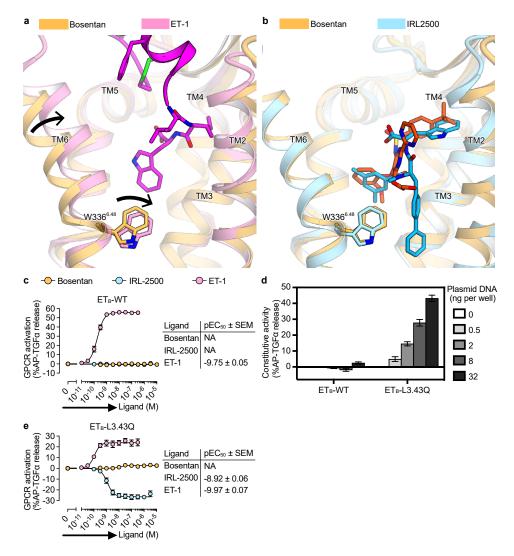
H₃C.

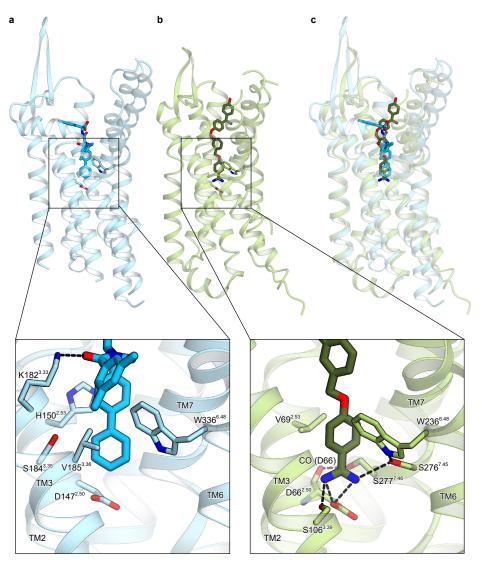
NH H₃Ç

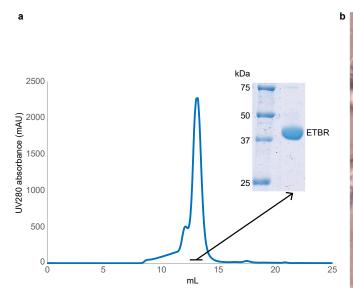

CH

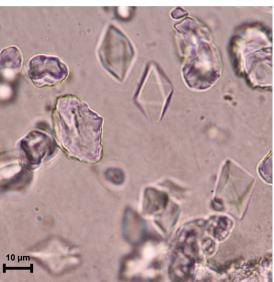

127

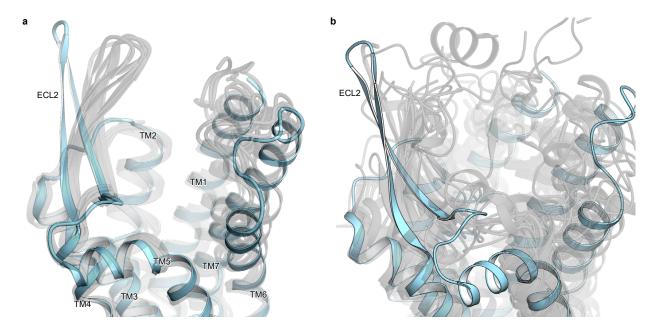

Y28

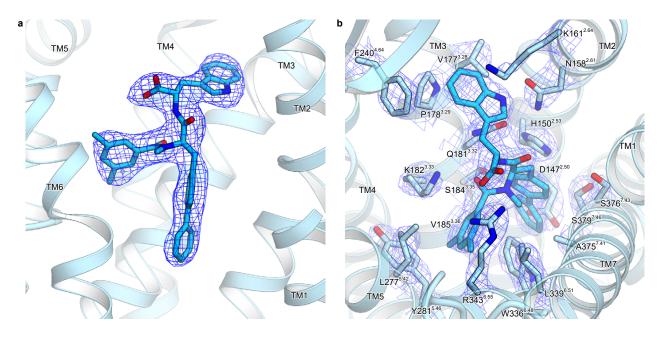

Ľ339

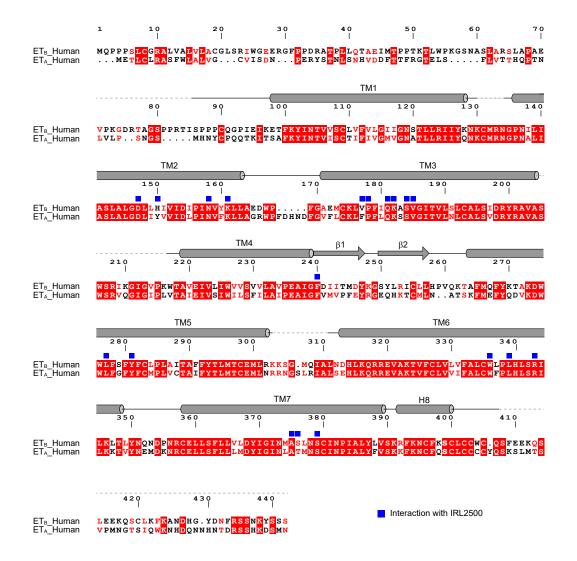

W336⁶






Data collection Harmonic for the product of the produc		IRL2500-ET _B	
Space group $I422$ Cell dimensions a, b, c (Å) $110.0, 110.0, 291.7$ a, b, c (Å) $110.0, 110.0, 291.7$ a, b, c (Å) $90, 90$ Resolution (Å)* $43.88-2.70$ ($2.797-2.70$) R_{meas}^* 0.295 (3.946) * 10.74 (1.08) * 0.995 (0.798) Completeness (%)* 99.66 (99.35) Redundancy* 25.069 R_{work} / R_{free} $0.2244 / 0.2628$ No. atoms 50.69 I gigand 3256 Ligand/ion	Data collection	HELLOOD DIB	
Cell dimensions $a, b, c(Å)$ 110.0, 110.0, 291.7 $a, b, c(Å)$ 90, 90, 90 Resolution (Å)* 43.88-2.70 (2.797-2.70) R_{meas}^* 0.295 (3.946) $< J/\sigma(J) > *$ 0.74 (1.08) $CC_{1/2}^*$ 0.995 (0.798) Completeness (%)* 99.66 (99.35) Redundancy* 19.3 (19.6) Refinement Refinement Resolution (Å) 43.88-2.70 No. reflections 25,069 R_work / R_{free} 0.2244 / 0.2628 No. atoms 25,069 Protein 3256 Ligand 43 Water/Ion/Lipid 181 Averaged <i>B</i> -factors (Å ²) Protein Protein 82.9 Ligand/ion 52.3 Water 87.7 R.m.s. deviations from ideal Bond lengths (Å) Bond angles (°) 0.92 Ramachandran plot Favored (%) Favored (%) 97.77 Allowed (%) 2.23		1422	
$a, b, c(Å)$ 110.0, 110.0, 291.7 α, β, γ (°) 90, 90, 90 Resolution (Å)* 43.88-2.70 (2.797-2.70) R_{mcas}^* 0.295 (3.946) $ $		- /	
α, β, γ (°)90, 90, 90Resolution (Å)*43.88-2.70 (2.797-2.70) R_{meas}^* 0.295 (3.946) $*$ 10.74 (1.08) CC_{12}^* 0.995 (0.798)Completeness (%)*99.66 (99.35)Redundancy*19.3 (19.6) Refinement Resolution (Å)43.88-2.70No. reflections25,069 R_{work} / R_{free} 0.2244 / 0.2628No. atoms $-$ Protein3256Ligand43Averaged B-factors (Å ²) $-$ Protein82.9Ligand/ion52.3Water87.7R.m.s. deviations from ideal $-$ Bond lengths (Å)0.004Bond angles (°)0.92Ramachandran plot $-$ Favored (%)97.77Allowed (%)2.23		110.0, 110.0, 291.7	
Resolution (Å)*43.88-2.70 (2.797-2.70) R_{meas}^* 0.295 (3.946) $< I/\sigma(I)>^*$ 10.74 (1.08) CC_{12}^* 0.995 (0.798)Completeness (%)*99.66 (99.35)Redundancy*19.3 (19.6)RefinementResolution (Å)43.88-2.70No. reflections25.069 R_{work} / R_{free} 0.2244 / 0.2628No. atoms V Protein3256Ligand43Water/Ion/Lipid181Averaged B-factors (Å ²) V Protein52.3Water87.7R.m.s. deviations from ideal V Bond lengths (Å)0.004Bond angles (°)0.92Ramachandran plot V Favored (%)97.77Allowed (%)2.23			
R_{meas}^* 0.295 (3.946) * 10.74 (1.08) $CC_{1/2}^*$ 0.995 (0.798) Completeness (%)* 99.66 (99.35) Redundancy* 19.3 (19.6) Refinement 25.069 Rwork / Rfree 0.2244 / 0.2628 No. reflections 25.069 R_work / R_{free} 0.2244 / 0.2628 No. atoms 9rotein Protein 3256 Ligand 43 Water/Ion/Lipid 181 Averaged B-factors (Å ²) 99.23 Protein 82.9 Ligand/ion 52.3 Water 87.7 R.m.s. deviations from ideal 90.004 Bond angles (°) 0.92 Ramachandran plot 97.77 Favored (%) 2.23			
< $l/t \sigma(t)$ >* 10.74 (1.08) CC ₁₂ * 0.995 (0.798) Completeness (%)* 99.66 (99.35) Redundancy* 19.3 (19.6) Refinement - Resolution (Å) 43.88-2.70 No. reflections 25,069 R_{work} / R_{free} 0.2244 / 0.2628 No. atoms - Protein 3256 Ligand 43 Water/Ion/Lipid 181 Averaged B-factors (Å ²) - Protein 82.9 Ligand/ion 52.3 Water 87.7 R.m.s. deviations from ideal - Bond lengths (Å) 0.004 Bond angles (°) 0.92 Ramachandran plot - Favored (%) 97.77 Allowed (%) 2.23			
CC122* 0.995 (0.798) Completeness (%)* 99.66 (99.35) Redundancy* 19.3 (19.6) Refinement			
Completeness (%)* 99.66 (99.35) Redundancy* 19.3 (19.6) Refinement 19.3 (19.6) Resolution (Å) 43.88-2.70 No. reflections 25,069 R_work / R_{free} 0.2244 / 0.2628 No. atoms 0.2244 / 0.2628 Protein 3256 Ligand 43 Water/Ion/Lipid 181 Averaged B-factors (Å ²) V Protein 82.9 Ligand/ion 52.3 Water 87.7 R.m.s. deviations from ideal 0.004 Bond lengths (Å) 0.92 Ramachandran plot 97.77 Favored (%) 97.77 Allowed (%) 2.23			
Redundancy* 19.3 (19.6) Refinement 19.3 (19.6) Resolution (Å) 43.88-2.70 No. reflections 25,069 R_work / R_{free} 0.2244 / 0.2628 No. atoms 0.2244 / 0.2628 Protein 3256 Ligand 43 Water/lon/Lipid 181 Averaged B-factors (Å ²) Protein Protein 82.9 Ligand/ion 52.3 Water 87.7 R.m.s. deviations from ideal 9004 Bond angles (°) 0.92 Ramachandran plot 97.77 Favored (%) 2.23	Completeness (%)*		
Refinement Resolution (Å) $43.88-2.70$ No. reflections $25,069$ R_{work} / R_{free} $0.2244 / 0.2628$ No. atoms $0.2244 / 0.2628$ No. atoms 3256 Ligand 43 Water/lon/Lipid 181 Averaged B-factors (Å ²) 7 Protein 82.9 Ligand/ion 52.3 Water 87.7 R.m.s. deviations from ideal 87.7 Bond lengths (Å) 0.004 Bond angles (°) 0.92 Ramachandran plot 7.77 Favored (%) 97.77 Allowed (%) 2.23			
Resolution (Å) 43.88-2.70 No. reflections 25,069 R_{work} / R_{free} 0.2244 / 0.2628 No. atoms 3256 Protein 3256 Ligand 43 Water/Ion/Lipid 181 Averaged B-factors (Å ²) 2.9 Igand/ion 52.3 Water 87.7 R.m.s. deviations from ideal 9.004 Bond lengths (Å) 0.004 Bond angles (°) 0.92 Ramachandran plot 7.77 Allowed (%) 2.23	·	. ,	
No. reflections 25,069 R_{work} / R_{free} 0.2244 / 0.2628 No. atoms 3256 Protein 3256 Ligand 43 Water/Ion/Lipid 181 Averaged B-factors (Å ²) 9 Protein 82.9 Ligand/ion 52.3 Water 87.7 R.m.s. deviations from ideal 9 Bond lengths (Å) 0.004 Bond angles (°) 0.92 Ramachandran plot 97.77 Allowed (%) 2.23	Refinement		
Rwork / Rfree 0.2244 / 0.2628 No. atoms 3256 Protein 3256 Ligand 43 Water/Ion/Lipid 181 Averaged B-factors (Å ²) 82.9 Protein \$2.3 Water 87.7 R.m.s. deviations from ideal 0.004 Bond lengths (Å) 0.004 Bond angles (°) 0.92 Ramachandran plot 57.77 Favored (%) 97.77 Allowed (%) 2.23	Resolution (Å)	43.88-2.70	
No. atoms 3256 Protein 3256 Ligand 43 Water/Ion/Lipid 181 Averaged B-factors (Å ²) Protein Protein 82.9 Ligand/ion 52.3 Water 87.7 R.m.s. deviations from ideal 0.004 Bond lengths (Å) 0.004 Bond angles (°) 0.92 Ramachandran plot Favored (%) Favored (%) 2.23	No. reflections	25,069	
Protein 3256 Ligand 43 Water/Ion/Lipid 181 Averaged B-factors (Å ²) Protein 82.9 Ligand/ion 52.3 Water 87.7 R.m.s. deviations from ideal Bond lengths (Å) 0.004 Bond angles (°) 0.92 Ramachandran plot Favored (%) 97.77 Allowed (%) 2.23	R _{work} / R _{free}	0.2244 / 0.2628	
Ligand 43 Ligand 181 Averaged B-factors (Å ²) 29 Protein 82.9 Ligand/ion 52.3 Water 87.7 R.m.s. deviations from ideal 0.004 Bond lengths (Å) 0.92 Ramachandran plot 57.77 Favored (%) 97.77 Allowed (%) 2.23	No. atoms		
Water/Ion/Lipid 181 Averaged B-factors (Å ²) 82.9 Protein 82.9 Ligand/ion 52.3 Water 87.7 R.m.s. deviations from ideal 0.004 Bond lengths (Å) 0.004 Bond angles (°) 0.92 Ramachandran plot 57.77 Allowed (%) 2.23	Protein	3256	
Averaged B-factors (Å2)Protein 82.9 Ligand/ion 52.3 Water 87.7 R.m.s. deviations from ideal 0.004 Bond lengths (Å) 0.004 Bond angles (°) 0.92 Ramachandran plot $Favored (%)$ Fallowed (%) 2.23	Ligand	43	
Protein82.9Ligand/ion52.3Water87.7R.m.s. deviations from ideal0.004Bond lengths (Å)0.004Bond angles (°)0.92Ramachandran plot52.3Favored (%)97.77Allowed (%)2.23	Water/Ion/Lipid	181	
Ligand/ion52.3Water87.7R.m.s. deviations from ideal0.004Bond lengths (Å)0.004Bond angles (°)0.92Ramachandran plot52.23	Averaged B-factors (Å ²)		
Water87.7R.m.s. deviations from idealBond lengths (Å)0.004Bond angles (°)0.92Ramachandran plotFavored (%)97.77Allowed (%)2.23	Protein	82.9	
R.m.s. deviations from ideal Bond lengths (Å) 0.004 Bond angles (°) 0.92 Ramachandran plot Favored (%) 97.77 Allowed (%) 2.23	Ligand/ion	52.3	
Bond lengths (Å) 0.004 Bond angles (°) 0.92 Ramachandran plot 97.77 Allowed (%) 2.23	Water	87.7	
Bond angles (°)0.92Ramachandran plotFavored (%)97.77Allowed (%)2.23	R.m.s. deviations from ideal		
Ramachandran plotFavored (%)97.77Allowed (%)2.23	Bond lengths (Å)	0.004	
Favored (%) 97.77 Allowed (%) 2.23	Bond angles (°)	0.92	
Allowed (%) 2.23	Ramachandran plot		
	Favored (%)	97.77	
Outlier (%) 0	Allowed (%)	2.23	
	Outlier (%)	0	


*Values in parentheses are for highest-resolution shell.


Nagiri et al. Table 1

