Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

AUTOMAGIC: Standardized Preprocessing of Big EEG Data

View ORCID ProfileAndreas Pedroni, Amirreza Bahreini, Nicolas Langer
doi: https://doi.org/10.1101/460469
Andreas Pedroni
Methods for Plasticity Research, Psychological Institute, University of Zurich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Andreas Pedroni
Amirreza Bahreini
Methods for Plasticity Research, Psychological Institute, University of Zurich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicolas Langer
Methods for Plasticity Research, Psychological Institute, University of Zurich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

1. Abstract

Electroencephalography (EEG) recordings have been rarely included in large-scale neuropsychiatric biomarker studies. This is arguably not due to a lack of information that lies in EEG recordings but mainly on account of methodological issues. In many cases, particularly in clinical or pediatric populations, the EEG has a high degree of artifact contamination and the quality of EEG recordings often substantially differs between subjects. Although there exist a variety of standardized preprocessing methods to clean EEG from artifacts, currently there is no method to objectively quantify the quality of preprocessed EEG. This makes the commonly accepted procedure of excluding subjects from analyses due to exceeding contamination of artifacts highly subjective. As a consequence, P-hacking is fostered, the replicability of results is decreased, and it is difficult to compare data from different study sites. In addition, in large-scale studies, data are collected over years or even decades, requiring software that controls and manages the preprocessing of ongoing and dynamically growing studies. To address these two challenges, we developed AUTOMAGIC, an open-source MATLAB toolbox that acts as wrapper to run currently available preprocessing methods and offers objective standardized quality assessment for growing studies. In the present paper we outline the functionality of AUTOMAGIC and examine the effect of applying combinations of methods on a sample of resting EEG data. This examination suggests that a applying a pipeline of algorithms to detect artifactual channels in combination with Multiple Artifact Rejection Algorithm (MARA), an independent component analysis (ICA)-based artifact correction method, is sufficient to reduce a large extent of artifacts.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted November 04, 2018.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
AUTOMAGIC: Standardized Preprocessing of Big EEG Data
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
AUTOMAGIC: Standardized Preprocessing of Big EEG Data
Andreas Pedroni, Amirreza Bahreini, Nicolas Langer
bioRxiv 460469; doi: https://doi.org/10.1101/460469
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
AUTOMAGIC: Standardized Preprocessing of Big EEG Data
Andreas Pedroni, Amirreza Bahreini, Nicolas Langer
bioRxiv 460469; doi: https://doi.org/10.1101/460469

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (3689)
  • Biochemistry (7789)
  • Bioengineering (5674)
  • Bioinformatics (21282)
  • Biophysics (10576)
  • Cancer Biology (8173)
  • Cell Biology (11937)
  • Clinical Trials (138)
  • Developmental Biology (6762)
  • Ecology (10401)
  • Epidemiology (2065)
  • Evolutionary Biology (13863)
  • Genetics (9707)
  • Genomics (13070)
  • Immunology (8139)
  • Microbiology (19983)
  • Molecular Biology (7842)
  • Neuroscience (43053)
  • Paleontology (319)
  • Pathology (1279)
  • Pharmacology and Toxicology (2258)
  • Physiology (3351)
  • Plant Biology (7232)
  • Scientific Communication and Education (1312)
  • Synthetic Biology (2004)
  • Systems Biology (5537)
  • Zoology (1128)