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 5 

Abstract: Accurate spatial correspondence between template and subject images is a crucial step in 6 

neuroimaging studies and clinical applications like stereotactic neurosurgery. In the absence of a robust 7 

quantitative approach, we sought to propose and validate a set of point landmarks, anatomical fiducials 8 

(AFIDs), that could be quickly, accurately, and reliably placed on magnetic resonance images of the 9 

human brain. Using several publicly available brain templates and individual participant datasets, novice 10 

users could be trained to place a set of 32 AFIDs with millimetric accuracy. Furthermore, the utility of the 11 

AFIDs protocol is demonstrated for evaluating subject-to-template and template-to-template registration. 12 

Specifically, we found that commonly used voxel overlap metrics were relatively insensitive to focal 13 

misregistrations compared to AFID point-based measures. Our entire protocol and study framework 14 

leverages open resources and tools, and has been developed with full transparency in mind so that 15 

others may freely use, adopt, and modify. This protocol holds value for a broad number of applications 16 

including alignment of brain images and teaching neuroanatomy. 17 

  18 
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Introduction 19 

Establishing spatial correspondence between images is a crucial step in neuroimaging studies enabling 20 

fusion of multimodal information, analysis of focal morphological differences, and comparison of within- 21 

and between-study data in a common coordinate space. Stereotaxy arose as a result of questions raised 22 

by scientists and surgeons interested in the physiology and treatment of focal brain structures (A. C. 23 

Evans, Janke, Collins, & Baillet, 2012; Horsley & Clarke, 1908; Peters, 2006). Jean Talairach played a 24 

crucial role, observing consistent anatomical features on lateral pneumoencephalograms (Dandy, 1918), 25 

or "air studies", that could be consistently localized, specifically the anterior commissure (AC) and 26 

posterior commissure (PC) (Schaltenbrand & Wahren, 1977; J Talairach, David, Tournoux, Corredor, & 27 

Kvasina, 1957), and could thus be mapped to prepared post-mortem brain sections in a 3D coordinate 28 

system. The AC-PC line has remained important in the era since magnetic resonance imaging (MRI) has 29 

risen to prominence for aligning brain images to create population atlases (Collins, Neelin, Peters, & 30 

Evans, 1994; A. Evans et al., 1992; Jean Talairach & Tournoux, 1988) as well as to project data from 31 

structural and functional investigations. Further optimizations enabled by deformable registration have 32 

led to atlas enhancements (Fonov et al., 2011) where many more structural features are preserved. The 33 

adoption of standard templates has allowed researchers to compile cytoarchitectonic, functional, and 34 

structural data across studies via image-based meta-analysis of peak coordinates and statistical maps 35 

(Eickhoff et al., 2009; Gorgolewski et al., 2015; Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011). 36 

 37 

Ever since the first linearly aligned population templates (A. Evans et al., 1992; Jean Talairach & 38 

Tournoux, 1988), there have been a number of advances in the development of robust higher order 39 

nonlinear registration tools. As the options became more numerous, several studies investigated the 40 

performance of the different nonlinear registration algorithms (Chakravarty et al., 2009; A. C. Evans et 41 

al., 2012; Hellier et al., 2003; Klein et al., 2009). Over the past decade, the most common metrics used to 42 

evaluate spatial correspondence are related to voxel overlap between regions-of-interest (ROIs) 43 

segmented in both reference and target images. Typically, large subcortical structures well-visualized on 44 
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standard structural MRIs such as the globus pallidus (pallidum), striatum, and thalamus are used 45 

(Chakravarty et al., 2009; Chakravarty, Sadikot, Germann, Bertrand, & Collins, 2008; Klein et al., 2009). 46 

While these measures are effective for evaluating spatial correspondence on the macroscale, here we 47 

argue that they remain relatively coarse measures of registration quality and are insensitive to focal 48 

misregistration between images. In addition, they do not permit facile identification or description of 49 

where these local biases are occurring. These issues are particularly critical as technical advancements 50 

in both imaging and stereotaxy are enabling more accurate therapeutic modulation of brain regions 51 

where several millimeters could represent the difference between optimal therapy and complications. 52 

 53 

In this paper, we sought inspiration from classical stereotactic methods (Schaltenbrand & Wahren, 1977; 54 

J Talairach et al., 1957), and propose that point-based distances provide a more sensitive metric by 55 

which brain image correspondence can be evaluated. Anatomical points have been referred to in the 56 

literature using a variety of terms including fiducials, landmarks, markups (sometimes used in 57 

combination) but ultimately involve representing an anatomical feature by a three-dimensional (x,y,z) 58 

Cartesian coordinate. For this manuscript, we have chosen to use the term AFIDs, short for anatomical 59 

fiducials, "fiducia" being Latin for trust or confidence. We argue that the advent of automatic 60 

segmentation-based methods has led to a relative underemphasis of point correspondence between 61 

brain structures. We first sought to determine whether we could define a set of AFIDs that were both 62 

consistently identifiable across multiple datasets while also providing a distributed sampling about the 63 

brain. Following this, we demonstrate how AFIDs are complementary to segmentation-based metrics for 64 

providing a quantitative report of spatial correspondence between structural magnetic resonance images 65 

of the brain using more intuitive distance-based measures of alignment. Central to this work was the 66 

development of our protocol using an open source framework, enabling reproducibility across sites and 67 

centers. The overall study organization is shown schematically in Fig 1. 68 

 69 
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 70 

Fig 1. Metrics for evaluating spatial correspondence between brain images include voxel overlap (i.e. ROI-based) metrics as 71 
well as point-based distance metrics. The proposed framework involves the identification of point-based anatomical fiducials 72 
(AFIDs) in a series of brain images, which provide an intuitive millimetric estimate of correspondence error between images and 73 
is also a useful tool for teaching neuroanatomy. 74 

Methods 75 

Protocol development 76 

A series of anatomical fiducials (AFIDs) were identified by the lead author (JCL; 10 years experience in 77 

neuroanatomy) in consultation with an experienced neurosurgeon (AGP; 20+ years experience practicing 78 

stereotactic and functional neurosurgery) with consensus achieved on a set of 32 points; which we refer 79 

to as AFID32 (see Fig 2; RRID:SCR_016623). AFIDs could generally be classified as midline (10/32 = 80 

31.25%) or lateral (22/32; i.e. 11 structures that could be placed on each of the left and right sides). 81 

Regions prone to geometric distortion were avoided (Lau et al., 2018). We limited our initial set of AFID 82 

locations to deep brain regions where less inter-subject variability exists (millimeter scale) compared to 83 

the cortical sulci and gyri (centimeter scale) (Thompson, Schwartz, Lin, Khan, & Toga, 1996). 84 

 85 

The AFID points were placed using the Markups Module of 3D Slicer version 4.6.2 (Fedorov et al., 2012) 86 

(RRID:SCR_005619). One key feature of 3D Slicer is that it allows markup points to be placed in the 3D 87 

coordinate system of the software as opposed to the voxel coordinate system of the image being 88 

annotated permitting more refined (sub-voxel) localization. Images are automatically linearly interpolated 89 
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by the software on zoom. After importing the structural MRI scan to be annotated into 3D Slicer, the 90 

anterior commissure (AC) and posterior commissure (PC) points were placed¾specifically the center of 91 

each commissure rather than the intraventricular edge. After defining an additional midline point (typically 92 

the pontomesencephalic junction or intermamillary sulcus), an AC-PC transformation was performed 93 

using the built-in Slicer module (AC-PC Transform). For all subsequent AFID placements, the AC-PC 94 

aligned image was used. The AFID32 protocol is shown in MNI2009bAsym space in Fig 2. 95 

 96 

The rest of the methods are organized into four separate phases. Phase 1 involved AFID32 placement in 97 

three open access brain templates. Phase 2 involved further placement of the AFIDs in individual subject 98 

scans. In Phase 3, AFIDs were used to evaluate subject-to-template registration; and finally, in Phase 4, 99 

they were used to assess template-to-template registration quality. 100 

 101 

For validation and assessment, we adopted the terminology of Fitzpatrick and colleagues (Fitzpatrick & 102 

West, 2001; Fitzpatrick, West, & Maurer, 1998) who defined fiducial localization error (FLE) and fiducial 103 

registration error (FRE) as metrics used to evaluate the real-world accuracy of image-guidance systems 104 

used in neurosurgery. FLE is defined as error related to the placement (i.e. localization) of fiducials, while 105 

FRE is defined as error related to registration. This body of work has been most concerned with 106 

describing the correspondence between preoperative images of a patient and the physical location of the 107 

patient and surgical site in the operating room. Here, we use these terms to describe (virtual, image-108 

based) anatomical fiducials (AFIDs) annotated in structural T1-weighted MRI scans. 109 
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 110 

Fig 2. Each anatomical fiducial in the full AFID32 protocol is demonstrated with crosshairs at the representative location in 111 
MNI2009bAsym space using the standard cardinal planes after an AC-PC transformation. AC = anterior commissure; PC = 112 
posterior commissure; AL = anterolateral; AM = anteromedial; IG = indusium griseum; IPF = interpeduncular fossa; LMS = 113 
lateral mesencephalic sulcus; LV = lateral ventricle; PMJ = pontomesenphalic junction. 114 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 3, 2018. ; https://doi.org/10.1101/460675doi: bioRxiv preprint 

https://doi.org/10.1101/460675
http://creativecommons.org/licenses/by-nd/4.0/


7 of 36 

Phase 1: Protocol validation for brain templates 115 

Novice participants (N=8) were trained over a series of neuroanatomy tutorials to place AFIDs on a 116 

number of publicly available brain images: Agile12v2016 (Lau et al., 2017; Wang et al., 2016), Colin27 117 

(Holmes et al., 1998), MNI2009bAsym (nonlinear asymmetric; version 2009b; RRID:SCR_008796) 118 

(Fonov et al., 2011). Each participant then performed 4 rating sessions independently for each template, 119 

for a total of 12 point sets resulting in a total of 96 AFID32 protocols. We computed several different 120 

metrics for describing the accuracy (and reliability) of our proposed protocol, all of which are variations of 121 

anatomical fiducial localization error (AFLE): mean AFLE, intra-rater AFLE, and inter-rater AFLE as 122 

shown in Fig 3. 123 

 124 

 125 

Fig 3. Metrics used for validating AFID placements are shown here in schematic form. Mean, intra-rater, and inter-rater AFLE 126 
can be computed for an image that has been rated by multiple raters multiple times. 127 
 128 

To compute the mean AFLE, the mean AFID coordinate for each brain image was used as an 129 

approximation of the ideal coordinate location. Mean AFLE was calculated as the Euclidean distance 130 

between the individual position and the group mean. We furthermore calculated intra-rater AFLE as the 131 

mean pairwise distance between AFIDs placed by the same rater. The individual measures were 132 

averaged across all raters as a summary metric. To calculate inter-rater AFLE, a mean coordinate was 133 

computed by averaging the coordinates for each rater as an estimate of the ideal coordinate location for 134 

the rater; the mean pairwise distance between AFIDs placed across raters was then calculated as a 135 

summary metric. We summarized global and location-specific mean AFLE according to a number of 136 

variables: template (group versus individual), rating session (1-4), rater, and AFID. 137 

 138 
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Time required to complete AFID32 placement for a single MRI was documented by each rater. Outliers 139 

were defined as any fiducials deviating from the mean fiducial point by greater than 10 mm. Furthermore, 140 

patterns of variability in AFID placement were assessed using K-means clustering of fiducial locations 141 

(point clouds) relative to the mean fiducial location. 142 

Phase 2: Protocol validation for individual subjects 143 

The same participants and the lead author (total N=9) performed additional AFID placement on a series 144 

of 30 independent brain images from the OASIS-1 database (Marcus, Fotenos, Csernansky, Morris, & 145 

Buckner, 2010) (RRID:SCR_007385). Subjects from the OASIS-1 database were selected from the 146 

broad range of ages encountered in the database, restricted to cognitively intact (MMSE 30) participants. 147 

Although we controlled for normal cognition by MMSE, we selected for qualitatively challenging images 148 

with more complex anatomy (asymmetric anatomy and/or variably-sized ventricles). Details on the 30 149 

scans are provided in the S2 file and organized into the Brain Imaging Data Structure (BIDS) format 150 

(Gorgolewski, Auer, Calhoun, Craddock, & Das, 2016) (RRID:SCR_016124) . 151 

 152 

Each of the 9 participants placed 10 independent AFID32 protocols for a total of 90 AFID32 protocols 153 

and 2880 individual points. Each of the 30 MRI scans from the OASIS-1 database had AFIDs placed by 154 

3 raters to establish inter-rater AFLE (as described in Methods Section Phase 1: Protocol Validation for 155 

Brain Templates). Intra-rater AFLE was not evaluated in Phase 2. Quality of rigid registration was visually 156 

inspected by an experienced rater (JL). 157 

Region-of-interest segmentation 158 

BIDS formatting permitted automatic processing of each of the included OASIS-1 subjects using 159 

fMRIPrep version 1.1.1 (Esteban et al., 2018; Gorgolewski et al., 2017) (RRID:SCR_016216) with 160 

anatomical image processing only. Briefly, the fMRIPrep pipeline involves linear and deformable 161 

registration to the MNI2009cAsym template (Avants, Epstein, Grossman, & Gee, 2008; Fonov et al., 162 

2011) then processing of the structural MRI through Freesurfer for cortical surface and subcortical 163 
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volumetric labeling (Dale, Fischl, & Sereno, 1999; Bruce Fischl, 2012) (RRID:SCR_001847). We focused 164 

on using ROIs commonly used in the literature to evaluate quality of registration in the subcortex 165 

(Chakravarty et al., 2009; Hellier et al., 2003; Klein et al., 2009), i.e. the pallidum, striatum, and thalamus 166 

provided as part of the fMRIPrep output run through FreeSurfer. The striatum label required combining 167 

the ipsilateral caudate nucleus, accumbens, and putamen labels. 168 

Phase 3: Evaluating subject-to-template registration 169 

We evaluated the quality of subject-to-template registration using the output provided as part of 170 

fMRIPrep version 1.1.1 using conventional ROI-based metrics (i.e. voxel overlap) as well as distance 171 

metrics derived from our manual AFID32 annotations from Phases 1 and 2. The default template for 172 

fMRIPrep 1.1.1 was the MNI2009cAsym template. We started by visually inspecting the images 173 

qualitatively from the output fMRIPrep html pages. For each individual subject scan, we used the mean 174 

fiducial location as the optimal location calculated in Phase 2. The distance between the individual 175 

subject AFID location and the corresponding mean AFID location in the template was computed and 176 

defined as the anatomical fiducial registration error (AFRE) and computed for linear transformation alone 177 

(lin) and combined linear and nonlinear transformation (nlin). Our definition of AFRE differs from the FRE 178 

used by Fitzpatrick whose framework for neuronavigation was necessarily limited to rigid-body 179 

transformations (Fitzpatrick et al., 1998). This was compared with ROI-based measures of spatial 180 

correspondence, specifically, the Jaccard similarity coefficient (!∩#
!∪#

) and the Dice kappa coefficient 181 

(%×!∩#
!'#

), where A and B are the number of voxels in the source and reference images, respectively. 182 

 183 

We were able to use the AFID32 points placed in Phase 1 for the MNI2009bAsym template since the 184 

only difference between the MNI2009bAsym and MNI2009cAsym templates was the resampling from 0.5 185 

mm to 1 mm isotropic resolution. AFRE was computed for each AFID location and OASIS-1 subject, 186 

along with voxel overlap for the pallidum, striatum, and thalamus. Comparisons between AFRE and voxel 187 

overlap were made using Kendall's tau. 188 
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Phase 4: Evaluating template-to-template registration 189 

BigBrain is a publicly available ultrahigh-resolution (20 micron) human brain model that has enabled 190 

bridging of macroscale anatomy with near cellular anatomy (Amunts et al., 2013) (RRID:SCR_001593). 191 

A deformable mapping provided by the MNI group has permitted the exploration of high-resolution 192 

BigBrain neuroanatomy in MNI2009bSym space (BigBrainRelease.2015; Last modified August 21, 2016; 193 

accessed August 2, 2018; Available at: ftp://bigbrain.loris.ca/BigBrainRelease.2015/3D_Volumes/MNI-194 

ICBM152_Space/). In this manuscript, we refer to the registered BigBrain image as BigBrainSym. We 195 

quantify the spatial correspondence between BigBrainSym and MNI2009bSym as well as BigBrainSym 196 

and MNI2009bAsym templates using the AFID32 protocol to determine whether any significant AFRE 197 

could be identified. For MNI2009bAsym, we used mean coordinates for each AFID using rater data from 198 

Phase 1. BigBrainSym and MNI2009bSym templates were annotated de novo by three experienced 199 

raters (GG, JL, KF). The mean AFID coordinate was used as an approximation of the ideal coordinate 200 

location for each template. Spatial correspondence was estimated as the AFRE (i.e. Euclidean distance 201 

between points) for each AFID. Correlation between AFLE and AFRE were assessed using Kendall's 202 

tau. 203 

Source code and data availability 204 

All data analysis was performed using R-project version 3.5.1. The AFIDs protocol, raw and processed 205 

data, processing scripts, and scripts used in this manuscript are available at: https://github.com/afids. 206 

Results 207 

Phase 1: Protocol validation for brain templates 208 

The 8 raters had a mean experience of 11.5 +/- 11.2 months in medical imaging (range: 0-24 months), 209 

14.3 +/- 17.0 months in neuroanatomy (range: 0-48 months), and 7.0 +/- 8.8 months in 3D Slicer (range: 210 
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0-24 months). During the template validation phase, the raters placed a total of 3072 individual points 211 

(number of sessions = 4; templates = 3; points = 32). Average AFID32 placement time was estimated at 212 

between 20-40 minutes. Thus, a total of 1920-3840 minutes (or 32-64 hours) were logged in this phase 213 

of the study. The mean, intra-rater, and inter-rater AFLE metrics are summarized in Table 1. 214 

 215 

For the raw data, the mean AFLE was 1.27 +/- 1.98 mm (1.10 +/- 1.59 mm for Agile12v2016; 1.71 +/- 216 

2.78 mm for Colin27; 0.99 +/- 1.11 mm for MNI2009bAsym). Using a threshold of mean AFLE greater 217 

than 10 mm from the group mean, we identified 24 outliers out of 3072 independent points (0.78%). 218 

20/24 (83.33%) of outliers were the result of variable placement in the bilateral ventral occipital horns (i.e. 219 

AFID29 and AFID30) of the Colin27 template. One pair (2/24; 8.33%) of outliers was due to left-right 220 

mislabeling (indusium griseum; AFID27 and AFID28). One additional point was mislabeled; i.e. the left 221 

anterolateral temporal horn point (AFID22) was placed at the left inferior AM horn location (AFID26). 222 

After quality control and filtering outliers, mean AFLE improved to 1.03 +/- 0.94 mm (1.01 +/- 0.93 mm for 223 

Agile12v2016; 1.11 +/- 1.05 mm for Colin27; 0.97 +/- 0.80 mm for MNI2009bAsym). 224 

  225 
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Table 1. Summary of fiducial localization error across brain templates. 226 

 Before QC After QC 

Template mean AFLE 
(mm) 

# of outliers (%) mean AFLE 
(mm) 

# of outliers (%) intra-rater 
AFLE (mm) 

inter-rater 
AFLE (mm) 

Agile12v2016 1.10 +/- 1.59 3/1024 (0.29%) 1.01 +/- 0.93 0/1021 (0.00%) 1.13 +/- 0.86 1.14 +/- 0.48 

Colin27 1.71 +/- 2.78 20/1024 (1.95%) 1.11 +/- 1.05 1/1004 (0.10%) 1.14 +/- 0.92 1.36 +/- 0.88 

MNI2009bAsym 0.99 +/- 1.11 1/1024 (0.10%) 0.97 +/- 0.80 0/1023 (0.00%) 1.03 +/- 0.78 1.07 +/- 0.46 

Total 1.27 +/- 1.98 24/3072 (0.78%) 1.03 +/- 0.94 1/3048 (0.03%) 1.10 +/- 0.86 1.19 +/- 0.64 

 227 

Intra-rater AFLE was 1.10 +/- 0.86 mm (1.13 +/- 0.86 mm for Agile12v2016; 1.14 +/- 0.92 mm for 228 

Colin27; 1.03 +/- 0.78 mm); and inter-rater AFLE was 1.19 +/- 0.65 mm (1.15 +/- 0.49 mm for 229 

Agile12v2016; 1.36 +/- 0.88 mm for Colin27; 1.07 +/- 0.46 mm for MNI2009bAsym). Mean, intra-rater, 230 

and inter-rater AFLE for each AFID post-QC are summarized in the Supporting Information S1 File. 231 

 232 

All subsequent analyses were performed using the mean AFLE metric. We performed a one-way 233 

analysis of variance observing evidence of statistically different variance between templates (F-value = 234 

7.88; p-value < 0.001). Differences in mean AFLE between templates were identified on subgroup 235 

analysis for the right superior lateral mesencephalic sulcus (AFID06), culmen (AFID10), genu of the 236 

corpus callosum (AFID19), and left superior anteromedial temporal horn (AFID24), suggesting 237 

differences between templates that may contributing to errors in placement. The results for each AFID 238 

are also summarized in the Supporting Information S1 File. 239 

 240 

Furthermore, we observed several distinct patterns of AFID placement using K-means clustering of 241 

fiducial locations (point clouds) relative to the mean fiducial location (see Fig 4). We identified three 242 

different general patterns of point cloud distributions ranging from highly anisotropic to moderately 243 

anisotropic to isotropic. 244 
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 245 

Fig 4. K-means clustering of point clouds relative to the mean fiducial location for each of the 32 AFIDs (left). Principle 246 
components analysis (bottom right) revealed three different general patterns were identified ranging from highly isotropic 247 
(Cluster 1: red) to moderately anisotropic (Cluster 2: blue) to anisotropic (Cluster 3: green). Results are shown for the 248 
MNI2009bAsym template. See the Supplementary Materials for similar plots for Agile12v2016, Colin27, and the templates 249 
combined. 250 
 251 

As a secondary analysis, we explored whether any evidence of learning over the 4 independent rating 252 

sessions could be identified (Supporting Information S1 file). Using linear modeling, we identified a 253 

general decrease in mean AFLE with increasing session number although this did not meet thresholds of 254 

statistical significance (estimate = -0.02 mm/session; p-value = 0.11). These trends were explored on the 255 

individual rater level. For two out of 8 raters, AFLE varied with session number. Rater04 demonstrated a 256 

general linear improvement of -0.17 mm/session from an initial mean AFLE of 1.64 mm (i.e. the worst 257 

performing initial session); however Rater02 worsened at a rate of 0.12 mm/session from an initial mean 258 

AFLE of 0.59 mm (i.e. the best performing initial session). No significant effect with individual AFIDs was 259 

identified. All subgroup analyses were multiple comparisons corrected using FDR (q-value < 0.05). 260 
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Phase 2: Protocol validation for individual subjects 261 

During the individual subject validation phase, 9 participants completed 10 AFID protocols (= 90 total 262 

protocols) and a total of 2880 individual points distributed equally among 30 OASIS-1 datasets. We 263 

identified 28 outliers (0.97%), defined as individual point placements greater than 1 cm (10 mm) away 264 

from the group mean. 8/28 outliers (28.57%) were the result of mislabeled points: three pairs of lateral 265 

(non-midline) AFIDs and only one pair due to gross mislabeling of the target AFID structure (placement 266 

in bilateral frontal ventricular horns rather than occipital horns). Beyond left-right swapping, the AFIDs 267 

most susceptible to outliers were the following points: bilateral ventral occipital horns (AFID29-30) and 268 

bilateral indusium griseum origins (AFID27-28). Mean AFLE across the 30 scans and points was 1.28 +/- 269 

3.03 mm improving to 0.94 +/- 0.73 after filtering out the outliers. Inter-rater AFLE was 1.58 +/- 1.02 mm 270 

across all AFIDs. Mean AFLE and inter-rater AFLE are summarized for each AFID in Table 2 and subject 271 

in the Supporting Information S2 file. 272 

FMRIPrep results 273 

FMRIPrep ran successfully on 29/30 datasets (96.7%). For the failed dataset, the participant was more 274 

hyperextended in the scanner than is typical relative to the long axis of the scanner. This was resolved 275 

by first performing a rigid body registration to MNI305 space and providing the transformed image as 276 

input to fMRIPrep. 277 

 278 

  279 
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Table 2. Mean and inter-rater fiducial localization error pre- and post-QC for the included OASIS-1 subjects for all AFIDs. 280 

  Pre-QC Post-QC 

AFID Description 
Mean AFLE 

mean ± sd (max) 
Mean AFLE 

mean ± sd (max) 
Inter-Rater AFLE 
mean ± sd (max) 

01 AC 0.36±0.21 (1.29) 0.36±0.21 (1.29) 0.60±0.25 (1.38) 

02 PC 0.34±0.16 (0.88) 0.34±0.16 (0.88) 0.57±0.21 (1.22) 

03 infracollicular sulcus 0.78±0.48 (3.07) 0.78±0.48 (3.07) 1.34±0.64 (3.84) 

04 PMJ 0.83±0.49 (2.44) 0.83±0.49 (2.44) 1.41±0.55 (2.55) 

05 superior interpeduncular fossa 1.20±0.75 (3.50) 1.20±0.75 (3.50) 2.04±0.90 (4.25) 

06 R superior LMS 1.30±1.74 (14.25) 1.01±0.55 (2.85) 1.70±0.68 (3.13) 

07 L superior LMS 1.36±1.71 (13.99) 1.06±0.61 (3.45) 1.72±0.71 (3.89) 

08 R inferior LMS 1.13±0.75 (5.13) 1.03±0.57 (2.99) 1.77±0.74 (3.43) 

09 L inferior LMS 1.10±0.80 (5.31) 1.01±0.62 (2.72) 1.71±0.86 (3.71) 

10 culmen 0.99±0.99 (5.66) 0.83±0.62 (3.07) 1.35±0.82 (3.42) 

11 intermammillary sulcus 0.60±0.31 (1.62) 0.60±0.31 (1.62) 1.02±0.41 (1.86) 

12 R MB 0.40±0.23 (1.11) 0.40±0.23 (1.11) 0.69±0.32 (1.52) 

13 L MB 0.36±0.20 (1.20) 0.36±0.20 (1.20) 0.62±0.29 (1.62) 

14 pineal gland 0.68±0.47 (1.98) 0.68±0.47 (1.98) 1.16±0.69 (2.63) 

15 R LV at AC 1.00±0.90 (5.28) 0.91±0.72 (4.45) 1.55±1.08 (5.86) 

16 L LV at AC 1.01±0.80 (4.53) 0.94±0.70 (4.53) 1.60±1.08 (5.47) 

17 R LV at PC 0.92±0.54 (3.42) 0.92±0.54 (3.42) 1.54±0.77 (3.84) 

18 L LV at PC 0.87±0.42 (2.20) 0.87±0.42 (2.20) 1.46±0.55 (2.80) 

19 genu of CC 0.97±0.81 (5.16) 0.89±0.63 (3.69) 1.50±0.89 (4.30) 

20 splenium 0.54±0.25 (1.24) 0.54±0.25 (1.24) 0.91±0.35 (1.66) 

21 R AL temporal horn 1.44±1.09 (7.01) 1.30±0.86 (4.45) 2.21±1.13 (5.92) 

22 L AL temporal horn 1.22±0.77 (4.11) 1.22±0.77 (4.11) 2.04±1.01 (4.47) 

23 R superior AM temporal horn 1.28±1.27 (8.22) 1.12±0.88 (4.69) 1.86±1.19 (4.97) 

24 L superior AM temporal horn 1.09±1.22 (7.54) 0.83±0.61 (3.66) 1.39±0.85 (4.60) 

25 R inferior AM temporal horn 1.69±1.43 (9.03) 1.44±0.91 (4.72) 2.39±1.23 (5.07) 

26 L inferior AM temporal horn 1.99±1.75 (8.79) 1.49±1.09 (4.70) 2.42±1.47 (6.64) 

27 R indusium griseum origin 3.13±4.19 (23.44) 1.77±0.99 (4.77) 2.95±1.20 (5.75) 

28 L indusium griseum origin 2.99±4.30 (24.30) 1.68±1.00 (5.00) 2.75±1.29 (5.78) 

29 R ventral occipital horn 3.64±10.36 (78.74) 0.69±0.39 (2.11) 1.14±0.54 (2.53) 

30 L ventral occipital horn 3.43±10.38 (80.42) 0.86±0.67 (4.94) 1.39±0.98 (5.72) 

31 R olfactory sulcal fundus 0.99±0.53 (2.29) 0.99±0.53 (2.29) 1.71±0.60 (2.84) 

32 L olfactory sulcal fundus 1.21±0.74 (4.53) 1.21±0.74 (4.53) 2.11±0.92 (5.81) 

  281 
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Phase 3: Evaluating subject-to-template registration 282 

The following section uses the AFIDs to evaluate the quality of spatial correspondence between the 283 

Phase 2 subject data with the MNI2009cAsym template as processed through fMRIPrep. Visual 284 

inspection of the fMRIPrep generated reports revealed no gross misregistrations between MNI2009c and 285 

the individual subject scans although a pattern of worse deformable registration in subjects with enlarged 286 

ventricles was observed. The rest of this section is concerned with examining the comparative utility of 287 

conventional voxel overlap (ROI-based) metrics against the point-based (AFRE) metric proposed in this 288 

study (see Fig 5A). 289 

 290 
Fig 5. A comparison of voxel overlap and distance metrics for establishing spatial correspondence between brain regions as 291 
evaluated on fMRIPrep output. (A) Multiple views showing the location of AFIDs (black dots) relative to three commonly used 292 
ROIs used in voxel overlap measures (the pallidum, striatum, and thalamus). (B,C) The histograms for voxel overlap (Jaccard 293 
index) and AFRE, respectively. The distribution for AFRE is more unimodal with a more interpretable dynamic range (in mm) 294 
compared to voxel overlap. Trellis plots demonstrate evidence of focal misregistrations identified by AFRE not apparent when 295 
looking at ROI-based voxel overlap alone (D). 296 
  297 
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Table 3. Voxel overlap (Jaccard and Kappa) of the pallidum, striatum, and thalamus after linear registration only and combined 298 
linear/nonlinear registration. 299 
  Jaccard  Kappa  

roi side lin nlin  lin nlin  

pallidum left 0.54±0.13 0.80±0.03 * 0.69±0.11 0.89±0.02 * 

 right 0.55±0.12 0.79±0.05 * 0.70±0.11 0.88±0.03 * 

striatum left 0.53±0.14 0.83±0.03 * 0.68±0.13 0.91±0.02 * 

 right 0.55±0.15 0.82±0.05 * 0.70±0.13 0.90±0.03 * 

thalamus left 0.70±0.11 0.86±0.03 * 0.82±0.08 0.93±0.02 * 

 right 0.69±0.11 0.87±0.03 * 0.81±0.08 0.93±0.02 * 
* significant after FDR corrected (q-value < 0.05) 300 

Improvements in overlap were identified when going from linear to combined linear/nonlinear 301 

transformations (Table 3). Some heterogeneity in values was noted between ROIs with voxel overlap 302 

measures observed to be lowest for the pallidum (the smallest structure evaluated). All Jaccard values 303 

after nonlinear transformation were greater than 0.7 (greater than 0.8 for Dice kappa), generally 304 

considered to represent good correspondence between two registered images. For simplicity, we report 305 

the Jaccard coefficient as our measure of voxel overlap for all subsequent analyses. 306 

 307 

Mean AFRE improved from 3.40 +/- 2.55 mm with linear transformation alone to 1.80 +/- 2.09 with 308 

combined linear/nonlinear transformation (p-value < 0.001). AFRE was significantly decreased with 309 

nonlinear registration for all AFIDs except the pineal gland (AFID14). AFRE was observed to be higher 310 

than mean AFLE measures (see Phase 2: 0.93 +/- 0.73 mm) across the same subjects providing 311 

evidence that registration error is detectable beyond the limits of localization error. The number of outlier 312 

AFIDs with AFRE > 3 mm (more than 2 standard deviations above the mean AFLE found in Phase 2 for 313 

the same subjects) was 135/960 (14.06%), representing 22/32 (68.75%) unique AFIDs identified as 314 

misregistered. Each independent OASIS-1 subject had at least one AFID with AFRE > 3 mm with a 315 

mean maximum AFRE of 7.5 mm (Range: 3.16-32.78 mm). Although AFLE and AFRE were statistically 316 

correlated, the effect size was small (Kendall tau = 0.15; p-value < 0.001; Supporting Information S3 file). 317 

 318 

Subgroup analysis for each AFID is summarized in Table 4. AC and PC had the lowest mean AFRE at 319 

0.36 +/- 0.21 and 0.57 +/- 0.29 mm, respectively. However, registration errors as high as 1.64 mm were 320 
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observed for PC. The ventricles appeared particularly difficult to align on subgroup analysis of the AFIDs. 321 

The highest AFRE among all 32 AFIDs was observed for the right and left ventral occipital horns 322 

(AFID29-30) at 3.44 +/- 5.77 and 4.51 +/- 6.28 mm respectively with errors in certain cases over 20 mm 323 

(OAS1_0109 and OAS1_0203; Supporting Information S3 file). Similarly, the lateral ventricle features 324 

(AFID15-18) also demonstrated high AFRE ranging from 2.11-3.01 mm on average and up to 7 mm or 325 

more. Finally, the alignment of the temporal horn features (AFID21-26) also support this observation with 326 

mean errors of 1.67-2.41 mm with observed errors over 5 mm. 327 

 328 

AFRE was negatively correlated with voxel overlap but the estimates were small (tau = -0.02; p-value = 329 

0.03). Subgroup analysis demonstrated the same negative trends for the right pallidum and striatum but 330 

these results did not survive multiple comparisons correction (Fig 5D). No correlation between voxel 331 

overlap measures and individual AFID AFREs survived multiple comparisons correction. Comparing 332 

histograms, AFRE demonstrated a more unimodal distribution peaking between 1-2 mm (Fig 5B) while 333 

voxel overlap exhibited two peaks within the 0.8-0.9 range (Fig 5C). The AFRE plot also demonstrated a 334 

longer tail up to 10 mm, thus permitting a broader dynamic range in which to judge the quality of 335 

registration. In contrast, voxel overlap metrics were sparse in the lower range making interpretation more 336 

difficult. Finally, we observed that even where voxel overlap was high, suggesting good spatial 337 

correspondence, high AFRE values were also observed for certain AFIDs (see Fig 5D). These represent 338 

focal AFID locations where two images are misregistered despite stable voxel overlap results (Fig 6). 339 

  340 
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Table 4. AFRE after linear registration alone and combined linear/nonlinear registration. 341 

  
Mean AFRE 

mean ± sd (max)  

AFID Description lin nlin  

01 AC 2.15±0.97 (4.96) 0.36±0.21 (0.99) * 

02 PC 1.83±0.96 (4.58) 0.57±0.29 (1.64) * 

03 infracollicular sulcus 2.20±1.23 (5.71) 0.93±0.53 (2.11) * 

04 PMJ 2.50±1.36 (6.06) 0.68±0.43 (2.13) * 

05 superior interpeduncular fossa 2.35±1.06 (4.75) 0.76±0.37 (1.69) * 

06 R superior LMS 2.07±0.95 (4.32) 1.17±0.74 (3.52) * 

07 L superior LMS 2.03±0.85 (4.22) 1.43±0.77 (2.88) * 

08 R inferior LMS 2.45±1.37 (7.50) 1.78±1.11 (5.41) * 

09 L inferior LMS 2.54±1.26 (6.63) 1.83±0.96 (3.99) * 

10 culmen 4.50±2.93 (12.72) 2.73±2.81 (10.12) * 

11 intermammillary sulcus 2.81±1.62 (6.30) 1.44±0.60 (2.73) * 

12 R MB 2.72±1.67 (6.90) 0.93±0.48 (1.90) * 

13 L MB 2.84±1.70 (6.14) 1.01±0.62 (2.93) * 

14 pineal gland 2.53±1.39 (5.70) 2.01±1.24 (6.16)  

15 R LV at AC 4.44±1.84 (7.90) 2.70±1.59 (7.85) * 

16 L LV at AC 4.50±1.95 (8.40) 2.11±1.72 (7.92) * 

17 R LV at PC 4.81±2.54 (10.07) 2.96±2.42 (9.46) * 

18 L LV at PC 4.80±2.64 (10.34) 3.01±2.22 (8.13) * 

19 genu of CC 3.73±1.82 (7.88) 1.56±0.76 (3.32) * 

20 splenium 2.96±1.88 (7.57) 0.97±0.60 (2.93) * 

21 R AL temporal horn 3.79±1.71 (7.50) 1.70±1.09 (5.23) * 

22 L AL temporal horn 3.62±1.45 (6.98) 1.67±0.98 (4.31) * 

23 R superior AM temporal horn 3.34±1.63 (7.25) 1.93±1.34 (6.85) * 

24 L superior AM temporal horn 3.44±1.80 (8.20) 1.67±1.25 (5.80) * 

25 R inferior AM temporal horn 4.02±1.97 (8.32) 2.41±1.16 (5.61) * 

26 L inferior AM temporal horn 4.13±1.70 (8.20) 2.21±1.09 (4.84) * 

27 R indusium griseum origin 3.36±2.07 (8.46) 2.06±1.49 (6.40) * 

28 L indusium griseum origin 3.60±1.68 (8.83) 2.05±1.37 (5.00) * 

29 R ventral occipital horn 5.86±6.32 (36.26) 3.44±5.77 (32.78) * 

30 L ventral occipital horn 6.99±6.72 (33.74) 4.51±6.28 (29.76) * 

31 R olfactory sulcal fundus 2.83±1.36 (7.50) 1.37±0.95 (3.44) * 

32 L olfactory sulcal fundus 2.94±1.28 (6.49) 1.57±0.84 (3.41) * 
* significant after FDR corrected (q-value < 0.05) 342 
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 343 

 344 

Fig 6. Investigating relationships between voxel overlap of the striatum and AFRE for each AFID. Focal misregistrations are 345 
identified using AFRE for the following AFIDs: 8-10, 14-18, 21-30. The most commonly misregistered regions include the inferior 346 
mesencephalon, superior vermis, pineal gland, indusium griseum, and ventricular regions. Horizontal lines are used to 347 
demarcate tiers of AFLE error above which AFRE values are beyond a threshold of localization error alone, i.e. the top 348 
horizontal line at 3 mm represents more than 2 standard deviations beyond the mean AFLE. Separate plots for the pallidum and 349 
thalamus ROIs are provided in the Supporting Information S3 file. 350 

Phase 4: Evaluating template-to-template registration 351 

Mean AFLE for BigBrainSym and MNI2009bSym was 0.59 +/- 0.40 mm combined with no outliers 352 

(BigBrainSym: 0.63 +/- 0.50 mm; MNI2009bSym: 0.55 +/- 0.26 mm). We highlighted AFRE values 353 

beyond a threshold of 2 mm given this represents more than 2 standard deviations beyond the mean 354 

AFLE in the templates being studied. AFRE values beyond this minimum were flagged as highlighting 355 

focal misregistrations between templates. 356 
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Table 5. AFIDs demonstrating evidence of template-to-template misregistration for BigBrainSym with MNI2009bSym and 357 
BigBrainSym with MNI2009bAsym as well as correspondence differences between MNI2009bAsym and MNI2009bSym. 358 
 359 

  AFRE (mm) Distance** (mm) 

AFID Description 
BigBrainSym vs 
MNI2009bSym  

BigBrainSym vs 
MNI2009bAsym  

MNI2009bAsym vs 
MNI2009bSym  

03 infracollicular sulcus 6.36 * 5.48 * 0.98  

09 L inferior LMS 2.78 * 2.48 * 0.68  

10 culmen 9.27 * 9.39 * 0.21  

14 pineal gland 4.42 * 4.16 * 0.41  

16 L LV at AC 2.05 * 1.22  0.86  

20 splenium 2.23 * 2.20 * 0.10  

22 L AL temporal horn 4.69 * 3.44 * 2.45 * 

26 L inferior AM temporal horn 1.88  2.58 * 0.98  

27 R indusium griseum origin 1.21  3.60 * 2.81 * 

28 L indusium griseum origin 0.74  2.88 * 2.29 * 

29 R ventral occipital horn 2.54 * 3.99 * 1.63  

30 L ventral occipital horn 5.88 * 4.22 * 2.00 * 

31 R olfactory sulcal fundus 2.62 * 1.84  1.10  

32 L olfactory sulcal fundus 3.06 * 4.21 * 1.24  
* AFRE > 2 mm 360 
** Distance between fiducials (not truly a registration error since templates are designed to be in different spaces) 361 

The mean AFRE between BigBrainSym and MNI2009bSym was 2.16 +/- 1.99 mm and between 362 

BigBrainSym and MNI2009bAsym was 2.30 +/- 1.83 mm, both above threshold. The largest error was 363 

9.27 mm (MNI2009bSym) and 9.38 mm (MNI2009bAsym), found at the culmen (AFID10). Out of the 32 364 

AFIDs defined, 11 (34.4%) were above threshold for the symmetric template and 12 (37.5%) for the 365 

asymmetric template. The most prominent misregistrations tended to occur in the posterior brainstem 366 

with the infracollicular sulcus (AFID03) and pineal gland (AFID14) quantified as 6.36 mm and 4.42 mm 367 

AFRE, respectively. These registration errors can be seen in Fig 7 and are summarized by AFID in Table 368 

5. In addition, AFRE up to 2.78 mm were observed for AFIDs placed along the lateral mesencephalic 369 

sulcus (AFID06-09) and at the superior interpeduncular fossa (AFID05), which represent features 370 

demarcating the lateral and superior bounds of midbrain registration. Registration differences between 371 

these templates was also above threshold for the left lateral ventricle at the anterior commissure 372 

(AFID16), splenium (AFID20), left anterolateral temporal horn (AFID22), bilateral ventral occipital horns 373 
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(AFID29-30), and bilateral olfactory sulcal fundi (AFID31-32). No correlation between AFRE and AFLE 374 

was found using BigBrainSym AFLE (tau = 0.071; p-value = 0.57) or MNI2009bSym AFLE (tau = -0.046; 375 

p-value = 0.71). Interestingly, AFRE was somewhat lower with MNI2009bAsym in many midline AFIDs 376 

but higher for certain lateral landmarks, i.e. the left inferior anteromedial temporal horn and bilateral 377 

origin of the indusium griseum (AFID26-28). 378 

 379 

Fig 7. Select views demonstrating registration errors between BigBrainSym and MNI2009bSym. The green dots represent the 380 
optimal AFID coordinates in MNI2009bSym space projected onto both templates to provide a basis for comparing registration 381 
differences. While many of the midline AFIDs are stable across both templates, the infracollicular sulcus, pineal gland, splenium, 382 
and culmen are misregistered in BigBrainSym (red arrows). The AFIDs draw attention to registration differences in the 383 
BigBrainSym space in the tectal plate, pineal gland, and superior vermis (blue arrows). 384 
 385 

Finally, we explored the differences in correspondence between the MNI2009bSym and MNI2009bAsym. 386 

Note that these differences are not registration errors per se, as the two are not meant to be in the exact 387 

same coordinate space. The differences were generally more subtle (0.88 +/- 0.68 mm) but 4 AFIDs 388 

(12.5%) were found to be above threshold. As expected, correspondence differences greater than 2 mm 389 

occurred in lateral rather than midline AFIDs, specifically at the left anterolateral temporal horn (AFID22), 390 

bilateral origins of the indusium griseum (AFID27-28), and left lateral ventral occipital horn (AFID30). No 391 

correlations between correspondence and AFLE were found (tau = 0.210; p-value = 0.09). 392 
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Discussion 393 

The present findings demonstrate that a series of anatomical fiducials, referred to here as AFIDs, can be 394 

consistently placed on standard structural MR images and can be used to quantify the degree of spatial 395 

alignment between brain images in millimeters. We found that AFIDs are reproducible, not overtly 396 

manually intensive (20-40 minutes once trained), and more sensitive to local registration errors than 397 

standard voxel overlap measures. Our entire protocol and study framework leverages open resources 398 

and tools, and has been developed with full transparency in mind so that others may freely use, adopt, 399 

and modify. 400 

 401 

The work presented here is inspired heavily by classical stereotactic methods (J Talairach et al., 1957), 402 

where point-based correspondence has been used to align brain templates with patient anatomy to 403 

enable atlas-based surgical targeting. The anterior and posterior commissure were originally identified as 404 

prominent intraventricular features based on air studies, prior to the invention of computed tomography 405 

or MRI. The AC and PC have proven to be reliable features on MRI and were adopted by neuroscientists 406 

for the alignment of brain images to templates, in what is referred to as the Talairach grid normalization 407 

procedure (Brett, Johnsrude, & Owen, 2002; A. Evans et al., 1992; Jean Talairach & Tournoux, 1988). 408 

The advent of robust and openly available software for automatic or semi-automatic labeling of regions-409 

of-interest in brain images has led to a relative underemphasis of point-based alignment. We 410 

demonstrate here that point-based metrics are more sensitive to focal misregistrations than voxel overlap 411 

measures and quantified in millimeters. 412 

 413 

Tolerance to focal misregistration in images undoubtedly will depend on the application; but there is no 414 

doubt that poor image correspondence can result in inaccurate (and possibly erroneous) predictions and 415 

conclusions in neuroimaging studies. Our results evaluating correspondence error in an fMRI 416 

preprocessing pipeline revealed local template misregistrations of 1.80 +/- 2.09 mm. For many fMRI or 417 

diffusion-based applications, this mean error is about the size of a voxel; and thus may be within an 418 
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acceptable tolerance. However, mean maximum errors of over 7 mm were also observed and may begin 419 

to impact the sensitivity to discovery as well as the accuracy of localization of affected brain regions in a 420 

task or connectivity analyses. These misregistrations also may affect the interpretation of voxel-based 421 

and deformation-based morphometry studies that seek to investigate subtle shape differences between 422 

study populations. Finally, minimizing registration error becomes particularly critical for analyses 423 

pertaining to stereotactic interventions like deep brain stimulation (DBS) where millimeters can represent 424 

the difference between optimal therapy and side effects. 425 

Protocol development and validation 426 

After a single training session, novice raters could place AFIDs at a mean AFLE of approximately 1-1.5 427 

mm across all AFID32 points. Placement error varied from one template to another and among AFIDs 428 

(Supporting Information S1 file). Raters had the least amount of error with placements for the 429 

MNI2009bAsym and Agile12v2016 templates. In contrast, fiducial placement errors were higher when 430 

raters were asked to place AFIDs for individual subjects, i.e. Colin27 as well as the OASIS-1 database. 431 

Repeatability was assessed using measures of intra-rater and inter-rater AFLE. Intra-rater AFLE was 432 

lowest for the MNI2009bAsym and highest in Colin27 (Table 1). Inter-rater AFLE was again lowest for 433 

MNI2009bAsym and highest in Colin27 and the OASIS-1 datasets. This demonstrates how AFIDs are 434 

more difficult to place due to individual variability versus in population templates where the individual 435 

nuances of these features may be effectively blurred out. Overall, the placement error remains 436 

acceptable (1-2 mm) among all annotated images. 437 

 438 

The AC and PC were the most reliably identifiable AFIDs with mean AFLE of less than 0.5 mm and inter-439 

rater AFLE of 0.5-1 +/- 0.3 mm observed. These results compared favorably to an analysis of 440 

experienced neurosurgeons by Pallaravam and colleagues placing the same AC-PC points where they 441 

observed a point placement error (equivalent to the inter-rater AFLE metric used here) that was 442 

surprisingly higher at 1-2 mm +/- 1.5 mm (Pallavaram et al., 2008). We speculate that the higher 443 

variability in the referenced study was the lack of restriction on how the AC-PC landmarks were placed; 444 
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that is, some stereotactic neurosurgeons continue to use the intraventricular edge of each commissure, 445 

which was the classical technique used by Talairach during air studies, while others used the center of 446 

each commissure (Horn et al., 2017). The distance from the center to the ventricular edge can be several 447 

millimeters likely accounting for this difference. Overall, our findings demonstrate that enforcing certain 448 

practices such as using the center of each commissure play an important role in the consistency and 449 

standardization of fiducial placement. 450 

 451 

In contrast, certain fiducial points contributed substantially to worse overall estimates of fiducial 452 

localization error. In particular, the bilateral ventral occipital horns (AFID29-30) had higher placement 453 

errors. Placement was particularly inaccurate for individual subjects where the ventricular atrium tapered 454 

completely in many individual subject studies (including Colin27), and thus the posterior continuation into 455 

the occipital horn was sometimes difficult to visualize or resolve at all. The bilateral origins of the 456 

indusium griseum (AFID27-28) were also difficult for raters to place consistently. 457 

Point-based versus ROI-based metrics 458 

Previous work has shown that nonlinear registration improves alignment between structures 459 

(Chakravarty et al., 2009; Hellier et al., 2003; Klein et al., 2009), and that the choice of parameters 460 

matters. These existing studies have mostly used voxel overlap measures to support their findings. Our 461 

results are also in-line with prior work but also demonstrate how AFIDs are complementary and more 462 

sensitive than ROI-based metrics for evaluating both local and global spatial correspondence of brain 463 

images (see Fig 5). 464 

 465 

We were able to compare the relative efficacy of AFRE and voxel overlap for subjects from the OASIS-1 466 

database and several commonly used templates. AFRE had a more unimodal distribution and a longer 467 

tail facilitating identification of focal misregistrations between images (Fig 5). On the other hand, the 468 

Jaccard histogram was more sparse towards the tail of the distribution suggesting a poorer ability to 469 

discriminate. One key advantage of AFRE is its interpretability, representing the distance in millimeters 470 
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between aligned neuroanatomical structures in two images, compared to voxel overlap, which is a 471 

relative measure and unitless. It is commonly perceived in segmentation studies that voxel overlap 472 

measures greater than 0.7 represent accurate correspondence between regions. However, our analysis 473 

demonstrates that even with generally high overlap after nonlinear registration, focal misregistrations of 474 

AFIDs above 7 mm may be identified (Fig 6 and Table 4). 475 

Subject-to-template registration 476 

We chose to evaluate the subject-to-template registrations computed as part of an fMRI processing 477 

pipeline, fMRIPrep (Esteban et al., 2018), as a use case for our AFIDs protocol. Functional MRI studies 478 

may not represent the optimal use case due to the relatively coarse spatial resolution relative to the size 479 

of misregistration effects we can detect with AFIDs, and because most fMRI researchers are focused on 480 

cortical activation while our protocol emphasizes and detects misregistrations in the deep brain regions. 481 

Our choice to investigate fMRIPrep registration performance was motivated by their transparent 482 

approach to the development of preprocessing software for neuroimaging and BIDS integration 483 

(Gorgolewski et al., 2017, 2016). The active developer and support base, as well as growing adoption by 484 

many end-users were other contributing factors. Our analysis revealed misregistrations on the order of 485 

1.80 +/- 2.09 mm and as high as over 30 mm that would be more difficult to identify by qualitative 486 

evaluation or ROI-based analysis alone. 487 

 488 

While this points to potential caution with the use of standardized pipelines like fMRIPrep for template 489 

registration, it should be noted that fMRIPrep was designed with a focus on robustness, rather than 490 

accuracy. The underlying parameters and processing steps used in fMRIPrep are fully transparent. In 491 

addition, the underlying deformable registration software used (Avants et al., 2008) has been 492 

demonstrated to achieve high performance in studies using traditional voxel overlap measures (Klein et 493 

al., 2009). The focal template misregistrations we have identified in fMRIPrep with AFIDs are meant to 494 

serve as a baseline for refinement in future versions that can be compared transparently and potentially 495 

incorporated for testing new versions as part of a continuous integration workflow. Using additional 496 
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image contrasts (Xiao et al., 2017) or subcortical tissue priors (Ewert et al., 2019) to drive template 497 

registration have been demonstrated using conventional voxel overlap techniques to result in more 498 

optimal registrations that can also be tested using the AFIDs framework. 499 

Template-to-template registration 500 

We recommend that imaging scientists exercise caution when displaying statistical maps using a 501 

template other than the one to which the original deformations were performed. For example, it has 502 

become increasingly common to project statistical maps and subject data registered to MNI space using 503 

BigBrain for visualization purposes. In this study, we identified clear evidence of registration differences 504 

between several templates commonly assumed to be in the same coordinate space: BigBrainSym and 505 

MNI2009bSym, and even greater between BigBrainSym and MNI2009bAsym because of the differences 506 

in AFID locations in MNI2009bSym and MNI2009bAsym. Specifically, misregistrations as high as over 9 507 

mm have been identified. Many of these errors occur in the midbrain region (Table 5), which would have 508 

implications in particular if using BigBrainSym to project locations of electrode implantations. In support 509 

of other recent work (Horn et al., 2017), this study highlights the importance of understanding which 510 

exact template one is using for processing and analysis: that multiple "MNI" templates exist (with 511 

different version dates, types, and symmetry), as do registration differences between these templates. 512 

Teaching neuroanatomy 513 

Our AFID32 protocol may also hold particular value for teaching neuroanatomy. In fact, evidence from 514 

our study suggests that even relative novices can be trained to place AFIDs accurately, including the AC 515 

and PC, with comparable accuracy and variability to trained neurosurgeons (Table 2). By releasing the 516 

data acquired in this study, we provide a normative distribution of AFID placements that can be used to 517 

quantify how accurately new trainees can place points. These measures can be used to gauge the 518 

comprehension of students regarding the specific location of neuroanatomical structures in a quantitative 519 

(millimetric) manner and focus efforts on consolidating understanding based on where localization errors 520 
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were higher. To date, over a series of locally-held workshops and tutorials, over 60 students have been 521 

trained to complete the AFID32 protocol. 522 

Limitations and future work 523 

While we have found the AFIDs proposed to be quite reliable, there is clearly location-related 524 

heterogeneity in placement error. We make no claims that this set of anatomical fiducials is optimal and 525 

in the future, other locations may prove to be more effective than others. Also, for this first proposed set 526 

of AFIDs, we limited our locations to deep structures where less inter-subject variability exists compared 527 

to cortical features (Thompson et al., 1996); future extensions could include linking our workflow with 528 

cortical surface-based (B. Fischl, 2004) and sulcal-based (Hellier et al., 2003; Mangin et al., 2015; Perrot, 529 

Rivière, & Mangin, 2011) methods of spatial correspondence. Development of similar protocols for other 530 

neuroimaging modalities such as T2-weighted or diffusion-based contrasts may also be of value. In 531 

addition, fiducial localization error may be biased by how the raters were taught to place the fiducials; in 532 

our case, we organized an initial interactive tutorial session, and provided text and picture-based 533 

resources of how to place the AFIDs. It is also possible that AFLE would be lower if performed by a more 534 

experienced group of raters. Also, how AFID placement behaves in the presence of lesional pathology 535 

remains an open question. We have made the annotations and images available to allow other groups to 536 

propose other AFID locations and descriptions that could be similarly validated. We plan to post any 537 

modifications to the protocol as separate versions at the linked repository. 538 

 539 

The AFIDs protocol requires correct placement of the anterior commissure (AFID01) and posterior 540 

commissure (AFID02) points. We made this decision as it helps to align the brain images into a more 541 

standard orientation for subsequent placement of bilateral fiducials. In particular, 4 of the AFIDs are 542 

dependent on AC-PC alignment (the lateral ventricles at AC and PC in the coronal plane). It is possible 543 

that error in AFID placements could be compounded by initial error in placement of AC and PC. 544 

Fortunately, AC and PC can be placed with high trueness and precision (< 1 mm) (Table 2), consistent 545 

with prior studies (Liu & Dawant, 2015). We made the decision to perform AC-PC alignment to permit 546 
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more accurate placement of lateral AFIDs, which may otherwise have appeared quite oblique from each 547 

other if the individual's head was tilted in the scanner. Thus, on balance, AC-PC alignment probably 548 

mitigates placement error in lateral AFIDs compared to placing fiducials in the native MRI space. Further 549 

research can examine these potential spatial biases more systematically. 550 

 551 

Beyond evaluating correspondence, AFIDs could be used for point-based inter-subject or subject-to-552 

template registration. AFIDs used in combination with classic rigid registration algorithms such as 553 

Iterative Closest Point (Besl & McKay, 1992) may result in more optimal initial linear registration between 554 

images. In addition, point-based deformable registration using (B-splines) may produce more efficient, 555 

lower order deformable registrations between two images (Bookstein, 1997). To prevent circular 556 

reasoning, we thought this would be best evaluated as independent studies. Finally one compelling 557 

extension of this work would be to automate or semi-automate AFID placement, which would enable 558 

inclusion of AFID-based metrics in standardized workflows involving template or intersubject registration. 559 

Conclusions 560 

Our proposed framework consists of the identification of anatomical fiducials, AFIDs, in structural 561 

magnetic resonance images of the human brain. Validity has been established using several openly 562 

available brain templates and datasets. We found that novice users could be trained to reliably place 563 

these points over a series of interactive training sessions to within millimeters of placement accuracy. As 564 

an example of different use cases, we examined the utility of our proposed protocol for evaluating 565 

subject-to-template and template-to-template registration revealing that AFIDs are sensitive to focal 566 

misregistrations that may be missed using other commonly used evaluation methods. This protocol holds 567 

value for a broad number of applications including intersubject alignment and teaching neuroanatomy. 568 

  569 
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Table Legends 698 

Table 1. Summary of fiducial localization error across brain templates. 699 
 700 
Table 2. Mean and inter-rater fiducial localization error pre- and post-QC for the included OASIS-1 subjects for all AFIDs. 701 
 702 
Table 3. Voxel overlap (Jaccard and Kappa) of the pallidum, striatum, and thalamus after linear registration only and combined 703 
linear/nonlinear registration. 704 
 705 
Table 4. AFRE after linear registration alone and combined linear/nonlinear registration. 706 
 707 
Table 5. AFIDs demonstrating evidence of template-to-template misregistration for BigBrainSym with MNI2009bSym and 708 
BigBrainSym with MNI2009bAsym as well as correspondence differences between MNI2009bAsym and MNI2009bSym. 709 

Figure Legends 710 

Fig 1. Metrics for evaluating spatial correspondence between brain images include voxel overlap (i.e. ROI-based) metrics as 711 
well as point-based distance metrics. The proposed framework involves the identification of point-based anatomical fiducials 712 
(AFIDs) in a series of brain images, which provide an intuitive millimetric estimate of correspondence error between images and 713 
is also a useful tool for teaching neuroanatomy. 714 
 715 
Fig 2. Each anatomical fiducial in the full AFID32 protocol is demonstrated with crosshairs at the representative location in 716 
MNI2009bAsym space using the standard cardinal planes. AC = anterior commissure; PC = posterior commissure; AL = 717 
anterolateral; AM = anteromedial; IG = indusium griseum; IPF = interpeduncular fossa; LMS = lateral mesencephalic sulcus; LV 718 
= lateral ventricle; PMJ = pontomesenphalic junction. 719 
 720 
Fig 3. Metrics used for validating AFID placements are shown here in schematic form. Mean, intra-rater, and inter-rater AFLE 721 
can be computed for an image that has been rated by multiple raters multiple times. 722 
 723 
Fig 4. K-means clustering of point clouds relative to the mean fiducial location for each of the 32 AFIDs (left). Principle 724 
components analysis (bottom right) revealed three different general patterns were identified ranging from highly isotropic 725 
(Cluster 1: red) to moderately anisotropic (Cluster 2: blue) to anisotropic (Cluster 3: green). Results are shown for the 726 
MNI2009bAsym template. See the Supplementary Materials for similar plots for Agile12v2016, Colin27, and the templates 727 
combined. 728 
 729 
Fig 5. A comparison of voxel overlap and distance metrics for establishing spatial correspondence between brain regions as 730 
evaluated on fMRIPrep output. (A) Multiple views showing the location of AFIDs (black dots) relative to three commonly used 731 
ROIs used in voxel overlap measures (the pallidum, striatum, and thalamus). (B,C) The histograms for voxel overlap (Jaccard 732 
index) and AFRE, respectively. The distribution for AFRE is more unimodal with a more interpretable dynamic range (in mm) 733 
compared to voxel overlap. Trellis plots demonstrate evidence of focal misregistrations identified by AFRE not apparent when 734 
looking at ROI-based voxel overlap alone (D). 735 
 736 
Fig 6. Investigating relationships between voxel overlap of the striatum and AFRE for each AFID. Focal misregistrations are 737 
identified using AFRE for the following AFIDs: 8-10, 14-18, 21-30. The most commonly misregistered regions include the inferior 738 
mesencephalon, superior vermis, pineal gland, indusium griseum, and ventricular regions. Horizontal lines are used to 739 
demarcate tiers of AFLE error above which AFRE values are beyond a threshold of localization error alone, i.e. the top 740 
horizontal line at 3 mm represents more than 2 standard deviations beyond the mean AFLE. Separate plots for the pallidum and 741 
thalamus ROIs are provided in the Supporting Information S3 file. 742 
 743 
Fig 7. Select views demonstrating registration errors between BigBrainSym and MNI2009bSym. The green dots represent the 744 
optimal AFID coordinates in MNI2009bSym space superimposed in both templates to provide a basis for comparing registration 745 
differences. While many of the midline AFIDs are stable across both templates, the infracollicular sulcus, pineal gland, splenium, 746 
and culmen are misregistered in BigBrainSym (red arrows). The AFIDs draw attention to registration differences in the 747 
BigBrainSym space in the tectal plate, pineal gland, and superior vermis (blue arrows). 748 
 749 
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Supporting Information 750 

Additional Supporting Information may be found online in the supporting information tab for this article. 751 

S1 File. Phase 1 Notebook. 752 

S2 File. Phase 2 Notebook. 753 

S3 File. Phase 3 Notebook. 754 

S4 File. Phase 4 Notebook. 755 
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