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Abstract

Biological networks play a paramount role in our understanding of complex biological

phenomena and metabolite-metabolite association networks are now commonly used in

metabolomics applications. In this study we evaluate the performance of several network

inference algorithms (PCLRC, MRNET, GENIE3, TIGRESS and modifications of the MR-

NET algorithm, together with standard Pearson’s and Spearman’s correlation) using as a

test case data generated using a dynamic metabolic model describing the metabolism of

arachidonic acid (consisting of 83 metabolites and 131 reactions) and simulation individual

metabolic profiles of 550 subjects. The quality of the reconstructed metabolite-metabolite

association networks was assessed against the original metabolic network taking into ac-

count different degrees of association among the metabolites and different sample size and
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noise levels. We found that inference algorithms based on resampling and bootstrapping to

perform better when correlations are used as indexes to measure the strength of metabolite-

metabolite associations. We also advocate for the use of data generated using dynamic

models to test the performance of algorithms for network inference since they produce

correlation patterns which are more similar to those observed in real metabolomics data.

INTRODUCTION

Biological networks and network analysis are rapidly becoming fundamental tools for the in-

vestigation and the interpretation of metabolomics data within a systems biology context.1 A

biological network can be defined as a system of interconnected biological sub-units or nodes: in

metabolomics the nodes are metabolites measured in biological samples, and their association is

defined on the base of their similarity, which is characterized by a similarity measure.2 Correlation

is usually used as an index to measure the similarity of metabolite profiles and biological infor-

mation can be derived from both the sign and the magnitude of the correlation: strong positive

correlation can indicate an equilibrium condition or enzyme dominance, while strong negative

correlation can indicate the presence of a conserved moiety.3

Metabolite-metabolite association networks can be used to describe comprehensibly a given

status of a biological system or to compare the systems across multiple conditions; in fact, the

metabolites association patterns can change upon perturbation of the system, induced under

experimental control, or because of the onset of pathological conditions, under the assumption

that differences and commonalities in the biological processes are reflected in the characteristics

of the reconstructed networks.4

In recent times, thanks to the knowledge flow between the metabolomics and the systems

biology communities, methods originally developed for the inference of gene regulatory networks

have been proposed, extended and adapted to investigate the patterns of association among

metabolites.5–9

In a previous study10 we briefly compared the performance of these algorithms on data with
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known correlation structures and generated using standard multivariate approaches available

within computational environments like Matlab11 and R.12 However, we noted that generating

synthetic data representing the patterns of associations between metabolites and their distribu-

tions as observed in real biofluid samples is a non trivial problem. Consider for instance blood

that collects molecules from all different tissues in the body: a modeling framework to simulate

concentrations of blood metabolites would need to account for reactions and metabolic pathways

together with their interconnections and for the uptake and release in and from different organs,

tissues, and cell types, forming a system governed by highly non linear dynamics.

For these reasons, generating data to test network inference algorithms using standard mul-

tivariate approaches, although straightforward, may not be the most appropriate strategy. In the

present study we used a (simplified) model of metabolism to generate metabolite concentration

profiles with physiologically plausible distributional and correlation (association) patterns.

This metabolic model is a network structure of interdependent variables (i.e. metabolites)

that can be described using a system of ordinary differential equations (ODE’s). In this way the

time course of metabolite concentrations are described as a function of rate laws that account

for both enzymatic and non enzymatic reactions, implementing Michaelis-Menten13 and mass

action14 kinetics. As a test case we reconstructed the metabolic pathway for the degradation

of arachidonic acid (AA) making use of previous knowledge available in literature and biological

databases. We used this dynamic model, consisting of 83 metabolites and 131 reactions, to

generate physiologically plausible metabolite concentration profiles simulating data for 550 indi-

viduals, introducing inter-individual variability by randomly varying the kinetic constants of the

model.

We used this data to test the performance of several algorithms to reconstruct metabolite-

metabolite association networks, such as: PCLRC (Probabilistic Context Likelihood of Related-

ness on Correlation),7 MRNET (Multicast REduction NETwork),15,16 GENIE3 (Gene Network

Inference with Ensemble trees),17 TIGRESS (TRustfull Inference of Gene REgulation using Sta-

bility Selection)18 and modification of the MRNET algorithm, together with standard Pearson’s
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and Spearman’s correlation, by comparing the reconstructed networks with the structure of the

original AA metabolic model.

Our results show the validity of such computational approach and indicates that methods

based on resampling or non linear decision tress like Random Forest are be better suited for the

reconstruction of metabolite-metabolite association networks than methods based on linear re-

gression. Moreover, our approach also allows to evaluate to what extent high (partial) correlation

coefficients correspond to known metabolic reactions, as it has also been shown,3,5 and we will

also show, that metabolites directly linked in a reaction step may not exhibit any correlation.

MATERIALS AND METHODS

Dynamic model of Arachidonic Acid metabolism

Arachidonic acid (AA) and its derivatives (eicosanoids) have been extensively studied in the last

30 years due to their activity as signaling molecules and their role in the cross-regulation of the

inflammatory response in the human body.19–21

Here we have developed a dynamic model of AA degradation by retrieving information about

metabolites and eiconasoids involved in AA metabolism and associated reactions from the follow-

ing databases (see Figure 1 for an overview and the Supporting material (Tables S1 and S2) for

a complete list of metabolites): Recon2.2,22 the Human Metabolome Datababase (HMDB),23–26

the Kyoto Encyclopedia of Genes and Genomes (KEGG)27–29 and the Chemical Entities of Biolog-

ical Interest database (ChEBI).30–33 The data retrieved from these databases included metabolite

names, identifiers and IUPAC names, metabolite concentrations in normal physiological condi-

tions in humans, reaction descriptions (substrates, products, cofactors and stoichiometry) and

list of associated enzymes. Kinetic data, such as Kmvalues for enzymes and ki values as reac-

tion/equilibrium constants, were collected from BRENDA34 and SABIO-RK.35

The reconstructed AA metabolic pathway is depicted in Figure 2. In this model, the starting

point is activation of phosphatidylcholine (PC) that leads to AA synthesis and formation of AA-
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derived eicosanids such as prostaglandins, leukotrienes, thromboxanes and prostacyclines.36,37

The model accounts for concentrations of 83 metabolites and includes 131 reactions. An ODE

was written for each metabolite in the model to account for synthesis, conversion and (when

needed) degradation. Enzymatic reactions were described using Michaelis-Menten kinetics:13

v =
Vmax × [S]

KM + [S]
, (1)

where v is the rate of reaction, Vmax is the maximum reaction rate achieved by the system, [S]

is substrate concentration, and KM is the Michaelis-Menten constant. Non-enzymatic reactions

were described by simple mass action laws, where the rate of the reaction, v is proportional to

substrate concentration, [S], (v = ki× [S].) and with the proportionality constant, ki, being the

equilibrium constant of the reaction.

It should be noted that we have greatly simplified the reactions in this pathway and we

have not explicitly described co-factors such as ATP or NADP, instead their impact is implicitly

incorporated in the values of unknown kinetic constants through the fitting to measured data

(see below).

A full description of the model (and ODEs) together with the description and values (when

available) of all kinetic constants25,38–75 are given in the Supplementary Material S1 (Tables S1

and S2); the Supporting material S2 contains the metabolic model in SBML format.

As an example we provide here description of formation and degradation of AA, with the

conversion of PC into AA: this is modelled as an ODE coupling the concentrations of each
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metabolite ([AA] and [PC] respectively):

d[AA]

dt
=

(
V2 × [PC]

Km2 + [PC]

)
−
(

V100 × [AA]

Km100 + [AA]

)
−
(

V103 × [AA]

Km103 + [AA]

)
−
(

V106 × [AA]

Km106 + [AA]

)
−

−
(

V109 × [AA]

Km109 + [AA]

)
− (k112 × [AA])− (k114 × [AA])− (k116 × [AA])−

−
(

V118 × [AA]

Km118 + [AA]

)
−
(

V119 × [AA]

Km119 + [AA]

)
−
(

V120 × [AA]

Km120 + [AA]

)
−

−
(

V121 × [AA]

Km121 + [AA]

)
−
(

V122 × [AA]

Km122 + [AA]

)
− (k129 × [AA])−

(
V3 × [AA]

Km3 + [AA]

)
−

−
(

V4 × [AA]

Km4 + [AA]

)
−
(

V43 × [AA]

Km43 + [AA]

)
−
(

V50 × [AA]

Km50 + [AA]

)
−
(

V90 × [AA]

Km90 + [AA]

)
−

−
(

V94 × [AA]

Km94 + [AA]

)
−
(

V95 × [AA]

Km95 + [AA]

)
.

(2)

The model was constructed in a single compartment with a 1L volume so that concentration

changes in metabolites (in nmol/L) due to small volume changes could be considered negligible.

Optimization of parameters in the model.

Not all reaction parameters for the reconstructed AA metabolic model (ki, Km and reaction rates)

were available in literature. Missing parameters where estimated by identify sets of parameters

maximizing the agreement between simulated concentrations (at steady state) and metabolite

concentrations derived from literature (see Table S1 and S2 in the Supporting material S1 for a

list of steady state concentrations and associated references). The optimization was done using

the Genetic algorithm approach implemented in the simulation software COPASI76 using 2000

generations and each time choosing the 20 best performing sets of parameters.

Simulation of individual metabolite concentration profiles

The metabolic model of AA metabolism was used to generate physiologically plausible metabolite

concentration profiles for a pool of N individuals. Initial concentration of all metabolites was

set to 0 except for phosphatidylcholine. Inter-individual variability (i.e. different profiles) was
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simulated by varying the Km and the ki constants and the reaction rates v for all reactions in

the model. Values for Km, ki and v were sampled from an uniform distribution with lower and

upper bounds set to the reference values ±10%. For instance, the j-th individual, the values of

ki, Km and v for a particular reaction were defined as

kji ≈ U(0.9× ki, 1.1× ki)

Kmj
i ≈ U(0.9×Kmi, 1.1×Kmi)

V j
i ≈ U(0.9× Vi, 1.1× Vi)

The reference values used for ki, Kmi and Vi, together with the associated references are given

in Table S1 in the Supporting material.

Long term simulations showed the system (with optimal parameters) to achieve a steady state

for all metabolites at approximately 70 hours after activation of the AA conversion. This time is

consistent with previously reported experimental data.77,78 For each of the N individuals, a time

course of 100h was simulated and data was collected at two time points, 10 and 90 hours after

induction of AA conversions. These correspond to non-steady state (NS) and steady state (SS)

conditions.

Noise addition

Gaussian uncorrelated noise with zero mean and variance-covariance matrix Σ = I (with I a

83× 83 identity matrix was added to data matrices X1 and X2 to simulated experimental noise:

Xnoised = X + w ·N(0, I), (3)

where the noise intensity levels w correspond to signal-to-noise ratios (SNR) of 1%, 5%, 10%

and 15%. SNR is defined as the ratio of median peak intensity to the intensity of additive noise.

X represents the data matrices containing the metabolite concentration profiles.
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Data overview

Overall, we generated N = 550 metabolites profiles, from which we isolated N1 = 50 and

N2 = 500 profiles to mimic a small and a large metabolomic study, respectively. In each case

we generated data corresponding to steady state (SS) and non-steady state (NS) solutions.

Data were stored in four data matrix XSS
1 , XNS

1 (with dimensions 50× 83) and XSS
2 and XNS

2

(dimensions 500× 83. For each of the four data configurations we considered noise levels (SNR)

1%, 5%, 10% and 15%.

Model representation in matrix form

A network represents relationships among a set of objects, such as the molecular components of

a biological system, like genes, proteins or metabolites. The components are represented as as

nodes while relationships are represented as links (or edges) between the nodes.

A network can be represented as a square matrix called the adjacency (or also connectivity)

matrix. Rows and columns in the matrices represent nodes (in this case, metabolites), whereas

non-null entries represent links. In a weighted adjacency matrix the entries are real numbers that

indicate the strength of the interaction. Values in the weighted adjacency can vary, for instance,

in the [−1, 1] range for correlation, in the [0,+∞) range for mutual information, or in the [0,1]

range for probability. A weighted adjacency matrix W can be transformed into a binary adjacency

matrix A by imposing a threshold on the (absolute) value on its entries Wij:

Aij =


1 if |Wij| > λ

0 otherwise

. (4)

The threshold λ depends on the method considered and on the nature of the adjacency weights;

for instance, if correlation is used, λ can be set to 0.6 as proposed in the metabolomics literature;3

for mutual information a threshold λ = 0 is usually taken, while for PCLRC, a probability threshold

λ = 0.95 has been proposed.7
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From the network representation of the model (shown in Figure 1), we define three adjacency

matrices A1, A2 and A3 accounting for different degree of association among metabolites, i.e.

different degree of neighborhood in the AA metabolic pathway.

The three adjacency matrices exemplified in the cartoon shown in Figure 3 and are defined

as follows.

i) Primary adjacency matrix A1: two metabolites are associated if they connected by a single

reaction, i.e they are products or substrates in the same reaction. Examples are arachi-

donic acid and its direct derivative prostaglandin-H2 (PGH2) and PGH2 and its derivative

prostaglandin-H2 (PGE2)

AA→ PGH2

ii) Secondary adjacency matrix A2: two metabolites are associated if they are second neigh-

bors in the metabolic map, i.e. if they can be inter-converted through two reaction steps via

an intermediate metabolite. Examples are arachidonic acid and prostaglandin-H2 (PGE2)

connected via PGH2:

AA→ PGH2→ PGE2

It follows that any two metabolites connected within A1 are also connected in A2.

iii) Tertiary adjacency matrix A3: two metabolites are associated if they are third neighbors

in the metabolic map, i.e. if they can be inter-converted by three reaction steps via two

intermediate metabolites. Examples are arachidonic acid and prostaglandin-A2 (PGA2)

connected via PGH2 and PGE2:

AA→ PGH2→ PGE2→ PGA2

If any two metabolites are connected within A1 and A2 they are also connected in A3.
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Algorithms for network reconstruction

In our previous work10 we have investigated the performance of some algorithm for the re-

construction of metabolite-metabolite associations networks, namely the CLR,79 ARACNE,80

PCLRC7 algorithms together with standard Pearson’s correlations. Here we considered further

methods selecting several algorithms from those proposed in the comparative paper by Marbach

and co-workers81 where over 30 network inference methods were assessed for the reconstruction

of gene regulatory networks from high-throughput data. The rationale for the selection was that

the methods covered different kinds of approaches and that the algorithms were easily avail-

able, easy to use and could be used taking correlation as input metric. It should be noted that,

apart from PCLRC, none of the proposed methods was developed with the goal of reconstructing

metabolite-metabolite association networks but were developed to study gene regulation. Since

in early work we found the resampling approach implemented in PCLRC rather effective, we pro-

pose here modifications of existing algorithms by introducing a resampling step. Hereafter, the

algorithms considered are briefly explained, mostly following the concise descriptions reported in

the supplementary material of Marbach’s paper.81 We refer the reader to the original publications

for more details.

CORR - Correlation

This algorithm relies on computing the correlation coefficient among all possible metabolite pairs

to infer an association network, although, as previously discussed, correlation may not necessarily

translate into association and viceversa. The main drawback is the inclusion of chance correlations

(especially in the case of small sample size) which may complicate the interpretation of the

resulting association networks. Here, we will use both Pearson’s and Spearman’s correlation

coefficient.82,83 The methods are indicated with CORR-p and CORR-s, respectively.
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PCRLC - Probabilistic Context Likelihood of Relatedness on Correlation

The PCLRC algorithm is based on the CLR algorithm79 and has been first introduced to re-

construct metabolite correlation networks.7 It combines the CLR approach replacing mutual in-

formation with correlation with iterative sampling. In each iteration, 70% of the samples from

the full data set are randomly chosen to calculate the correlation matrix. Then, CLR is used to

estimate possible associations and reconstruct a network and then dynamical threshold is chosen

so that the highest 30% of interactions are kept. The complete procedure (sampling and network

generation) is iterated K times. The final network is constructed by assigning to every edge a

weight defined the frequency of the times that a particular edge was selected in the iterative

process. This weight can be viewed as a probabilistic measurement of edge likeliness and can be

interpreted as a confidence level on which to accept or reject the correlation between two pairs

of metabolites. We set here K = 105. The algorithm output a weighted adjacency matrix whose

entries are the probability of association for all possible X, Y metabolites pairs. We implemented

the algorithm with both Pearson’s and Spearman’s correlation: the tow variants are indicated

with PCLRC-p and PCLRC-s, respectively.

MRNET - Multicast Reduction NETwork algorithm

The algorithm works by evaluating the correlation matrix by the Minimum Redundancy Maximum

Relevance (MRMR) selection process84 for every variable.15,16 The logic underlying the MRMR

algorithm is that immediate edges are scored higher while distant edges are scored lower. This

selection process works by choosing a target metabolite Y , and then finding the metabolite, Xi,

with the largest correlation with Y (maximal relevance). The second selected variable Xj is the

one having highest correlation with the target variable Y corr(Xi, Y ) and at the same time,

lowest correlation corr(Xi, Xj) with the previously selected variable Xi (minimal redundancy).

This set S of variables is enlarged by selecting the Xk variables that maximize the MRMR score:

S(X, Y ) = corr(X, Y )− < corr(X,Xi) > (5)

11

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 2, 2018. ; https://doi.org/10.1101/460519doi: bioRxiv preprint 

https://doi.org/10.1101/460519


for all Xi already in S. The procedure stops when the score becomes negative. The MRMR score

represents a trade-off between relevance and redundancy. In practice, for each target variable

Y , MRNET identifies those variables X having maximal pairwise relevance with Y and, at the

same time, maximal pairwise independence among them.85 The algorithm returns a weighted

adjacency matrix of the inferred metabolite-metabolite association network: the weight of each

pair of metabolites X and Y is the maximum score between the one computed when Y is the

target and the one computed when X is the target:

WXY = max (S(X, Y ), S(Y,X)) (6)

The original MRNET algorithm implemented mutual information instead of correlation. Here

we replaced the mutual information matrix with the correlation matrix containing the pairwise

correlation among all metabolites in the data set. We implemented the MRNET algorithm with

both Pearson’s and Spearman’s correlation, indicated as MRNET-p and MRNET-s, respectively.

PMRNET - Probabilistic Multicast Reduction NETwork algorithm

The PMRNET algorithm is based on the combination of the MRNETp and MRNETs algorithms

and iterative sampling of the data similarly to what done in the PCLRC algorithm. In each

iteration, 70% of the samples from the original data set are randomly chosen and MRNETPp or

MRNETs is used to calculate the weights matrix WXY as in Eq. 6). Then dynamical threshold

is chosen so that the 30% of the interactions with the highest weights are kept. The complete

procedure (sampling and network generation) is iterated K = 105 times. The final network

is constructed by assigning to every edge a weight defined the frequency of the times that a

particular edge was selected in the iterative process. The two versions of this algorithm are

indicated as PMRNET-p and PMRNET-s, respectively.
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GENIE3 - GEne Network Inference with Ensemble trees

This algorithm represents prediction of interactions among p metabolites as p regression prob-

lems.17,86 Random Forest is then used to predict the concentration of every target metabolite

using the concentrations of all the other metabolites. The basic idea of tree-based regression

methods is to recursively split the learning sample with binary tests based each on one input

metabolite at a time; the tests are optimized to reduce the variance of the output variable (here,

the concentration of the target metabolite) in the resulting subsets of samples. At each test

metabolite, K attributes are selected at random among all candidate attributes before determin-

ing the best split. We used K =
√
p and grow ensembles of 1000 trees.81

To each metabolite pair X, Y a weight WXY is assigned that exploits the variable importance

measure of the expression of metabolite X as derived from the tree-based model learned for

metabolite Y . For each test metabolite, X the total reduction of the variance of the output

metabolite due to the split is considered:

w(X) = #S.var(S)−#St.var.(St)−#Sf .var(Sf ) (7)

where # is the cardinality of a set of metabolites, S is the set of metabolites reaching metabolite

X, St and Sf are the subsets for which test was true and false respectively and var() is the

variance of the output metabolite in the subsets. The importance measure for all metabolites

was calculated as the average of all the scores from all the trees calculated for each metabolites.

TIGRESS - TRustfull Inference of Gene REgulation using Stability Selection

The TIGRESS algorithm is based on Lasso regression18 Similarly to the GENIE3 algorithm every

target metabolite is predicted using the concentration of all other metabolites, thus turning the

network inference problem into p regression problems. Specifically, for each metabolite Y , the
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following regression problem is stated

Y = reg(XS) + εY (8)

where Y is the concentration of the target metabolite, XS is the subset of candidates metabolites

associated with metabolite Y and reg() is any (linear or not linear) regression function. A scoring

function g(X) is defined for each candidate metabolite X using Least angle regression (LARS)87

for feature selection. LARS uses a linear regression model, thus reg() in Equation (8) has the

functional form

reg(X) =
∑
X

βXX (9)

Starting from a constant model where no candidates metabolites are used, metabolites are iter-

atively added to the model to refine the prediction of the target metabolite Y : after K = 100

steps of the LARS iteration, a ranked list of K metabolites, selected for their ability to predict

the target metabolite is obtained. Candidate metabolites are not scored directly using LARS but

a stability selection procedure is applied by running the feature selection method many times on

randomly perturbed data, and score each metabolite by the number of times it was selected. The

input data is perturbed by multiplying metabolite concentrations by a number uniformly sampled

in the interval [α, 1] for some 0 ≤ α ≤ 1. Here we used α = 0.2 as suggested in the original

publication.88

This approach has been shown to reduce the sensitivity of LARS and Lasso to correlated

features, and improve their ability to select correct features.88,89 For each metabolite a final score

between 0 and 1 is obtained: a 1 indicates that metabolite X is always selected by LARS in the

top features to predict the concentration of metabolite Y , and 0 indicates it is never selected.18
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Metrics for performance assessment

To assess the performance of the different algorithms for the reconstruction of metabolite-

metabolite association networks we used the area under the Precision-Recall (PR) curve (also

called the Receiver Operating Characteristic curve) indicated with AUC (sometimes also referred

as AUROC), comparing the inferred association against the golden standard given by the ”true”

association network for the AA metabolic pathway as defined by the adjacency matrices A1, A2,

and A3 previously defined.

For a binary classifier, the ROC curve is a plot of the recall (i.e the sensitivity) against

precision (i.e. 1− specificity):

precision =
TP

TP + FP
(10)

recall =
TP

P
=

TP

TP + FN
(11)

where P is the number of positives, i.e. the number of interactions in the adjacency matrix

representing the model (either A1, A2, or A3); TP is number of true positives i.e. the number

of associations predicted by the algorithm that correspond to interactions in the adjacency matrix

representing the model; FP the number of false positives: number of predicted associations not

found in the adjacency matrix; and FN the number of false negatives, the number of associations

in the adjacency matrix the algorithm failed to recover.

The methods for network inference considered here produce weighted adjacency matrices,

W. To compute precision and recall it is then necessary to select a threshold to obtain a binary

adjacency matrix (Equation 4). The PR curve is constructed by varying the threshold to take

values between the lowest and highest entries in the weighted adjacency matrix. Once the PR

curve is plotted, the area under the curve, AUC, is calculated. The limiting value AUC = 1

indicates perfect classification, i.e. equivalence of W with A1 (or A2 or A3) while AUC = 0.5
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indicates a random classification.

Experimental data

Two supporting experimental metabolomics data sets were also considered. The first data set

contains 133 quantified metabolites measured on 2139 individuals from the Swedish TwinGene

study90 using Mass spectrometry. Data were downloaded from the MetaboLights public repos-

itory91 (www.ebi.ac.uk/metabolights, accession no. MTBLS93). The second data set contains

29 blood metabolites measured using Nuclear Magnetic Resonance on 864 adult healthy vol-

unteers.7 We refer the reader to the original publications for more details on the study design,

sample collection, and experimental protocols.

Software

Calculations were performed using R,12 Matlab11 and Python.92 The R code for PCLRC is avail-

able at www.systemsbiology.nl under the software tab. We used the MRNET implementation

available in the MINET R package;93 and the Bioconductor package GENIE3.17 The R code

for TIGRESS was downloaded from http://cbio.ensmp.fr/tigress. Simulation and analysis of the

AA biochemical network and tits dynamics was performed using COPASI (a COmplex PAthway

SImulator).76

RESULTS AND DISCUSSION

In silico generation of metabolites profiles

In this study we wanted to create physiologically plausible metabolite concentration profiles

showing correlation patterns similar to those that can be expected to be measured in a stan-

dard metabolomic experiment using analytical platforms like Nuclear magnetic resonance (NMR)

or Mass spectroscopy (such as LC-MS/MS). Therefore we developed a dynamic model of AA
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metabolism able to simulate the metabolite concentrations measured in the blood samples of

different subjects. The presented model has been parametrized using literature information for

kinetic constants and is able to reproduce, at steady state (SS), metabolite concentrations derived

from literature.

AA conversion and the formation and degradation of downstream metabolites in the white

blood cells and the dynamics of AA derived metabolites in blood (and their sampling) happens at

very different scale: hours for blood dynamics and seconds for AA conversion. For this reason, the

variation of the downstream products can be considered to be negligible, that is the systems can

be considered to be in a steady state. Another reason to investigate the system in steady state

is that metabolite-metabolite associations networks are usually build starting from correlations

which, in principle, should be calculated starting for samples acquired under the same conditions.

If the system(s), in this case, different subjects, are not in the same state, or if they are not in a

steady state, the samples (i.e. the metabolite concentration profiles) will likely not align, possibly

introducing bias in the correlations.3

Assuming a complex system like the human body to be in a steady state at the moment of

sampling is not always realistic. This assumption may hold true in the case of a few metabolites

which are measured under well-defined experimental conditions once the dynamic properties of

the system are well characterized, but this is seldom the case in metabolomic studies which usually

aim to provide a comprehensive snapshot of the metabolome under given (patho)physiological

conditions often without any prior knowledge of the dynamic nature of the systems investigated.

For this reason we considered also metabolite profiles sampled in non-steady state (NS), 10 hours

after the activation of AA degradation. As expected the individual metabolic profiles acquired

when the system is at steady state are more homogenous than those measured in the non-steady

state, as indicate by the PCA analysis shown in Figure 4 panel A where the SS profiles are tightly

clustered while NS profiles are dispersed in the PCA space.

Figure 4 panel B offers a comparison of the metabolite correlation patterns in SS and NS data,

calculated using both Pearson’s and Spearman’s indexes. Pearson’s correlations are lower than
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Spearman’s one, indicating the presence of non-linear relationships among the metabolites: this

is what is usually observed in biochemical data because the dynamic governing the relationships

among metabolites (see for instance AA model Equation (2)) are highly non-linear.

Correlations in the steady state are mostly below 0.6 (76.8% for Spearman’s correlation and

90.5% for Pearson’s correlations) and this is consistent to what observed in experimental practice

and it is supported by chemical considerations: this can happen because the variance in the

enzymes that control the reaction involving two metabolites affects them in equal amounts and

different directions:3 this is what happens to the majority of metabolite pairs in the dynamic

model, and is a consequence of the systemic nature of metabolic control.3

When correlations are measured on samples acquired at non-steady state we observed a strong

increase in the magnitude of correlations: 82.8% of Spearman’s correlation are above 0.8. This

may seem counter-intuitive since one can expect that if metabolite concentrations are not aligned

the correlation can be biased downwards: however it should be noted that the median variance of

metabolite concentrations in the non-steady state is much larger than the median variance in the

steady state (3.7 × 105 versus 2.5) and this can bias correlation upwards. Another explanation

is that sampling far away from the steady state could results in stronger non-linear relationships,

a behavior well described by the Spearman’s index. Another hypothesis is that at the particular

sampling point chosen for the non-steady state most part of metabolite pairs are at chemical

equilibrium and this usually originates very strong correlations.3

Overall, it seems that data simulated in the steady state shows a correlative structure which is

more similar to real metabolomics data: as a term of comparison 93.4% and 91.4% of correlation

values (Spearman) observed in two blood metabolomics data sets (MS and NMR, see Material

and Methods for more details) are below 0.6.

Model representation

Three adjacency matrices A1, A2, and A3, were used to represent the original network underlying

the AA dynamic. These matrices are schematically represented in Figure 2 and provide standards
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against which to compare the reconstructed networks. Each of these matrices account for different

degree of association (direct and indirect) among the metabolites in the AA metabolic pathway,

where association is here defined in terms of distance in the metabolic map.

The classical approach to test algorithms for network reconstruction in metabolomics applica-

tions is to generate multivariate data with a given distribution and known covariance-correlation

matrix Σ and then reconstruct the correlation patterns which are then compared with the original

known correlations. This can be done by directly comparing the actual values of the true and

reconstructed correlations (i.e. comparing the weighted adjacency matrices) or by comparing the

adjacency matrices after that a threshold as been imposed on the correlation values (i.e. the

patterns of 0 and 1.)

The dynamic metabolic model enables a more exhaustive analysis on the nature of the asso-

ciations. When metabolite profiles are generated using a dynamic metabolic model, correlations

observed in the data do not always reflect the structure of the metabolic network: two metabolites

can be direct neighbors in the metabolic network but not correlated; conversely two metabolites

can be very distant in the metabolic network but showing high correlation. This a well-known

phenomenon and also in the case of this in silico simulated data we observe this typical be-

havior of the dynamic system. For instance, the correlation between PGD2 (prostaglandin D2)

and dhkPGD2 (11,15-Dioxo-9S-Hydroxy-5z-Prostenoic Acid) is 0.94 but the two metabolites are

separated by two enzymatic reactions and one intermediate metabolite (15kPGD2, 15-dehydro

Prostaglandin D2). On the contrary, the correlation among AA and LTA4 (leukotriene A4) is

only 0.00015 despite the fact that they are direct neighbors in the metabolic pathway. Another

striking example are 6k-PGE1 (6-ketoprostaglandin E1) and 5-oxoETE (5-ketoeicosatetraenoic

acid) whose correlation is 0.6 even if they are separated by 8 reaction steps and 7 intermediate

metabolites.

From a practical point of view this poses the problem of defining a target to which compare

the reconstructed association networks: when are two metabolites to be considered associated in

the original metabolic network? Stated otherwise, what is the adjacency matrix corresponding to
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the AA metabolic pathway shown in Figure 2? This is why we defined three adjacency matrices

to represent different degree of association among metabolites in the pathway and this is also the

reason we prefer to talk about reconstructed metabolite-metabolite association networks rather

than correlation network.

Performance of network inference algorithms

The performance of the different methods are summarized in Figure 5 for sample size n = 500

and in Figure 6 for sample size n = 50. Numerical results are presented in the Supporting material

S1 (Tables S4-S13).

The PCLRC algorithm was, overall, the best performer in the comparison, and showed to be

robust respect to both sample size and noise: these results are in line with previous results.10 The

use of simple correlation (either Pearson’s or Spearman’s) is surprisingly good in all situations,

which is probably due to the relative larger sample size used, although we note, as expected, a

reduction in performance when noise is added to the data.

The performance of the MRNET algorithm was suboptimal in all situations, irrespective of

the sample size, data type (SS or NS), noise level or target adjacency used the AUC is constantly

below 0.63, indicating that the PR curve is close to the diagonal in the P-R plane, indicating

that the solution of the method is insensitive to the particular threshold imposed on the weighted

adjacency matrix (i.e the λ parameter in Equation (4)) to binarize its entries. This means that

the false positive rate is consistently low and the algorithm seems to be able to produce only two

types of solutions, namely, with low FPR or the trivial full connected solutions with FPR equal

to 1. However, when a resampling approach is implemented (i.e. PMRNET-s and PRMNET-p)

like in the PCLRC algorithm , the quality of the prediction increase significantly, with increased

robustness towards noise.

The TIGRESS algorithm was the most affected by sample size: the AUC values vary between

0.65 and 0.83 for n = 500 but dropped to 0.5 for n = 50. This result is quite surprising: this

algorithm implements a stability selection procedure by randomly perturbing the experimental
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data by multiplying the metabolite concentration with random numbers. The low performance

may be due to the interaction between the small sample size and the perturbation, since a larger

sample size is usually needed to compensate for high(er) noise level or to an unfortunate choice of

α. The algorithm indeed has been found to be very sensitive to this parameter,18 however, when

perfectly tuned, its performance was found to be equivalent to the GENIE3 algorithm17,86 for the

reconstruction of gene regulatory networks. Another possible explanation is that the algorithm

implements variable selection and it may happen that such procedure is not stable when a small

sample size is considered. For the case n = 500 the performance of TIGRESS was good although

less robust against noise than GENIE3.

The GENIE3 algorithm was the overall top performer in the DREAM3 challenge for gene

network inference.81 In the present case it also showed a good performance and was minimally

affected by changes in sample size. GENIE3 and TIGRESS follow a similar conceptual approach,

however in the GENIE3 algorithm regression is performed using Random Forest, that is randomized

decision trees, while in TIGRESS linear regression was implemented (see Equation (9)): we have

seen that dynamic data exhibits non-linear behavior and Random Forest is particularly well-suited

to model non-linear relationships and this may explain why GENIE3 outperformed TIGRESS.

With respect to the use of the primary (A1), secondary (A2) and tertiary (A3) adjacency

matrices as target for the network construction, we found the performance of CORR and PLCRC

algorithms to increase when considering higher order metabolite-metabolite associations, with

PCLRC performing slightly better. The use of PCLRC over the standard correlation approach

(CORR) has the advantage that it is not necessary to set a threshold on the correlation value;

the weights given to each metabolite-metabolite association do not depend on the magnitude of

the correlation itself but on the number of times they appear in the top Q% (similarly to what

is done in the stability step of the TIGRESS algorithm) and this has the double advantage of

i) filtering out spurious correlations which may arise from sampling effects and ii) maintaining

metabolite-metabolite associations regardless from the associated correlation.

This is particularly relevant considering that there isn’t always a correspondence between the
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correlation among two metabolites and their proximity in the metabolic map. It is of course

possible to choose an optimal threshold that simultaneously maximizes precision and recall (see

Equations (10) and (11)) but in real life the target adjacency matrix is not known. Other

approaches have been suggested, like observing the topology of the network obtained using

different thresholds.94 Here a transition (from small to large) was observed in the number of

connected metabolites at λ = 0.5, a value not far from 0.6, indicated as a lower bound for

low/weak correlations in metabolomics.3

The performance of the TIGRESS algorithm based on Lasso regression heavily depended on

the choice of the target adjacency matrix: when A1 is used, i.e. when only direct neighbors

metabolites are considered to be associated, the AUC is 0.836, but it drops to 0.614 when

A3 is considered. This behavior can be explained when considering that this algorithm was

developed to infer gene regulatory networks, whose properties are different from metabolite-

metabolite association networks. In gene regulatory networks there is asymmetry between the

regulators (transcription factors) and their gene targets. This causes genes regulated by the

same transcription factors to exhibit similar expression patterns, resulting in a large number

of false positives in the reconstructed gene regulatory networks. For these reason algorithms

for gene regulatory network reconstruction are often designed to downgrade the importance of

indirect associations: this may explain the suboptimal performance of TIGRESS when used to

infer indirect associations1. However, also GENIE3 has been originally developed to infer gene

regulatory networks and, likewise PCLRC, its performance increase when considering higher order

metabolite-metabolite associations.

The performance of MRNET is suboptimal in all cases, and it decreases when considering

indirect associations, for the same reasons discussed for TIGRESS. However, when a resam-

pling approach is implemented (i.e. PMRNET-s and PRMNET-p), the quality of the prediction

increases when also considering indirect associations, as observed for PCLRC and TIGRESS.

Regarding the use of Pearson’s or Spearman’s correlations we found in general better perfor-

1In a previous study10 we observed the same behavior for another algorithm ARACNE80 which was not
included in the present comparison because of its poor performance.
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mance when using Spearman’s correlation which is reasonable given the non-linear relationships

existing among metabolite concentrations. Overall the performance of all algorithms is reduced

in presence of noise: under the additive noise model considered (see Equation (3)) correlations

are always attenuated83,95 and this phenomenon is reduced when considering more replicates.

Dependence of the quality of the inferred network on the the use of data acquired in a steady

or non-steady state is more complicate to discuss. When a limited sample size is used n = 50,

we found all methods to perform better on steady state data than on non-steady state and this

is reasonable since data is more homogenous as previously observed (see Figure 4.) We also see

that for small sample size, the presence of noise has marginally less impact on steady state data

than on non-steady state data. When a large sample size is considered (n = 500) we do not

observe significant differences in the performance of the methods regarding the use of the two

types of data. CORR-s performed well in several cases, but it showed the largest decrease in

performance depending on sample size and noise level, which may render it sue not optimal for

limited sample size.

CONCLUSIONS

We have explored the ability of several algorithms (and adaptations thereof) to reconstruct

metabolite-metabolite association networks using correlation (Pearson’s and Spearman’s) as sim-

ilarity metrics. We have tested the performance of the algorithms on data generated using a

dynamic metabolic model of arachidonic acid metabolism. The model describes 131 reactions

interconverting 83 metabolites. The developed model has been parametrized using literature

knowledge and is able to reproduce measured concentrations; however it has been greatly simpli-

fied and effects such as enzyme or allosteric control have not been explicitly taken into account.

This simplification is partly taken into account when considering different degrees of neighborhood

in the adjacency matrices representing the model.

While correlation (CORR) is an almost native metric to investigate the association among
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metabolites in metabolomics studies, all methods but one (PCLRC) were developed to infer

gene regulatory networks that have markedly different properties from metabolite-metabolite

association networks. We found methods based on resampling like PCLRC (and our modifications

of the MRNET algorithm) to perform better together with regression methods based on Random

Forest in which resampling is intrinsically implemented.

Except CORR-s in a few cases, none of the methods achieved consistently AUC above 0.8:

considering that different adjacency matrices were used to represent the AA metabolic model

implementing different levels of neighboring among metabolites and that in general the perfor-

mance of the methods increased when indirect association are considered we can conclude that

not all direct associations (i.e. metabolites connected by one single reaction step) are recovered.

Rather than from a limitation of the reconstruction algorithms this is an intrinsic property of the

systems studied:3 due to the systemic nature of metabolic control, the concentration of metabo-

lites connected by one single reaction step may not be correlated and this information cannot be

recovered in absence of truly dynamic data or metrics able to capture such behavior.

We are aware that reconstructing and implementing a dynamic metabolic model to generate in

silico data may not be an easy task and that such approach does not offer the operative flexibility

given by standard multivariate approaches, not to mention the lack of statistical characterization

of such dynamic data. A possible solution to partially overcome these limitations could be to

generate multivariate data with known correlation structure derived from dynamic data and to

model data distribution using more advanced data generation techniques.96,97

However, it should be remembered that metabolite-metabolite associations are not a property

of metabolites and enzymes. Such associations may arise due variation of a single enzyme,

or through differential amplification of the variance of a single enzyme but overall metabolite-

metabolite association patterns are a property of the whole system. Hence the interest in analyzing

biological systems at the network level.

On the basis of this comparative study we recommend the use of inference algorithms based

on resampling and bootstrapping when correlations are used as indexes to measure metabolite-
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metabolite associations. We also advocate for the use of data generated using dynamic models to

test the performance of algorithms for network inference since they produce correlation patterns

which are more similar to those observed in real metabolomics data.

SUPPORTING INFORMATION

The following supporting information is available free of charge at ACS website http://pubs.acs.org:

Supporting Material S1. The file contains:

ODE’s for the AA dynamic model

Table S1 : Kinetic values & Reaction rates

Table S2 : All metabolites & their details

Table S3 : All Reactions & their details

Table S4 : AUCs for 500 simulations with no noise

Table S5 : AUCs for 500 simulations with 1% noise

Table S6 : AUCs for 500 simulations with 5% noise

Table S7 : AUCs for 500 simulations with 10% noise

Table S8 : AUCs for 500 simulations with 15% noise

Table S9 : AUCs for 50 simulations with no noise

Table S10 : AUCs for 50 simulations with 1% noise

Table S11 : AUCs for 50 simulations with 5% noise

Table S12 : AUCs for 50 simulations with 10% noise

Table S13 : AUCs for 50 simulations with 15% noise

Supporting Material S2. Arachidonic acid metabolic model in SBML format
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Figure 1: Overview of the strategy for the reconstruction of the the dynamic model for
arachidonic acid (AA) metabolism. The databases used are indicated together with the type
of information retrieved.
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Figure 2: Graphical representation of the AA metabolic pathway. The enzymatic or non-
enzymatic (mass action) nature of the reaction kinetic is indicated. The model comprises
131 reactions and 83 metabolites. The ODEs governing the dynamic model, metabolite
desscription and reaction details are given in the supplementary material.
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A B C D E F G

A 1 1 1 1 0 0 0

B 1 1 0 0 0 0 0

C 1 0 1 0 0 0 0

D 1 0 0 1 1 0 0

E 0 0 0 1 1 1 0

F 0 0 0 0 1 1 1

G 0 0 0 0 0 1 1

A B C D E F G

A 1 1 1 1 1 0 0

B 1 1 1 0 0 0 0

C 1 1 1 0 0 0 0

D 1 0 0 1 1 1 0

E 1 0 0 1 1 1 1

F 0 0 0 1 1 1 1

G 0 0 0 0 1 1 1

A B C D E F G

A 1 1 1 1 1 1 0

B 1 1 0 0 0 0 0

C 1 0 1 0 0 0 0

D 1 0 0 1 1 1 1

E 1 0 0 1 1 1 1

F 1 0 0 1 1 1 1

G 0 0 0 1 1 1 1

Primary adjacency matrix A1 Secondary adjacency matrix A2 Tertiary adjacency matrix A3

Metabolic network

Secondary metabolites

Tertiary
metabolites

Primary metabolites

Figure 3: Schematic overivew of the defintion of the adjacency matrices for a metabolic path-
way consisting of five metabolites (A, B, C, D, E, F and G) and six reaction (represented by
arrows →). Example of primary, secondary and tertiary metabolites are indicated together
the corresponding primary (A1), secondary (A2) and tertiary (A3) adjacency (connectivity)
matrices. Note that the definition of the matrices takes into account reaction directionality.
In this example, B and D can not be inter-coverted, and as a result they are not connected
in any of the adjacency matrices.
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Figure 4: A) Scatter plot of the first two principal components of a PCA model on the
data set formed by 500 individual metabolic profiles measure in the steady state (SS) and
500 profiles measured in non-steady state (NS). B) Scatter plot of the (832 − 83)/2 = 3403
pairwise correlations between metabolites for both SS and NS data calculated using both
Pearson’s and Spearman’s indexes.
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Figure 5: Performance of network reconstruction methods (AUC values) for sample size
n = 500 A) no noise data; B) 1% SNR; C) 5% SNR; D) 10% SNR; D) 15% SNR. In color
legend, SS and NS indicate that metabolites’ profiles obtained at steady and non-steady
state conditions have been used, whereas indices 1,2 and 3 refer to the comparison with the
adjacency matrices A1, A2, and A3 respectively
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Figure 6: Performance of network reconstruction methods (AUC values) for sample size
n = 50 A) no noise data; B) 1% SNR; C) 5% SNR; D) 10% SNR; D) 15% SNR.In color
legend, SS and NS indicate that metabolites’ profiles obtained at steady and non-steady
state conditions have been used, whereas indices 1,2 and 3 refer to the comparison with the
adjacency matrices A1, A2, and A3 respectively
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