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Abstract

To reach the WHO goal of hepatitis C elimination, it is essential to identify the num-
ber of people unaware of their hepatitis C virus (HCV) infection and to investigate
the effect of interventions on the disease transmission dynamics. In many middle-
and high-income countries, one of the primary routes of HCV transmission is via con-
taminated needles shared by people who inject drugs (PWIDs). However, substantial
underreporting combined with high uncertainty regarding the size of this difficult to
reach population, makes it challenging to estimate the core indicators recommended by
the WHO. To help enable countries to monitor their progress towards the elimination
goal, we present a novel multi-layered dynamic transmission model for HCV transmis-
sion within a PWID population. The model explicitly accounts for disease stage (acute
and chronic), injection drug use status (active and former PWIDs), status of diagnosis
(diagnosed and undiagnosed) and country of disease acquisition (domestic or abroad).
First, based on this model, and using routine surveillance data, we estimate the num-
ber of undiagnosed PWIDs, the true incidence, the average time until diagnosis, the
reproduction numbers and associated uncertainties. Second, we examine the impact
of two interventions on disease dynamics: 1) direct-acting antiviral drug treatment,
and 2) needle exchange programs. To make the model accessible to relevant users and
to support communication of our results to public health decision makers, the model
and its output are made available through a Shiny app. As a proof of concept, we
illustrate our results for a specific data set; however, through the app our model can
be easily adapted to other high-income countries with similar transmission patterns
among PWIDs where the disease is endemic.
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1 Introduction

Hepatitis C virus (HCV) is a bloodborne pathogen which can, left untreated, lead to chronic
hepatitis, cirrhosis, liver cancer and death (Heymann, 2004). Worldwide, an estimated 71
million people are chronically HCV-infected, causing approximately 399 000 deaths each
year; however, only an estimated 20% are aware of their infections (WHO, 2018a). In
many middle- and high-income countries, injection drug use is the leading cause of HCV
transmission, via sharing of contaminated needles (Hajarizadeh et al., 2013). As no vaccine
against HCV is currently available, treatment as well as harm-reduction approaches like
needle exchange programs (NEPs) for people who inject drugs (PWIDs) are critical to re-
ducing prevalence and incidence. With recently introduced direct acting antivirals (DAAs),
up to 95% of those treated achieve HCV treatment success and are no longer infected or
infectious (Lawitz et al., 2014; Dore and Jordan, 2015). The World Health Organization
(WHO) recommends treatment with DAA-based therapies for all HCV-infected individu-
als, with some specific exceptions based on genotype (WHO, 2018a). However, access to
diagnosis and treatment remains limited; in 2015, only 7% of all diagnosed cases worldwide
received treatment (WHO, 2018a). NEPs offer PWIDs the opportunity to replace used sy-
ringes, needles and injection tools with new sterile ones in order to reduce transmission
of HIV, hepatitis B and C, and other bloodborne pathogens. Moreover, these programs
provide HIV and hepatitis testing and linkage to treatment and are also associated with
education, counseling and referral to substance use disorder treatment (CDC, 2018).

Following the introduction of DAAs, the member states of the World Health Assembly,
which governs the WHO, have committed to reducing viral hepatitis mortality by 65%
and incidence by 90% (using 2015 as a baseline) by 2030 (WHO, 2018b). Two of the core
indicators that countries are advised to monitor to measure progress towards this goal are:
a) HCV prevalence (indicator C.1.b in (WHO, 2018b)), including both diagnosed and un-
diagnosed cases, and b) HCV incidence (indicator c.9.b in (WHO, 2018b)); both measures
should be disaggregated by risk group, including PWIDs. Prevalence surveys are a prefer-
able source of data for these estimates but such studies are usually costly to perform and
the population of interest, in particular PWIDs, is often not easy to reach. Mathematical
models can be used to complement these approaches (WHO, 2018b) and are useful tools
that can generate scientific evidence in order to guide policies (Scott et al., 2018b).
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The primary objective of this study is to develop a dynamic transmission model to help
enable country-specific estimation of four key quantities and associated uncertainties to
monitor progress towards the WHO HCV elimination goals among PWIDs: 1) the number
of undiagnosed cases, 2) true incidence of HCV, i.e. the annual number newly infected (as
opposed to newly diagnosed) individuals, 3) average time until diagnosis and 4) reproduc-
tion numbers from routinely collected surveillance data. The second objective of this work
is to examine the effects that DAA treatment and NEPs may have on prevalence among
active PWIDs, true incidence, number of undiagnosed cases and total number of infected
in the PWIDs risk group.

Modelling of HCV transmission among PWIDs and the impact of interventions via com-
partmental models has been studied before, e.g. Martin et al. (2011, 2013); Gountas et al.
(2017) and Fraser et al. (2018). Often, HCV transmission models implicitly assume that
everyone in the PWID population is currently injecting drugs (active) and that everyone
who is infected is diagnosed. This can produce misleading results for two reasons. First,
routine HCV surveillance data usually does not distinguish between former and active
PWIDs. Therefore, calibrating such models to routine surveillance data can create the
illusion of a larger active, and transmitting, PWID population than actually exists be-
cause former PWIDs are counted as infectious as well. Second, by ignoring undiagnosed
cases, such models assume a smaller HCV-infected population than actually exists. By
extension, assuming that all cases are diagnosed will lead to the mistaken assumption that
all cases will have access to treatment. Recently, HCV transmission models stratified by
HCV-diagnosis and injection drug use status have been proposed in order to investigate
the effect of testing and treatment as prevention, e.g. Scott et al. (2017a,b, 2018a,b).

We demonstrate our model and the respective results calibrated to surveillance data from
Sweden and other literature-informed values, however our approach goes beyond analyzing
a specific data set. Rather we develop a general web-based tool (Shiny app), available for
other countries with a similar disease situation represented in this work, to calibrate the
model to their available data and, in that way, monitor their country-specific situation
and investigate the effect of different intervention strategies. It is important to make our
model accessible to relevant users, including public health decision-makers, to bridge the
gap between theoretical models and real public health applications.
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2 Methods

We develop a dynamic, deterministic ODE-based compartmental model to describe HCV
transmission among PWIDs stratified by stage of infection (acute or chronic), injection
drug use status (active or former PWIDs), status of diagnosis (undiagnosed or diagnosed),
country of disease acquisition (within or outside the country under consideration). We
consider two interventions: participation in NEPs (yes or no) and treatment with DAA
(yes or no). We limit our study to the PWID population and we assume that the disease
is only transmitted by sharing of contaminated needles within this community; HCV cases
with other routes of transmission are not considered here.

We begin by describing the general underlying transmission dynamics in the base model
and then describe how the two interventions are incorporated into the model. By definition,
we assume that only active PWIDs can enroll in NEPs and that only diagnosed PWIDs
can be treated. The schematic representation of the model is given in the flow diagram
(Figure 1) where arrows indicate the movement between the compartments, with a list of
notations (Table 1). The transmission equations and further mathematical details of the
model are given in Section A of the Appendix.

2.1 Base transmission model without interventions

The underlying basic transmission dynamics assume an SI-epidemic model (Keeling and
Rohani, 2008) where susceptible individuals, once infected, move to an acute phase and
eventually progress to become chronically-infected individuals, a state from which recovery
is not possible without treatment. We assume that the active PWID population is con-
stant over time. PWIDs can enter this population as either susceptible or imported (i.e. not
domestically-acquired) chronically HCV-infected and leave by either death or permanent
injection drug use cessation, the latter thus reclassifies them as former PWIDs. Active
PWIDs can be infected only by other active infected PWIDs via sharing of contaminated
needles while former PWIDs do not contribute to the infectious pressure. Once infected,
PWIDs are initially undiagosed and may eventually progress to become diagnosed, which is
when they are observed in the surveillance system as part of the annual reported incidence.

Compartments: We denote by Sd,e,f (t) the number of susceptible PWIDs at time t,
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by Ad,e,f (t) and Cd,e,f (t) the number of acute and chronically infected PWIDs at time t
and by CI

d,e,f (t) the number of imported, chronically infected PWIDs at time t. The indices
denote diagnosis status (undiagnosed or diagnosed, d = 0 or 1), enrollment in a NEP (no
exchange or exchange, e = 0 or 1) and injection drug use status (active or former, f = 0 or
1). Since the model including interventions builds upon the base model, we include an in-
dex to indicate enrollment in the NEP, however, this index in the base model is set to e = 0
in all compartments. Note that some combinations of indices are not defined because they
are not possible, e.g. S1,0,0(t), meaning the number of diagnosed susceptible individuals,
because diagnosis requires infection. Altogether our model consists of 17 compartments
out of 4 · 23 = 32 possible index combinations.

Entering the (active) PWID population: New PWIDs enter the active PWID pop-
ulation by two routes: either initially susceptible to HCV infection, at a rate θ, or as
imported, undiagnosed, chronically-infected PWIDs, at a rate q · i. The influx rate θ into
the susceptible compartment S0,0,0(t) is adjusted so that, in a system without interven-
tions, the population size of active PWIDs, N , is constant over time, see Equation (13) in
the Appendix.

Force of infection and disease progression: Susceptible PWIDs become infected at a
per capita rate λ(t). This force of infection is proportional to the background prevalence
of infected active PWIDs, see Equation (1). In the acute phase a fraction, p, of individuals
naturally recovers from the disease and returns to the susceptible compartment, while the
remaining (1− p) infected individuals proceed to the chronic phase (Micallef et al., 2006).
The rate of becoming chronically infected from the acute phase is pγ and the rate of natural
recovery is (1− p)γ.

Exiting the PWID population: Active PWIDs leave the PWID population by either
death or permanent injection drug use cessation. Active PWIDs stop injecting drugs and
move to the former PWID compartments at an annual cessation rate, c. We assume that all
susceptible and acutely infected individuals have an all-cause, injection drug use-specific,
mortality rate µ regardless of the status of their injection drug use or whether or not they
have been diagnosed. However, the model allows for an increased death rate, µ + ρ with
ρ ≥ 0, due to the progression of the disease, for both active and former chronically-infected

5

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2018. ; https://doi.org/10.1101/460550doi: bioRxiv preprint 

https://doi.org/10.1101/460550
http://creativecommons.org/licenses/by-nd/4.0/


PWIDs (Hajarizadeh et al., 2013).

Imported cases: We assume that there is a constant importation of undiagnosed, chronically-
infected PWIDs, accounting for individuals who acquire the disease through injection drug
use from outside the country under consideration. We assume that importation of acute
cases is negligible because the duration of the acute phase is short (Mondelli et al., 2005).
Out of all imported cases i, a fraction 0 ≤ q ≤ 1, enters as active and another (1−q) as for-
mer PWIDs. The fraction q is calibrated to ensure that the ratio of active to former PWIDs
amongst imported cases is proportional to the number of years an individual remains in
the active or former PWID compartments, respectively (Equation (14) in the Appendix).
Other rates for imported PWIDs are assumed to be identical to those for PWIDs infected
within the country under consideration.

Diagnosis rates: Undiagnosed infected individuals are diagnosed based on a rate de-
pendent upon the stage of infection, acute (rA) or chronic (rC). However, we assume that
diagnosis rates do not vary directly due to injection drug use status (active or former), i.e.
active and former PWIDs are diagnosed at the same rate and is the same for imported
cases and domestic cases.

2.2 Modelling of interventions

DAA treatment: We assume that only diagnosed, chronically-infected PWIDs are el-
igible for DAA treatment and that no treatment is provided during the acute stage of
infection because this stage is comparably short and natural recovery is possible (WHO,
2018a). For simplicity we assume that once treatment is initialized the patient immedi-
ately recovers. This is a sensible assumption because successful DAA treatment is highly
effective and treatment durations are relatively short (Lawitz et al., 2014). Treatment rates
depend upon injection drug use status (active or former) and enrollment in a NEP. The
parameters τa, τe and τf denote successful treatment rates for active PWIDs not enrolled
in NEPs, active PWIDs enrolled in NEPs and former PWIDs, respectively. Successfully
treated active PWIDs return to the respective susceptible compartment while successfully
treated former PWIDs leave the PWID population and, therefore, the model.
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Figure 1: Schematic representation of the base transmission model and the needle exchange
program (NEP). We distinguish between susceptible (Sd,e,f ) and two stages of infection,
acute (Ad,e,f ) and chronic (Cd,e,f ). The subindices indicate d = diagnosed, e = enrolled
in NEP and f = former PWIDs, where 0=no and 1=yes, and super-scripted with I if
imported. The rates on the arrows are explained in the text.

1Injection drug use
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Needle exchange programs: We assume that active PWIDs enroll uniformly into NEPs
at a rate ε, regardless of diagnostic status or stage of infection, and drop-out of the programs
at a rate δ, returning to the respective compartments in the base model. The dynamics in a
NEP can potentially differ from the base model in three ways and our model allows these to
vary independently. First, NEPs provide access to clean needles and injection equipment;
therefore, we assume that the risk of both transmitting HCV and being infected reduces
by a factor 0 ≤ α ≤ 1 (α = 1 meaning no reduction) compared to the susceptibility and
infectiousness of infected, active PWIDs in the base model. Second, the model provides
the potential for an increased diagnosis rate, re, because regular health check-ups that
include HCV screening often occur in these programs, independenlty of stage of infection.
As a consequence, re might differ from the diagnosis rates in the base model. Third, due
to support and education available through medical facilities associated with NEPs, the
model allows for inclusion of an increased permanent injection drug use-cessation rate, ce,
compared to the cessation rate c in the base model.

2.3 Force of infection

The force of infection is defined as

λ(t) = β · I(t) (1)

with

I(t) =
∑1

i=0 (Ai,0,0(t) + Ci,0,0(t)) + CI
0,0,0(t) + α

(∑1
i=0 (Ai,1,0(t) + Ci,1,0(t)) + CI

0,1,0(t)
)

∑1
i=0 S0,i,0(t) +

∑1
i,j=0 (Ai,j,0(t) + Ci,j,0(t)) +

∑1
i=0C

I
0,i,0(t)

(2)

The denominator of I(t) is the sum of all active PWIDs while the numerator is the sum of
all active and infected PWIDs with α accounting for the reduced infectiousness of PWIDs in
NEPs. For α = 1, I(t) denotes the prevalence of HCV among the active PWID community
at time t.
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2.4 Derivation of key outcomes

2.4.1 Number of undiagnosed PWIDs

From this model formulation we can now compute the number of diagnosed as well as
undiagnosed at any time t, stratified by injection drug use status (active or former) and
stage of infection (acute or chronic) which is the sum of the respective compartments at
that time. The number of, e.g., undiagnosed, active, infected PWIDs at time t is equal to

1∑
i=0

(
A0,i,0(t) + C0,i,0(t) + CI

0,i,0(t)
)

(3)

and the number of undiagnosed, former, infected PWIDs at time t is equal to

A0,0,1(t) + C0,0,1(t) + CI
0,0,1(t). (4)

The total number of undiagnosed HCV-infected PWIDs in our model is then the sum of
(3) and (4). The total number of infected (diagnosed and undiagnosed) PWIDs is the sum
of all compartments except the two susceptible compartments.

2.4.2 True incidence

The true incidence in year tn is the number of newly infected individuals in (tn−1, tn]. From
the model the true annual incidence is given as∫ tn

tn−1
λ(t)(S0,0,0(t) + αS0,1,0(t))dt. (5)

Note, that this is different from the reported incidence rate, which is the number of newly
diagnosed individuals in year tn

D(tn) =
∫ tn

tn−1

rA

1∑
i=0

A0,0,i(t) + rC

(
1∑

i=0

C0,0,i(t) +
1∑

i=0

CI
0,0,i(t)

)
+ re

(
A0,1,0(t) + C0,1,0(t) + CI

0,1,0(t)
)

dt.

(6)
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2.4.3 Time until diagnosis

From the base model we can derive the average time from infection until diagnosis for a
intervention-free system in endemic state. In the following, the endemic level is indicated
by lowercase letters, e.g. in endemicity A0,0,0(t) = a0,0,0 for all t. Note that there is no
disease-free state because we allow for importation of infectious individuals. In the system
without interventions, the treatment rates, τf , τa, τe, and the enrollment rate into NEPs,
ε, are all set to zero. This represents a scenario in which both improved treatment options
and broader access to NEPs are not available, as is the situation in many middle and
high-income countries. The average time until diagnosis, tΣ, is given as the sum of the
average time until diagnosis, conditional on the compartment within which an individual is
diagnosed, weighted by the fraction of diagnosed in that respective compartment. Let tXd,e,f

denote the average time until diagnosis given the individual is diagnosed in compartment
Xd,e,f with X ∈ {S,A,C} (see Equations (15) of Section B in the Appendix). We then
obtain

tΣ = 1
D

1∑
i=0

(
tA0,0,irAa0,0,i + tC0,0,irCc0,0,i + tCI

0,0,i
rCc

I
0,0,i

)
(7)

with D as in Equation (6) being the total number of newly diagnosed HCV cases each
year for tn− tn−1= 1 year in endemic, intervention-free state. Each infected individual will
belong to the undiagnosed cohort from the time of infection up until the time of diagnosis.
As a consequence, the number of undiagnosed in steady state will equal the incidence rate
multiplied by the average time to diagnosis in steady state.

2.4.4 Reproduction numbers Rin and Rout

We define the reproduction numbers Rin and Rout as the expected number of new infections
caused by a typical infectee who acquires the disease in the target country (in) or abroad
(out), during the early stage of an epidemic when almost everyone is susceptible. They
are calculated as the product of the number of individuals an infected individual infects on
average per unit time and the duration of the infectious period. Since we assume that all
infected individuals are equally infectious regardless of their stage of infection, we obtain
the following for the base transmission model without interventions

Rin = β

γ + µ+ c
+ (1− p)γ
γ + µ+ c

· β

µ+ ρ+ c
and Rout = β

µ+ ρ+ c
, (8)
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where the first factor in the second term in Rin is the probability of reaching the chronic
state. Note that the reproduction numbers are not threshold parameters as long as there
is importation of infectious individuals. However, without importation of infected PWIDs
(i.e. i = 0), Rin = R0, where R0 denotes the basic reproduction number (Diekmann et al.,
2013, Chapter 1, Page 4). Hence, if Rin ≤ 1 without importation, then no outbreak is
possible. We illustrate this in Figure 3 in Section C in the Appendix.

2.5 Fitting the model to data

We assume HCV to be endemic before the implementation of interventions. For a given set
of parameters, the endemic level is obtained by setting all derivatives in the system of equa-
tions in Section A in the Appendix to zero and solving the equations numerically; for this
we use the R-package nleqslv (Hasselman, 2017). Our base model without interventions
contains ten parameters of which we assume six to be known from the literature (Table 1).
Moreover, we assume that the following four quantities are known: a) prevalence of HCV
among active PWIDs in an intervention-free scenario, and the reported incidence of b)
acute, c) chronic and d) imported, chronic cases. These four quantities can be formulated
in terms of the model parameters (as explained below) and hence allow us to estimate the
remaining four parameters, namely the reporting rates of acute and chronically infected
PWIDs, rA and rC , the number of infectious contacts per time unit, β, and the importation
rate i. Knowing all ten parameters in our model, we can then also calculate functions of
the parameters such as the force of infection λ(t), the influx rate into the active PWID pop-
ulation θ, and the fraction of active chronically-infected imported cases q. We conduct a
sensitivity analysis (Section 3.2) for all parameters that are assumed to be fixed and known.

Our observations YX,n are the number of newly diagnosed acute (A), chronic (C) and im-
ported chronic (CI) HCV cases aggregated over reporting years (tn−1, tn], n ∈ {1, . . . , N}
of type X ∈ {A,C,CI}. Note that since reported surveillance data usually does not dif-
ferentiate diagnosed individuals by injection drug use status (active or former), we only
observe the sum of these two groups. Hence, for tn − tn−1 = 1 year, the number of newly
diagnosed during an interval of one year is given as

YX,n =
∫ tn

tn−1
rX

1∑
i=0

x0,0,idt = rX

1∑
i=0

x0,0,i, (9)

11

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2018. ; https://doi.org/10.1101/460550doi: bioRxiv preprint 

https://doi.org/10.1101/460550
http://creativecommons.org/licenses/by-nd/4.0/


with x ∈ {a, c, cI} and rCI := rC . Since the observations are more or less the same each year
when at endemic equilibrium, we only write YX := YX,n in what follows. HCV prevalence
among active PWIDs in endemic state before interventions is given as

prev =
∑1

i=0 (ai,0,0 + ci,0,0) + cI
0,0,0

s0,0,0 +
∑1

i=0(ai,0,0 + ci,0,0) + cI
0,0,0

(10)

2.5.1 Incorporating uncertainty

To account for uncertainty in the given parameters of the model, we assume that each
literature-informed value is the mean of a (truncated) normal distribution bounded by zero
from below and we assign an additional standard deviation (1% of the mean value in the
numerical example) to these values (Table 1). We drawm samples of parameter values from
these distributions assuming no dependence between parameter uncertainties. For each
sampled parameter vector, we then solve the system of equations numerically and calculate
the key outcomes of interest (Equations (3), (4), (5), (7), (8)). The reported estimated key
outcomes are the resulting sample mean and the corresponding sample standard deviation.

2.5.2 Sensitivity analysis

To systematically investigate the influence that each of the ten parameters assumed to
be known has on the results of the base model (i.e. without interventions), we conduct
a sensitivity analysis. For this, we fix all parameters except one at their assumed mean
value (Table 1) and vary the free parameter across a range from 90% to 110% of its mean
value to see the magnitude of effect that specific parameter has on the four outcomes of
interest, see Figures in Section E of the Appendix. Table 3 shows the percentage change
in each outcome of interest if we replace the mean of the free parameter with ± 10% of the
investigated parameters. Note, that the variation of 10% was chosen arbitrarily and should
not be confused with the associated uncertainty of each parameter. A sensitivity analysis
for the parameter γ, the rate of moving from the acute to the chronic compartment, is not
shown because that parameter is fixed by our definition of the acute phase.

2.5.3 Scenario analyses

To illustrate how the model can be used to provide qualitative insights regarding the effect
of different strategies on the disease dynamics, we created a set of eight scenarios (Table 4).
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The baseline scenario (Scenario 1) reflects the situation in which neither treatment nor
NEPs are in place.

Scenarios 2 and 3 represent situations in which diagnosed PWIDs (former and active,
respectively) are treated but no NEPs are in place.

In Scenarios 4-5 we explore the potential benefits of NEPs when no DAA treatment is
available by independently varying each of the NEP-specific parameters. In Scenario 4 we
assume a decrease in infectiousness and susceptibility (due to reduced needle sharing) from
α = 1.0 to α = 0.5. In Scenario 5 we assume that NEPs contribute to early injection drug
use cessation by reducing the average time spent injecting drugs from 17.8 years (ce = 0.056
[yrs−1]) to 5 years (ce = 0.2 [yrs−1]).

With Scenarios 6 and 7 we illustrate how the model can be used to study the effect of
increased HCV testing by healthcare facilities where PWID can receive treatment but do
not receive the benefits of NEPs. In these cases, the healthcare facilities are represented
by α = 1 (no reduction in relative susceptibility/infectiousness) and ce = c = 0.056 [yrs−1]
(no change in injection drug use cessation rates) as in the base model. In Scenario 6 we
compare the effect of increasing the diagnosis rate from rC = 0.072 [yrs−1] in the base
model (corresponding to an average of 14 years after infection) to re = 4 [yrs−1], which
corresponds to an HCV-infected individual being diagnosed, on average, 3 months after
joining a healthcare facility due to regular health check-ups (this time period was based
on personal communication with Martin Kåberg at the Stockholm NEP). We chose the
enrollment rate into the NEP or healthcare facility to be ε = 0.1 [yrs−1] meaning that
active PWIDs join, on average, 10 years after injection drug use initiation. In Scenario 7
we investigate the effect of increased diagnosis rates combined with greater availability of
healthcare facilities by decreasing the average time until enrollment in healthcare from 10
years to 5 years after after injection drug use initiation, i.e. ε = 0.2 [yrs−1].

In Scenario 8 we demonstrate a combination of treating both active PWIDs in NEPs
as well as former PWIDs; infectiousness is reduced and diagnosis rates are increased. For
all treatment scenarios described above we chose a treatment rate of 1 [yrs−1], meaning

13

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2018. ; https://doi.org/10.1101/460550doi: bioRxiv preprint 

https://doi.org/10.1101/460550
http://creativecommons.org/licenses/by-nd/4.0/


individuals are successfully treated one year after HCV diagnosis, on average.

For our scenario analyses, we initialize the ODE system at the intervention-free endemic
level for each parameter vector as calculated in Section 3.1 and then simulate the trajectory
forward in time until the system has equilibrated in the steady state with interventions, see
Figure 5 in the Appendix for an example. For this we use the trajectory function imple-
mented in the R-package pomp (King et al., 2016). From this new equilibrium we compute
the resulting HCV prevalence among active PWIDs, true annual incidence, number of un-
diagnosed among active and former PWIDs and total number of infected (i.e. undiagnosed
and diagnosed, active and former); we report the corresponding deviation from the mean
of the baseline situation, see Table 4. For simplicity we ignore drop-out from the needle
exchange programs in all scenarios above but all of the intervention-specific parameters
can be further explored and varied in the Shiny app.

2.5.4 User interface: Shiny app

To complement our model and enable its use in public health practice, we developed an
interactive platform through which the user can obtain model estimates for individual
choices of parameters and instantaneously explore the sensitivity of the results to parameter
changes. All outcomes presented throughout the manuscript can be obtained for user-
specific sets of values by modifying all parameters assumed fixed along with their respective
associated uncertainties. Additionally, the app provides visualization of each obtained
parameter distribution and the sample size can be varied. The tool is made available in
Stocks (2018) and a screenshot is shown in Figure 4 in the Appendix.

3 Numerical illustration

To demonstrate our model, we give a numerical illustration and estimate the number
of undiagnosed cases, the true incidence, the time until diagnosis and the reproduction
numbers in an intervention-free situation assuming endemic equilibrium. We base our
calculations on surveillance data, i.e. the number of annual diagnosed cases, from Sweden,
where HCV is endemic and the availability of NEPs has been, until recently, rather limited.
When available, we use parameter estimates for Sweden and use other literature-informed
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Table 1: Notation and parameter values used in the model.

Parameter Explanation Value (sd) [Unit] Assumption Reference
Compartments

d= diagnosed no/yes {0,1}
e= needle exchange program no/yes {0,1}
f= former PWIDs no/yes {0,1}

Sd,e,f (t) Number of susceptible at time t [individuals]
Ad,e,f (t) Number of acutely infected at time t [individuals]
Cd,e,f (t) Number of chronically infected at time t [individuals]
CI

d,e,f (t) Number of imported chronically infected at time t [individuals]

Model without interventions
c permanent injection drug use cessation rate 0.056 (0.00056) [yrs−1] known (Kåberg et al., 2017)
µ mortality rate for PWIDs 0.022 (0.00022) [yrs−1] known (Mathers et al., 2013)
ρ factor by which mortality rate increases due to chronic HCV 0 (0) known not included in the model
p spontaneous clearance probability 0.26 (0.0026) known (Micallef et al., 2006)
γ rate of leaving acute compartment 2 (0) [yrs−1] known (Mondelli et al., 2005)
N active PWID population size in endemic state 26000 (260) [individuals] known (SWE, 2011, 2013, 2014)
β number of infectious contacts per time unit 0.55 (0.03) [yrs−1] calibrated
rA diagnosis rate of acutely infected PWIDs 0.129 (0.003) [yrs−1] calibrated
rC diagnosis rate of chronically infected PWIDs 0.072 (0.006) [yrs−1] calibrated
i importation rate of active chronically infected cases 53.02 (1.2) [individuals/yrs] calibrated

prev HCV prevalence among active PWIDs before interventions 0.817 (0.00817) Equation (10), known (Fraser et al., 2018)
YA Diagnosed acute cases per year 129 (1.29) [individuals/yrs] Equation (9), known Public Health Agency of Sweden
YC Diagnosed chronic cases per year 1129 (11.29) [individuals/yrs] Equation (9), known Public Health Agency of Sweden
YCI Diagnosed imported chronic cases per year 184 (1.84) [individuals/yrs] Equation (9), known Public Health Agency of Sweden
λ(t) force of infection [yrs−1] Equation (1)
θ PWIDs recruitment rate 1982 (25) [individuals/yrs] Equation (13)
q fraction of active imported chronic cases 0.22 (0) Equation (14)
Rin reproduction number (infection within country) 5.3 (0.2) Equation (8)
Rout reproduction number (infection outside country) 7.1 (0.3) Equation (8)
tΣ average time until diagnosis 9.2 (0.5) [yrs] Equation (7)

Treatment
τa treatment rate of active PWIDs (not in NEPs) [yrs−1] varied in Section 3.3
τe treatment rate of active PWIDs in NEPs [yrs−1] varied in Section 3.3
τf treatment rate of former PWIDs (not in NEPs) [yrs−1] varied in Section 3.3

Needle exchange programs (NEPs)
re diagnosis rate in NEPs [yrs−1] varied in Section 3.3
α relative risk of acquiring/spreading HCV varied in Section 3.3
ce permanent cessation rate of PWIDs in NEPs [yrs−1] varied in Section 3.3
ε enrollment rate into NEPs [yrs−1] varied in Section 3.3
δ drop-out rate NEPs [yrs−1] varied in Section 3.3

m sample size 1000
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values as needed (Table 1). Therefore, this section is meant as a proof of concept to
illustrate our methods and not as a basis for public health decision-making; however, once
all parameter estimates become available, our tool provides the infrastructure to monitor
the key outcomes and intervention strategies as described above.
There is no uncertainty associated with the parameter γ because the length of the acute
period is defined as six months (Mondelli et al., 2005). Moreover, in absence of a better
alternative, we assume that the factor by which mortality of PWIDs increases due to
chronic HCV is zero, however, the Shiny app allows for an increased mortality rate.

3.1 Key outcomes for intervention-free model in endemic state

Based on a sample of size 1000 and using the parameter estimates (Table 1), the annual
true HCV incidence in an intervention-free situation in the endemic state is estimated to
be 2146 (sd=35) cases, with an estimated average of 9.2 (sd=0.5) years between infection
to diagnosis (see Figure 2). The estimated reproduction number Rin is 5.3 (sd=0.2) and
Rout is 7.1 (sd=0.3) (see Figure 2).
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Figure 2: Distribution of the reproductions numbers Rin and Rout, the time until diagnosis
and the annual true incidence.

The distribution of the number of undiagnosed cases in endemic state stratified by injection
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drug use status and stage of infection can be found in Table 2.

Table 2: Mean number of estimated undiagnosed PWIDs cases (sd) stratified by stage of
infection and status of drug use in steady state.

Injection drug use status
Active (sd) Former (sd) Total (sd)

Stage of
infection

Acute 972 (17) 25 (1) 997 (18)
Chronic 9933 (542) 8364 (937) 18297 (1475)

Total 10905 (557) 8389 (937) 19294 (1491)

3.2 Sensitivity analysis: Baseline situation without interventions

Table 3 shows that time until diagnosis, the number of undiagnosed individuals and in-
cidence are positively correlated with PWID population size and HCV prevalence and
they are negatively correlated with time until permanent injection drug use cessation and
number of chronic cases. The reproduction number Rin depends almost exclusively on
prevalence: the higher the prevalence, the higher the reproduction number. We conclude
that, based on the parameter values we investigated, the parameters for population size
of active PWIDs, cessation rate, prevalence and number of diagnosed chronic cases are
the most influential on the estimates; therefore, an increase in certainty for those four
parameters would most effectively increase the precision of our results.

Table 3: Summary of sensitivity analysis showing percentage change in time until diagnosis,
Rin, total number of undiagnosed and true incidence as each quantity is changed from 90%
to 110% of the mean value.

Varied Effect on:
parameter Time until diagnosis Rin # undiagnosed Incidence

N Active PWID population size 91% 0% 153% 22%
µ Mortality rate for PWIDs 0% 0% 0% 0%
µ+ ρ Mortality rate for HCV-infected PWIDs 2% 0% -3% -5%
c Permanent injection drug use cessation rate -34% 0% -47% -14%
p Clearance probability 0% 0% 0% 0%
prev Prevalence among active PWIDs 91% 161% 153% 22%
YA Diagnosed acute cases -6% 0% -5% 0%
YC Diagnosed chronic cases -42% 1% -47% 1%
YI Diagnosed imported chronic cases 0% -1% 0% -1%
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3.3 Impact of interventions

We investigated eight potential intervention scenarios and compared the results of four
measures (prevalence among active PWIDs, incidence, number of undiagnosed cases and
total number infected) to the baseline scenario (Scenario 1), see Table 4.

By model design, in a scenario in which treatment is available but no NEPs are in place,
treating only former PWIDs (Scenario 2) results in a substantial reduction in the total
number of infected individuals compared to the baseline but has no effect on prevalence,
incidence or the number of undiagnosed individuals. In contrast, treating only active
PWIDs (Scenario 3) additionally reduces prevalence but results in an increase in both
incidence and the number of undiagnosed compared to the baseline scenario. This counter-
intuitive effect arises because incidence is proportional to the product of prevalence and
number of susceptible (Equation (5)): it increases when the number of susceptible individ-
uals increases while prevalence is not reduced enough to compensate for this effect. Once
re-infected, the PWIDs move from the susceptible to the undiagosed compartments where
no treatment is available and remain there until diagnosis. As the diagnosis rate is low in
the base model, few individuals proceed into the diagnosed compartments and, therefore,
the number of undiagnosed increases.

In a situation where no treatment of PWIDs is available but NEPs are in place, reducing
infectiousness and susceptibility to the disease, results in a reduction in all outcomes (Sce-
nario 4). If injection drug use cessation rates increase, e.g. due to counselling in NEPs,
this results in a reduction in all outcomes except for the number of infected former PWIDs
(Scenario 5).

In Scenarios 6-7, treatment is made available only to PWIDs enrolled in healthcare fa-
cilities (hence, no reduction of infectiousness and susceptibility due to needle exchange).
The effect of increased diagnosis rates in those centers by, e.g., regular health check-ups
(Scenario 6), results in a reduction in prevalence, number of undiagnosed individuals and
total number of infected, but an increase in incidence due to reinfection of treated individ-
uals. In our example, incidence can be reduced by, e.g., increasing the enrollment rate into
the healthcare facilities (Scenario 7).
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Table 4: Scenario analyses for interventions depending on treatment rates for active PWIDs not enrolled in NEPs (τa),
former PWIDs (τf ) and PWIDs in NEPs (τe), enrollment rate into NEP (ε), relative susceptibility/infectiousness in
NEP (α), permanent injection drug use cessation rate in a NEP (ce) and diagnosis rate (re). The resulting prevalence
among active PWIDs, the true incidence, the number of undiagnosed active and former PWIDs and the total number
infected (i.e. undiagnosed and diagnosed, active and former) relative to the first scenario are reported. All rates are
per year.

Scenarios Treatment Needle exchange program (NEP) Results
Prevalence among True #undiagnosed #undiagnosed total #

# τa τf τe ε α ce re active PWIDs incidence active PWIDs former PWIDs infected

No treatment, no NEP 1 - - - - - - - 0.82 2146 10905 8389 83035

Treatment, no NEP 2 - 1 - - - - - 0% 0% 0% 0% -63%
3 1 - - - - - - -19% 49% 47% 36% -17%

No treatment, NEP 4 - - - 0.1 0.5 0.056a 0.072b -18% -19% -18% -14% -16%
5 - - - 0.1 1c 0.2 0.072b -15% -10% -31% 22% -8%

Treatment with increased 6 - - 1 0.1 1c 0.056a 4 -64% 40% -64% -49% -57%
diagnosis rates 7 - - 1 0.2 1c 0.056a 4 -89% -45% -90% -69% -79%

Treatment, NEP 8 - 1 1 0.1 0.5 0.056a 4 -82% -49% -80% -61% -91%

a Value corresponds to the estimate for the cessation rate c in the base model.
b Value corresponds to the estimate for the diagnosis rate rC in the base model.
c Value corresponds to no reduction in infectiousness and susceptibility compared to the base model.
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Combining treatment of former PWIDs and treatment in NEPs (Scenario 8) leads to a
reduction in all outcomes.

4 Discussion

We developed and implemented a model to help enable countries to monitor progress to-
wards the WHO goal of viral hepatitis elimination, and to evaluate how needle exchange
programs and DAA treatment may influence this progress. Within the scope of the WHO
elimination targets, this is highly relevant for public health. We demonstrated the model
and the output it provides using an illustrative data set. In addition, we converted the
model into an accessible, web-based tool intended for public health professionals.

For the first objective (monitoring), the model uses several country-specific parameters
(HCV prevalence, active PWID population size, reported HCV incidence, PWID-specific
death-rate, and permanent cessation rate) as well as certain HCV-specific parameters (du-
ration of acute period and spontaneous clearance probability). Based on these input param-
eters, the model is able to generate four key outcomes the WHO recommends be monitored
that describe the current HCV situation in the target country, namely the number of undi-
agnosed PWIDs, the true incidence, the average time until diagnosis and the reproduction
numbers.

PWID-specific parameters are often accompanied by high uncertainty; therefore, our model
allows this uncertainty to be quantified. The uncertainty in the input parameters is then
translated into uncertainty in the output parameters by Monte Carlo methods, which re-
sults in the key outcomes being distributions rather than point masses. Furthermore, our
modelling framework provides sensitivity analyses based on the specified input parameters
in order to investigate which parameter values are most influential on the estimated out-
puts. This can help countries to prioritize which parameters should be the focus of further
public health investigations to most effectively increase precision of the results (e.g., Table
3). For example, the dataset we investigated, the analysis showed that increased certainty
regarding three key quantities (prevalence among active PWIDs, PWID population size,
and average duration of injection drug use) would most improve the precision of the results

20

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2018. ; https://doi.org/10.1101/460550doi: bioRxiv preprint 

https://doi.org/10.1101/460550
http://creativecommons.org/licenses/by-nd/4.0/


and should be investigated further.

For the second objective (intervention analysis), the effect of different, country-specific in-
terventions on prevalence, incidence, number of undiagnosed and total number of infected
can be investigated. Here, the model offers great flexibility in terms of which scenarios
can be explored: as illustrated in Table 3, treatment rates depending on injecting drug
use status and access to health care facilities and NEPs can be varied, the effect of in-
creased diagnosis rates due to regular healthcare checkups in NEPs or health care centers
can be investigated and availability of and drop-out from those facilities can be quantified.
Additionally, the model allows for the explicit investigation of two NEP-specific benefitis
that can potentially reduce HCV transmission in the PWID population. First, through
one of the main functions served, NEPs can reduce HCV transmission by providing access
to clean needles and injection equipment. Second, if connected with counseling and/or
opioid substitution therapy programs, NEPs have the potential to increase injection drug
use cessation rates. A strength of our model is that these effects can be investigated in
isolation or in combination, which can reveal how these different factors interplay.

In addition, our scenario analyses showed the importance of stratifying individuals by
their injection drug use status. For example, our model produced rather counter-intuitive
findings, with respect to incidence and the number of undiagnosed individuals, when we
considered a potential scenario in which treatment was provided to active PWIDs in the
absence of NEPs and with relatively low rates of diagnosis. However, our model was able to
show greater changes in outcomes relative to baseline for scenarios that combined treatment
with increased diagnosis rates compared to those that did not change diagnosis rates; this
was only possible because we stratified by diagnostic status. This stresses the importance
of considering diagnosis rates explicitly in the modelling process and is further supported
by studies reporting the importance of HCV screening, see e.g. Scott et al. (2017a, 2018a,b).
Models that do not differentiate cases by diagnostic status may fail to accurately estimate
the success of treatment interventions because they ignore that undiagnosed infected indi-
viduals do not benefit from treatment while, at the same time, these individuals contribute
to the infectious pressure in the population. The ability to uncover these relationships is
a strength of our model and illustrates the role models can play in potentially preventing
costly but inefficient, or even counter-effective, interventions. Making our model available
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as an open software tool gives countries the ability to test various potential intervention
strategies beforehand, in an effort to prevent potentially negative real-world consequences
and use limited resources most effectively.

There are, of course, certain limitations to our modelling approach and complexities not
considered. First, we assumed homogeneous mixing of needle sharing among PWIDs; how-
ever, in reality, needle sharing behavior can be heterogeneous (Strathdee et al., 2001).
Therefore, the model could be made more complex by considering a spatial and social
structure and inclusion of distinct risk groups that differ with respect to needle sharing
rates. Second, to simplify our model, we assumed injection drug use cessation to be per-
manent, however, relapse is common (Galai et al., 2003). As more data become available,
the model could be easily extended to include estimated relapse rates. Third, we limited
our interventions to treatment and NEPs and did not consider opiate substitute therapy
programs. We chose not to incorporate these programs explicitly in our model because
they mainly affect the transition rate between active and former PWIDs, which can be
indirectly modelled by increasing cessation rates, which our model already allows. We also
assumed that initial infection and re-infection occur at the same rate; however, a change in
injection drug use behavior following HCV infection and treatment is possible, but was not
considered here. Finally, a general limitation of compartmental models is that they implic-
itly assume that the time in each compartment is exponentially distributed, which might
not always be realistic – distributions with more pronounced modes could be achieved by
dividing the compartments into several sub-classes.

Recently and independent of our work, models have been proposed presenting similar
stratifications as we have used here (Scott et al., 2017a,b, 2018a,b). Some are much more
detailed with respect to stratification by age, cascade of care and disease progression; how-
ever, none account for NEPs explicitly. The analyses of Scott et al. often focus on the
impact of testing in a specific country/prevalence setting; on the other hand our model is
less detailed in some of these aspects but offers more flexibility as it is meant as an open
software tool for any high income country where the main route of transmission is injec-
tion drug use among active PWIDs. As such, availability of country-specific parameter
estimates is important. By keeping our model relative simple, e.g. with respect to disease
progression and age structure, we limit its dependence on difficult-to-obtain parameters
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and, at the same time, strive to ensure that model inputs and outputs are easily inter-
pretable.

We expect that our model can be used as a tool for intervention and treatment planning, al-
location of resources (such as funding, time and personnel) and support for evidence-based
public health decision-making aimed at reaching the WHO HCV elimination targets. To
our knowledge, our model is the first to be developed into a ready-to-use tool that en-
ables measurement of country-specific WHO indicators to allow planning and monitoring
of progress toward the elimination of viral hepatitis.
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A Transmission equations

The differential equations describing our model are given as follows. Note that this is a
deterministic system so the state variables are continuous rather than integer-valued.

1. PWIDs in the base model:

a) Active PWIDs:
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(i) Undiagnosed

dS0,0,0(t)
dt

= θ − (c+ µ+ λ(t) + ε)S0,0,0(t) + pγ(A0,0,0(t) +A1,0,0(t)) + τaC1,0,0(t) + δS0,1,0(t)

dA0,0,0(t)
dt

= λ(t)S0,0,0(t)− (γ + µ+ c+ rA + ε)A0,0,0(t) + δA0,1,0(t)

dC0,0,0(t)
dt

= (1− p)γA0,0,0(t)− (µ+ ρ+ c+ rC + ε)C0,0,0(t) + δC0,1,0(t)

dCI
0,0,0(t)
dt

= qi− (µ+ ρ+ c+ rC + ε)CI
0,0,0(t) + δCI

0,1,0(t)

(ii) Diagnosed

dA1,0,0(t)
dt

= rAA0,0,0(t)− (µ+ c+ γ + ε)A1,0,0(t) + δA1,1,0(t)

dC1,0,0(t)
dt

= (1− p)γA1,0,0(t) + rCC0,0,0(t)− (µ+ ρ+ c+ τa + ε)C1,0,0(t) + rCC
I
0,0,0(t) + δC1,1,0(t)

b) Former PWIDs:

(i) Undiagnosed

dA0,0,1(t)
dt

= cA0,0,0(t)− (γ + µ+ rA)A0,0,1(t) + ceA0,1,0(t)

dC0,0,1(t)
dt

= (1− p)γA0,0,1(t) + cC0,0,0(t)− (µ+ ρ+ rC)C0,0,1(t) + ceC0,1,0(t)

dCI
0,0,1(t)
dt

= (1− q)i+ cCI
0,0,0(t)− (µ+ ρ+ rC)CI

0,0,1(t) + ceC
I
0,1,0(t)

(ii) Diagnosed

dA1,0,1(t)
dt

= rAA0,0,1(t) + cA1,0,0(t)− (µ+ γ)A1,0,1(t) + ceA1,1,0(t)

dC1,0,1(t)
dt

= rCC0,0,1(t) + cC1,0,0(t) + (1− p)γA1,0,1(t)− (µ+ ρ+ τf )C1,0,1(t) + rCC
I
0,0,1(t) + ceC1,1,0(t)

2. PWIDs enrolled in NEPs:

(i) Undiagnosed

dS0,1,0(t)
dt

= −(ce + µ+ αλ(t) + δ)S0,1,0(t) + pγ(A0,1,0(t) +A1,1,0(t)) + teC1,1,0(t) + εS0,0,0(t)

26

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2018. ; https://doi.org/10.1101/460550doi: bioRxiv preprint 

https://doi.org/10.1101/460550
http://creativecommons.org/licenses/by-nd/4.0/


dA0,1,0(t)
dt

= αλ(t)S0,1,0(t)− (γ + µ+ ce + re + δ)A0,1,0(t) + εA0,0,0(t)

dC0,1,0(t)
dt

= (1− p)γA0,1,0(t)− (µ+ ρ+ ce + re + δ)C0,1,0(t) + εC0,0,0(t)

dCI
0,1,0(t)
dt

= −(µ+ ρ+ ce + re + δ)CI
0,1,0(t) + εCI

0,0,0(t)

(ii) Diagnosed

dA1,1,0(t)
dt

= reA0,1,0(t)− (µ+ ce + γ + δ)A1,1,0(t) + εA1,0,0(t)

dC1,1,0(t)
dt

= (1− p)γA1,1,0(t) + reC0,1,0(t)− (µ+ ρ+ ce + τe + δ)C1,1,0(t) + reC
I
0,1,0(t) + εC1,0,0(t)

All initial values are fixed at the endemic level without interventions as described in Section
2.5. Moreover, the initial values satisfy

S0,0,0(0) +A0,0,0(0) + C0,0,0(0) +A1,0,0(0) + C1,0,0(0) + CI
0,0,0(0) = N (11)

for the compartments in the base tranmission model and

S0,1,0(0) = A0,1,0(0) = C0,1,0(0) = A1,1,0(0) = C1,1,0(0) = CI
0,1,0(0) = 0, (12)

for the compartments in the NEP since we assume that initially no NEP is implemented.
If the enrollment rate is ε > 0 the values in Equation (12) change over time. Since the
population size of active PWIDs, N , is assumed to be constant over time, the influx rate
into the susceptible compartment is given as

θ =(c+ µ)
(
S0,0,0(0) +

1∑
i=0

Ai,0,0(0)
)

+ (c+ µ+ ρ)
( 1∑

i=0
Ci,0,0(0) + CI

0,0,0(0)
)
− qi (13)

which is the accumulated rate of all individuals leaving the active PWIDs community by
death or injection drug use cessation each year minus the rate of individuals entering the
community by importation, q · i, every year. Moreover, we chose the fraction of active
imported chronic cases, q, equals the fraction of time an individual spends, on average,
in the active, chronically-infected compartment CI

0,0,0. If tac denotes the average time
an active PWIDs is chronically infected and tfc the average time a former PWIDs is
chronically-infected then this translates to

q = tac

tac + tfc
, with tac = 1

µ+ ρ+ c
and tfc = 1

µ+ ρ
. (14)
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B Conditional times until diagnosis

The average time until diagnosis given the individual is diagnosed in compartment tXd,e,f

with X ∈ {S,A,C} can be calucalted as

tA0,0,0 = 1
γ + µ+ c+ rA

tA0,0,1 = 1
γ + µ+ c+ rA

+ 1
γ + µ+ rA

tC0,0,0 = 1
γ + µ+ c+ rA

+ 1
µ+ ρ+ c+ rC

tC0,0,1 = 1
γ + µ+ c+ rA

+ (1− p)γ
γ + µ+ c+ rA

( 1
µ+ ρ+ c+ rC

+ 1
µ+ ρ+ rC

)
+ (15)

c

γ + µ+ c+ rA

( 1
γ + µ+ rA

+ 1
µ+ ρ+ rC

)
tCI

0,0,0
= 1
µ+ ρ+ c+ rC

tCI
0,0,1

= 1
µ+ ρ+ c+ rC

+ 1
µ+ ρ+ rC
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Figure 3: Fraction of infected active PWIDs dependent on Rin without importation.
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D Screenshot shiny app

Figure 4: Screenshot of the shiny app.
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E Visualization of the sensitivity analysis

The following plots visualize the results of the sensitivity analysis in Table 3. They show
the resulting change in the four key outcomes if one input parameter is varied from 90%
to 110% of its mean, respectively, with all other input parameters assumed fixed.
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Figure 5: Solution of the ODE system including the number of treated for Scenario 8
initialized at the intervention free endemic level for 20 years into the future. In blue is the
mean of all simulations and in grey shading the 95 % confidence interval.
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