Abstract
Modern humans’ lifestyle strongly depends on complex social skills like empathy, tolerance and cooperation. Variation in the oxytocin receptor (OXTR) and the arginine-vasopressin receptors (.AVPR1A, AVPR1B genes) has been widely associated with diverse facets of social cognition, but the extent to which these variants may have contributed to the evolution of human prosociality remains to be elucidated. In this study, we compared the OXTR, AVPR1A and AVPR1B DNA sequences of modern humans to those of our closest extinct and extant relatives, and then clustered the variants we identified based on their distribution in the species studied. This clustering, along with the functional importance retrieved for each variant and their frequency in different modern-human populations, is then used to determine if any of the OXTR, AVPR1A and AVPRIB-variants might have had an impact at different evolutionary stages. We report a total of 29 SNPs, associated with phenotypic effects ranging from clearly pro-social to mixed or antisocial. Regarding modern human-specific alleles that could correlate with a shift towards prosociality in modern-humans, we highlight one allele in AVPR1A (rs11174811), found at high frequency and linked to prosocial phenotypes in modern humans, while the ancestral allele is associated with antisocial phenotypes. We also report three sites of putatively convergent changes between modern humans and bonobos (rs237897(A), rs2228485(G) and rs1042615(A)), and note the absence of such a convergent pattern between modern humans and chimpanzees. Finally, we observe the high concentration of ‘modern human specific’ alleles in vasopressin receptors not paralleled in the oxytocin receptor.