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Abstract 

Background 

Multiplexed in-situ fluorescent imaging offers several advantages over single-cell assays that do 

not preserve the spatial characteristics of biological samples.  This spatial information, in 

addition to morphological properties and extensive intracellular or surface marker profiling, 

comprise promising avenues for rapid advancements in the understanding of disease 

progression and diagnosis.  As protocols for conducting such imaging experiments continue to 

improve, it is the intent of this study to provide and validate software for processing the large 

quantity of associated data in kind. 

Results 

Cytokit offers (i) an end-to-end, GPU-accelerated image processing pipeline; (ii) efficient 

input/output (I/O) strategies for operations specific to high dimensional microscopy; and (iii) an 

interactive user interface for cross filtering of spatial, graphical, expression, and morphological 

cell properties within the 100+ GB image datasets common to multiplexed immunofluorescence. 

Image processing operations supported in Cytokit are generally sourced from existing deep 

learning models or are at least in part adapted from open source packages to run in a single or 

multi-GPU environment. The efficacy of these operations is demonstrated through several 

imaging experiments that pair Cytokit results with those from an independent but comparable 

assay.  A further validation also demonstrates that previously published results can be 

reproduced from a publicly available multiplexed image dataset. 
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Conclusion 

Cytokit is a collection of open source tools for quantifying and analyzing properties of individual 

cells in large fluorescent microscopy datasets that are often, but not necessarily, generated from 

multiplexed antibody labeling protocols over many fields of view or time periods. This project is 

best suited to bioinformaticians or other technical users that wish to analyze such data in a 

batch-oriented, high-throughput setting. All source code, documentation, and data generated for 

this article  are available under the Apache License 2.0 at https://github.com/hammerlab/cytokit.  

 

Keywords 

Automatic image processing, Multiplexed fluorescence imaging, Data visualization, Data 

exploration, GPU, CellProfiler 

Background 

Molecular profiling of cell culture and tissue samples traditionally relies on techniques that do 

not support a diverse panel of protein targets without disturbing important in situ characteristics 

of cells. Immunofluorescence imaging preserves these characteristics but is limited to a small 

number of expression measurements due to the need to avoid overlapping fluorophore emission 

spectra. This limitation can be overcome to an extent through repeated imaging of the same 

specimen over several cycles, where each cycle typically involves capturing images of 3 or 4 

markers at a time, however the incubation period necessary between cycles is often hours or 
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days and methods for removing markers from previous cycles can be detrimental to assay 

quality. By contrast, techniques like Mass Cytometry [1] and Multispectral Flow Cytometry [2] 

enable the measurement of more target compounds but provide little to no morphological or 

spatial information. Other methods such as Multiplexed Immunohistochemistry [3] and 

Multiplexed Ion Beam Imaging [4] overcome these limitations but require special appliances that 

are not compatible with standard or commercial microscopy platforms. For these reasons, 

analysis of data from multiplexed fluorescent labeling methods are appealing as they are 

economical, can be conducted with any fluorescent imaging platform, and rely on well 

documented immunostaining protocols. 

 

Methods developed for multiplexed fluorescent labeling include Co-Detection by Indexing 

(CODEX) [5], DNA Exchange Imaging (DEI) [6], and t-CyCIF [7], all of which outline a cyclical 

protocol in which 2 or 3 antigen markers and a DNA stain are introduced in each cycle prior to 

imaging.  Unlike in the t-CyCIF protocol, where a relatively lengthy antibody incubation step is 

required as a part of each cycle, both CODEX and DEI begin with a single incubation step in 

which a large (possibly >100) number of oligonucleotide-conjugated antibodies bind to cognate 

antigens. Fluorophores bound to complementary oligonucleotide  sequences are then introduced 

to enable the collection of a small number (typically 4) of fluorescent images before being 

washed away and allowing the process to repeat. These procedures are capable of measuring 

the expression of tens or hundreds of different proteins but introduce several key computational 

challenges that make employing them difficult. The primary challenge is that incorporating the 

larger number of expression targets within 3D image volumes that encompass hundreds of 

thousands of cells, a sample size often necessary for studying less common cell types [8], leads 

to 100+ GB raw image sets including well over 10,000 images. As this data is often the product 
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of commodity imaging platforms, substantial processing is necessary for analysis and the time 

associated with this processing becomes prohibitive for high dimensional acquisitions without 

GPU acceleration. With GPU acceleration however, we show how a CODEX experiment, 

shared by Goltsev et al., including 51k 16-bit images (129 GB), 54 expression markers, and 

~70k individual cells can be aligned, deconvolved, and segmented for analysis in less than 90 

minutes per workstation. Another challenge prevalent among such large imaging assays is 

managing the heterogeneity that arises across replicates and treatment groups for experiments 

that span multiple days or weeks and involve multiple laboratory practitioners. Images collected 

as a part of these experiments may include variation between samples in bit-depth, spatial 

resolution, grid size, dye intensity, microscope channel definition or a variety of other 

parameters that are not critical to measuring quantities of interest but that do demand a 

software pipeline that supports programmatic configuration.  

 

Open source tools similar to Cytokit include the CODEX toolkit, histoCAT [9], KNIME [10], 

ImageJ [11], Ilastik [12] and CellProfiler (CP) [13]. The CODEX toolkit is most similar but 

requires Windows as well as licensed deconvolution software, and it does not make use of 

common image processing libraries for segmentation or quantification so it is difficult to 

understand, debug, and extend. histoCAT is also very similar as it was built for analyzing 

multiplexed tissue images and the authors demonstrate how to use CellProfiler, Ilastik, and 

MATLAB  to generate the data necessary for doing so. The primary drawback with this 

approach is that the operator needs to configure processing in a different graphical user 

interface (GUI) for each of the classification (Ilastik), segmentation (CellProfiler), and analysis 

(histoCAT) components of the pipeline. Cytokit aims to have a single configuration that can be 

applied to all downstream operations in an unattended manner, which makes it easier to run the 
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same pipeline on similar data with only minor modifications (e.g. different channels). This comes 

at a loss of versatility because the provided segmentation method in Cytokit is not suitable for all 

imaging modalities, but custom segmentation routines can be integrated if they were developed 

externally. Out of the remaining tools, ImageJ, CellProfiler and Ilastik can all be utilized in the 

processing of multiplexed image data (as well as a multitude of other use cases Cytokit is not 

appropriate for) but none of them directly support this well as each would require a user to 

configure per-channel operations. This is a substantial burden when it means that some action 

needs to be taken in a GUI for each of potentially 20 or more channels, and it is particularly 

problematic when those channels change slightly in a new experiment. Programmatic 

configuration of such operations is more resilient to these changes and as an example of how 

Cytokit accomplishes this, CellProfiler is integrated as an option for image intensity 

quantification where the CP pipeline instance is generated and executed dynamically based on 

a static experiment configuration that can be altered without requiring the tedious and 

error-prone GUI interactions otherwise necessary with multiplexed image data. Lastly, KNIME is 

also similar to Cytokit in that it offers a way to implement control flow around native image 

processing operations as well as those provided by other projects. It is very likely that the same 

functionality in Cytokit could be captured by a comparable KNIME workflow, but Cytokit 

emphasizes support for offline, batch processing without a GUI-driven configuration -- a choice 

most likely to appeal only to bioinformaticians. 

 

In summary, we present and validate a library providing programmatic configuration and GPU 

accelerated implementations of image processing algorithms for, but not exclusive to, analyzing 

high dimensional immunofluorescence data. This library is open source, requires nothing more 

than an existing nvidia-docker installation to run, is adherent to best practices such as 
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continuous integration and unit testing, and includes a novel user interface alongside support for 

CellProfiler Analyst [14] to help navigate the cellular characteristics measured by this next 

generation of fluorescent imaging technology. 

 

Implementation 

Cytokit consists of four major components, each of which will be discussed further in the 

following sections: 

 

● Processing - Processing operations are applied to tiled images in parallel and in a 

predefined order to maximize ease of use as well as ensure that I/O for large image files 

is minimized by avoiding multiple reads and writes for the same images; 

● Configuration  - Beginning from a template configuration, image operations and 

extractions can be enabled/parameterized through “deltas” to concisely define variations 

on experimental results; 

● Extraction - Cytometric single cell data can be exported as Flow Cytometry Standard 

(FCS) or comma-separated values (CSV) files and individual channels can be grouped 

into arbitrary subsets for extraction into ImageJ compatible Tagged ImageFile Format 

(TIFF) hyperstacks for custom analysis; 

● Visualization  - The Cytokit Explorer UI allows for Individual cells to be isolated based on 

phenotype and visualized within the entire field of view for an experiment, individual 

fields of view, or as single cells. 
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Processing 

The imaging processing pipeline in Cytokit, based largely on the original CODEX toolkit, is 

designed to support datasets with the following dimensions: 

 

● Tile - A single field of view  

● X/Y/Z - 3D images captured at each tile location 

● Channel - Images for different expression markers  

● Cycle - Groups of channels (usually 3 or 4) captured between dye exchange cycles 

● Region - Groups of tiles often collected as square grids  

 

This seven dimensional structure, illustrated in Figure 1, is common in multiplexed imaging but 

dimensions of length 1 are also supported in nearly all cases. In other words, the smallest 

Cytokit-compatible experiment would consist of a single, grayscale 2D image with a height and 

width exceeding some minimum value (currently 88 pixels). All of the imaging processing steps 

applied to these datasets can be enabled or disabled based on the experiment configuration 

and are executed in a predetermined order. The individual steps themselves are implemented 

using existing deep learning models or are ported from other Java or Python libraries to run as 

GPU-accelerated TensorFlow [15] computational graphs. There are some exceptions to this 

such as image I/O and cell segmentation post-processing, but all of these are discussed below. 
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Figure 1 : Seven dimensional multiplexed experiment structure illustrating how 3D single 

channel images are grouped as cycles, captured as tiles on a grid, and then potentially repeated 

over multiple fields of view (as “regions”) before being quantified as two dimensional single-cell 

information. 

Operations 

As illustrated in Figure 2, the first step in the Cytokit pipeline involves loading images into 

memory in a way that is decoupled from all further processing steps. This is done using a 

separate thread, outside of any TensorFlow graphs, to assemble 2D grayscale images as 5 

dimensional tile arrays that are then loaded onto a queue of configurable size (typically 1). This 

ensures that as processing for a single tile completes, there is no delay introduced by disk I/O 

before beginning processing on the next tile. This is an important feature for maximizing GPU 

utilization and reduces overall processing time substantially when the time necessary to process 

a single tile is not drastically larger than the time necessary to load it from disk. The image files 

themselves are assumed to be 8 or 16-bit 2D grayscale images with file names containing 
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region, tile, cycle, z-plane, and channel index numbers, in a configurable format, so that the 

array structure matches that of the experiment. 

 

 

Figure 2 : Processing pipeline overview with operations in original CODEX project replaced by 

GPU-accelerated equivalents, decoupled from tile assembly, and modified to support labeled 

object extraction as well as ad-hoc image stacks/montages 

 

The remaining image manipulation operations include: 

 

Cycle Registration - This operation serves as a way to align reference images across cycles 

and then apply the inferred translation to all other non-reference images. As is necessary in 

multiplexed imaging, a reference channel usually containing a nuclear stain must be collected in 
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each cycle so that the sample drift occurring in the time elapsed between fluorophore 

exchanges can be compensated for in downstream analysis. In Cytokit, this operation is 

implemented as a port of the cross correlation algorithm [16] in scikit-image [17] 

register_translation to TensorFlow.  

 

Image Quality Assessment - This is provided by the Microscope Image Quality [18] project, a 

TensorFlow classifier that allows for images to be scored based on their quality, and is used in 

Cytokit to select individual 2D images for visualization and/or quantification. 

 

Deconvolution  - 3D image deconvolution in Cytokit is provided by the Flowdec project, which is 

a direct port of the Richardson Lucy algorithm in the DeconvolutionLab2 [19] library to 

TensorFlow. Cytokit also includes support for automatically generating Point Spread Functions 

based on an experiment configuration through a fast Gibson-Lanni kernel approximation method 

[20]. 

 

Segmentation - Identification of cell nuclei is performed using the deep learning model [21] 

featured in CellProfiler. The semantic segmentation provided by this model produces a 3 class 

prediction for background, nucleus interior, and nucleus boundary pixel classification. A nuclei 

object image is generated from these predictions as a single pixel dilation of binary objects 

resulting from the selection of the pixels that have the highest probability of belonging to the 

nucleus interior class, after removing nuclei below a configuration size threshold.  The nuclei 

objects are then used to identify entire cell objects based on either a fixed radius outside the 

nucleus or, if available, a membrane stain channel used to create a threshold image serving as 

a watershed mask or as both a mask and a “height” image for propagation segmentation [22] (to 
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trade off distances between nuclei with membrane image intensity in the formation of cell 

boundaries).  Any intermediate image processing subsequent to segmentation is implemented 

using scikit-image, SciPy [23], and OpenCV [24].  Quantification of expression images over the 

area of the segmented objects is also performed using modules in CellProfiler.  This operation 

will produce files compatible with either Cytokit Explorer or CellProfiler Analyst.  

Configuration 

Experimental variation in high throughput microscopy imaging often requires processing 

pipelines that are very tunable. While the intention in Cytokit is to employ algorithms that require 

this as little as possible, some configurability is unavoidable. The approach taken to address this 

problem involves two core capabilities -- iteration and evaluation. Much like any general 

hyperparameter optimization process, Cytokit attempts to make defining iterations and 

evaluating them as simple as possible so that tuning individual operations for individual images 

is much less common than being able to view the effects of parameter settings across an entire 

experiment. For example, a common process in our lab is to generate a template configuration 

that is then modified incrementally to produce several variants of an experiment for analysis. A 

simple version of this process is shown in Figure 3 and demonstrates how the volume of data 

incorporated may be increased as appropriate parameter settings become clearer. 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2019. ; https://doi.org/10.1101/460980doi: bioRxiv preprint 

https://doi.org/10.1101/460980
http://creativecommons.org/licenses/by/4.0/


 

Figure 3 : Example iterative pipeline optimization process with CLI commands used to 

continually refine and expand the scope of experiment processing for large raw image datasets 

 

Template configurations, which may also simply be the sole configuration for an experiment, 

need to at least include the dimensions of the experiment (grid size, number of Z planes, image 

overlap, etc.), microscope parameters, and channel names. They may also contain definitions 

for any commands to be run as a way to ensure that all processing for an experiment is defined 

in one place. Practically speaking, this means that arguments to a command line interface (CLI) 

controlling processing, data extraction, or analysis may be specified in the experiment 

configuration or overridden at the command line. This often fosters reproducibility since it 

eliminates the need to keep track of how a pipeline was invoked while still making it possible to 

introduce small changes in behavior. A good example of this is defining channel subsets to 
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extract for visualization as this can be done completely ad-hoc at a command line or defined in 

the template configuration if the extraction is commonly useful. 

Extraction 

Extracting data from high dimensional experiments can be challenging, particularly when slices 

of interest across those dimensions span image volumes that are too large for other 

visualization and analysis software. Extraction utilities in Cytokit make it possible to mix raw 

image data with processed image results as well labeled object data (for cells/nuclei) and can 

be parameterized to operate on subsets of image grids or fields of view, lists of specific channel 

names, or z-plane subsets. Those extracted images can then also be stitched together such as 

in Figure 4  where a 49 tile (7x7 grid) montage of 1008x1344 images was generated as single 

TIFF file (cropped to 8192x8192 pixels) containing marker expression levels and cell/nucleus 

boundary data. 
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Figure 4 : Example extraction and montage CLI commands. (a) CLI commands define slices as 

names (where relevant) or as lists and ranges of indexes to extract raw, processed, or object 

image data. (b) Resulting TIFF files are ImageJ compatible for blending and visualization, like 

the example shown with human T cells labeled as CD3 (green), DAPI (blue), nuclei boundaries 

(cyan), and cell boundaries (red). 

 

In addition to image extraction utilities, Cytokit also offers single cell data as FCS or CSV files 

containing cell identifiers linking back to object images, location coordinates within the 

experiment, morphological properties (diameter, size, circularity, etc.), mean expression levels 

across the entire cell or within the nucleus alone, and graphical properties like identifiers of 

adjacent cells, number of adjacent cells, and size of contact boundary.  The same information 

(and more) can also be exported using CellProfiler directly to generate a SQLite database 

compatible with CellProfiler Analyst. 

Visualization 

One of the primary challenges in in-situ image cytometry is developing an understanding of the 

relationship between phenotypic and spatial properties of cells. Multiplexed imaging further 

complicates this process as the quantity of images produced both increases the likelihood that 

illumination artifacts exist along the spatial dimensions and often makes finding them manually 

infeasible. To assist in interrogating these relationships as well as build phenotypic profiles for 

cell populations, an interactive Dash (by Plot.ly) application is provided that allows for gates 

applied to cytometric data to be projected onto images within an experiment. Shown in Figure 

5, this application can be used to visualize individual cell/nucleus segmentations, highlighted as 

SVG overlays, within the context of  a stitched grid view of an experiment as well as a single 
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field of view. Additionally, single cell images can be extracted from an entire experiment with 

blended overlays of various expression channels (having user defined contrasts) as a means of 

ensuring that the characteristics of cells assumed to exist in any one population gated purely 

based on numerical information match expectations.  Custom metrics can also be computed 

and attached for visualization in this interface using any of the fields mentioned in the 

“Extraction” section above. 

 

 

Figure 5 : Cytokit Explorer screenshot (see screencast for animated version) showing a CODEX 

sample imaged at 20x. (a) 1D or 2D plots of expression, morphological, or graphical cell 

features support box and free-hand gating. (b) Custom filtering, to ignore a central 

photobleached region of cells in this case, or summarizations are applied immediately. (c) 
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Single cell images match current gate and selected channel display settings and can also be 

buffered onto the page as tiles are selected, or across the entire image grid (not shown). (d) 

Gated cell population projected onto selected tile image with current display settings 

 

Results 

Cellular Marker Profiling 

To demonstrate the extraction and analysis features of Cytokit as well as validate the underlying 

image processing libraries, a series of traditional immunofluorescence experiments were first 

conducted on human primary T cells. The first of these, shown in  Figures 6 and 7, comprised of 

primary human T cell samples stained with CODEX oligonucleotide-conjugated antibodies 

against human CD3, CD4, and CD8 (and a separate HOECHST stain). These slides were then 

imaged at 20X on a 1.9mm x 2.5mm grid of 25 images over an axial depth of 12.5 micrometers. 

The resulting 1008x1344x25 (height x width x depth) image volumes were then deconvolved, 

segmented, and quantified before being gated using Cytokit Explorer to isolate helper (CD4 

positive) and cytotoxic (CD8 positive) subpopulations.  
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Figure 6: T cell CD3 (blue), CD4 (red), and CD8 (green) intensity. (a) First row of 5 images in 

5x5 experiment grid. (b) Single tile image with corresponding cell and nucleus segmentation, 

where cells are defined as a fixed radius away from the nucleus in the absence of a plasma 

membrane stain. (c) Center zoom on (b) showing co-expression of CD3 and CD4 (magenta) 

and CD3 and CD8 (cyan) as well as debris in DAPI channel. 

 

While these CD4 and CD8 positive (i.e. CD4+ and CD8+) populations were easily resolved in 

this experiment (Figure 7), we found that dissociated cell samples like this are difficult to 

prepare without non-trivial amounts of debris and diffuse nuclear staining, usually as a result of 

lysed cells that did not survive the centrifuge. This is visible in Figure 6 (c) where a minority of 

the nuclei segmentations resulting from the CellProfiler U-Net are fixed around roughly circular 

areas of greater DAPI intensity, albeit at low contrast. This invariance to contrast is generally 

very desirable, but it also demonstrates the importance of curation in image cytometry as 
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artifacts like this can easily go undetected without a way to relate variations in inferred 

morphological or expression profiles for cells back to raw images. 

 

 

Figure 7: T cell gating workflow as annotated Explorer screenshots. (a) Morphological and 

intensity gates applied to isolate CD3+ cells. (b) Cytotoxic and helper cell subpopulations. (c) 

Individual cell images matched to subpopulations in (b). 

 

A further investigation of the ability of this method to isolate CD4+CD8- and CD4-CD8+ cell 

populations was also conducted on experimental replicates and validated against flow cytometry 

based surface marker profiling. Shown in Figure 8, population proportions matched closely and 

verified that dissociated cells quantified in this way can produce results comparable to other 

methods; however, tools like Explorer and OpenCyto [25] were necessary to reach this degree 

of parity due to over-saturated image tiles (detected in Explorer) and intensity calibration 

differences resulting in substantial movement in the modes of the CD4/CD8 populations across 

replicates and donors.  This latter issue was compensated for, in a downstream analysis, 

through the use of the t-distributed mixture models provided in OpenCyto (via flowClust [26]) 
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that can capture translated distributions regardless of the intensity scale unique to each imaging 

dataset. 

 

 

Figure 8 : T cell population recovery comparison (notebook). (a) CD4/CD8 gating results, as 

determined by automatic gating functions in OpenCyto [25], over two imaging replicates for 

each of 4 donors. While all images were collected over a field of view of the same size, samples 
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for donors 40 and 41 were prepared at 3x higher cell concentrations to demonstrate that 

segmentation and intensity measurements are robust to greater image object densities. (b) Cell 

population size for both replicates compared to a single flow cytometry measurement for each 

donor as well as Pearson correlation demonstrating strong agreement between the two (r > 

0.99, P < 0.0001, two-tailed t-test). (c) Cell images from donor 41 showing (from left to right): 

DAPI (blue) and PHA (red) stain, DAPI and PHA with cell and nuclei segmentations, and DAPI 

with CD4 (red) as well as CD8 (green). See supplementary file Figure S1 for a comparison of 

these results to those from the same workflow without much of the gating used here to remove 

invalid cells. 

Cell Size Estimation 

A second validation was also conducted to attempt recovery of known morphology differences 

between unstimulated and activated T cell samples. Samples were stained with DAPI and 

Phalloidin-Fluor 594 (PHA), the latter of which identifies cytoskeletal actin filaments and is used 

here to define cell boundaries. The Cytokit pipeline for processing both samples was configured 

to blur PHA images before applying a threshold to create a binary image used as a watershed 

segmentation mask, with nuclei as seeds. As in the previous experiments, Explorer was used to 

find appropriate gates for singlet cell populations before attempting to compare cell diameter 

distributions (Figure 9). 
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Figure 9 : Cell diameter recovery workflow as annotated Explorer screenshots. (a) 

Unstimulated/naive cells with DAPI stain (gray), binary PHA image (red), and resulting cell 

segmentation (green). (b) Projection of modes in phalloidin/DAPI distribution to segmented cells 

in original image. (c) Diameter distribution comparison for unstimulated and activated samples 

along with corresponding single cell images. 

 

Much like the previous section demonstrating estimation of CD4+/CD8+ T cell population sizes, 

obtaining accurate cell size distributions was found to be difficult without first establishing proper 

filters to eliminate debris, lysed cells, and poorly segmented nuclei. Similar procedures for 

assays based on dissociated cells, e.g. Flow and Mass Cytometry, are far more formalized yet 

satisfactory results can still be obtained with image cytometry as long as the relationships 

between spatial and expression dimensions can be properly characterized. As this 
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characterization becomes more difficult across different experimental replicates and modalities, 

a series of similar experiments were also carried out to better define these difficulties on a larger 

scale. Figure 10  demonstrates results from these experiments where a workflow based on 

automatic gating functions, with resulting filters validated against individual cell images in 

Explorer, was used to extract cell size distributions for different cell types, levels of 

magnification, and replicates for comparison to similar results from a dedicated cell counting 

device.  

 

 

Figure 10 : T cell size recovery comparison (notebook) showing inferred cell diameter 

distributions (violin with bars indicating +/- 1 s.d.) vs point estimates of mean diameter from 

Thermo Fisher cell counter (dot) as well as filtered single cell population sizes (counts); All 

images taken at 20x magnification except where indicated otherwise. See supplementary file 

Figure S2  for a comparison of these results to those from the same workflow without much of 

the gating used here to remove invalid cells. 
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CODEX 

Representative preparations of image datasets resulting from CODEX protocol applications 

were also carried out to characterize performance at a larger scale. The first of these included 

an analysis of the reference dataset shared by the CODEX authors which, in its totality, contains 

~700k cells spread across 9 individual tissue preparations and ~1.1TB of microscope images. 

These images, of normal and autoimmune murine spleens, were prepared as separate 

replicates of tissue slides with a single replicate being subjected to 18 cycles of imaging (on a 

9x7 grid) to capture 54 expression signals. Cytokit was applied to a single replicate containing 

51,030 images (129GB) to demonstrate that cycle alignment, deconvolution, image quality 

assessment, and segmentation can be executed in ~80 minutes on one (2x Nvidia GTX 1080 

GPU) workstation. Segmentation results*  were visually and quantifiably similar to those in the 1

original study (Figure 11). 

 

1 CODEX reference data was already aligned and deconvolved so segmentation was applied separately 
from preprocessing operations used for time benchmarks 
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Figure 11 : BALB/c spleen (slide 1) CODEX image segmentation/quantification results. (a) ~200 

cells with DRAQ5 nuclear stain (above) and corresponding cell/nucleus segmentation (below). 

(b)  ~71k cells in stitched, downscaled 9072x9408 pixel image showing IgD (green) and CD90 

(red) expression as well as location of CD169+ marginal zone macrophages as white dots. (c) 

Double positive cell population rates post cleanup-gating with expected percentages in green 

 

Conclusion 

Multiplexed, in-situ image cytometry offers many potential advantages over traditional single cell 

assays, but the volume of image data produced by these procedures makes processing and 

analyzing them difficult. Cytokit is an open source Python package that attempts to help 

overcome these issues by providing GPU-accelerated implementations of cycle registration and 
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image deconvolution as well as an interactive user interface for characterizing the phenotypic 

features of cells alongside their spatial distribution. We find that understanding modalities in 

expression distributions as projections onto original images and the ability to iteratively optimize 

pipelines operating on large datasets are both important capabilities needed to achieve good 

results, even for the relatively simple tasks presented here such as size estimation and cellular 

marker profiling.  We also find that the need for this software arises largely out of the inability of 

existing software packages to support experiments with large numbers of imaging channels 

well.  It is likely that as CellProfiler continues to mature, it will eventually support a Python API 

that would make it possible to provide many of the same features with CP modules alone.  Until 

then, Cytokit is an efficient, flexible pipeline suitable for bioinformaticians that need to process 

and analyze multiplexed imaging data. 

 

Supplementary Figures 
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Figure S01:  Supplement to Figure 8 demonstrating improvement in quantification after the 

inclusion of gates to remove debris and other segmentation artifacts. a) CD4/CD8 cell 

populations for all 4 donors with both before and after groups including a terminal gate in the 

workflow to detect modes for each population, but all other gates left out in the “Before Quality 

Control Gating” example.  b) Cell population size for both replicates compared to flow cytometry 

measurements with improvement in correlation across populations after application of quality 

control gating (pearson correlation shown with significance from two-tailed t-test). 

 
 

 
Figure S02: Supplement to Figure 10 demonstrating improvement in quantification after the 

inclusion of gates to remove debris and other segmentation artifacts.  Cell counts from the two 

workflows are shown below each diameter distribution (violin with bars indicating +/- 1 s.d.) and 

corresponding Thermo Fisher cell counter diameter measurements are shown as colored dots. 

 

Methods 

For all human primary T cell imaging datasets generated in this study, cells were isolated, 

cultured, activated, and prepared for immunofluorescence microscopy as previously described 
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[27]. PBMCs were isolated from healthy human donors (purchased from Plasma Consultants 

LLC, Monroe Township, NJ) by Ficoll centrifugation (Lymphocyte separation medium; Corning, 

Corning, NY). T cells were isolated using Dynabeads Untouched Human T Cells Kit using 

manufacturer’s protocols (Thermo Fisher, Waltham, MA). Isolated T cells were kept in T cell 

media: RPMI with L-glutamine (Corning), 10% fetal bovine serum (Atlas Biologicals, Fort Collins, 

CO), 50 uM 2-mercaptoethanol (EMD Millipore), 25 mM HEPES (HyClone, GE Healthcare, 

Chicago, IL), 1% Penicillin-Streptomycin (Thermo Fisher), 1X sodium pyruvate (HyClone, GE 

Healthcare, Chicago, IL), and 1X non-essential amino acids (HyClone, GE Healthcare). T cells 

were activated for 2 days with anti-CD3/CD28 magnetic dynabeads (Thermo Fisher) at a beads 

to cells concentration of 1:1, with supplement of 200 IU/ml of IL-2 (NCI preclinical repository) 

and then mounted onto a glass slide with the Prolong anti-fade mounting reagent. For samples 

stained with only DAPI and phalloidin, T cells from cultures were washed and re-suspended in 

PBS, fixed in 4% formaldehyde solution for 30 minutes, washed and stained with the phalloidin 

dye for 30 minutes within BD CytoPerm solution, and re-suspended in PBS before cytospinning. 

T cells from pmel-1 mouse were activated by adding 1 uM of gp100 peptide to freshly isolated 

splenocytes and culturing for three days. 

Protocol Details 

Culture media: DOI:10.17504/protocols.io.qu5dwy6 

PBMC isolation from buffy coat: DOI:10.17504/protocols.io.qu2dwye 

FL staining: 

https://www.protocols.io/view/preparing-primary-t-cells-for-fluorescence-microsc-vede3a6 
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Availability and requirements 

Project name: Cytokit 

Project home page : https://github.com/hammerlab/cytokit 

Operating system(s): Linux, Mac OS X 

Programming language : Python 

Other requirements: Python 3.5 or higher 

License: Apache 2.0 

Any restrictions to use by non-academics : None beyond license terms 

Abbreviations 

CODEX: Co-detection by indexing 

GUI: Graphical User Interface 

PHA: Phalloidin-Fluor 594 

CP: CellProfiler 

DEI: DNA Exchange Imaging 

TIFF : Tagged ImageFile Format 

FCS: Flow Cytometry Standard 

CLI: Command Line Interface 

I/O : Input / Output 
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