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Abstract  24 

Pararsitoid-host interactions involving host species that are newly introduced into the range of a 25 

generalist parasitoid provide systems that can be examined for phenotypic plasticity and 26 

evolutionary changes in parasitoid-host dynamics. The solitary Braconid parasitoid wasp, 27 

Dinocampus coccinellae, has a cosmopolitan distribution and parasitizes approximately 50 28 

species of predatory lady beetles (ladybirds) in the family Coccinellidae. In this study we 29 

quantified the effect of six (4 native North American and 2 non-native North American) host 30 

species on the morphometrics of D. coccinellae. Adult lady beetles were collected from 13 31 

locations in the United States and reared in the laboratory until D.coccinellae exited from their 32 

adult beetle hosts. Eighty-nine individual D. coccinellae females and their associated host were 33 

weighed and morphometric measurements were taken. The smallest lady beetle host Hippodamia 34 

parenthesis produced the smallest adult wasps; the largest host species, Coccinella 35 

septempunctata, produced the largest female wasps. A directional cline in morphology of wasps 36 

and their coccinellid hosts was also observed in a dry-weight regression (R2 = 0.4066, p-value < 37 

0.0001). Two underlying mechanisms may explain the results of our study: (1) morphometric 38 

variation in D. coccinellae is governed by phenotypic plasticity with the size of the emerging 39 

offspring contingent on the size of the coccinellid host, and/or (2) that morphometric variation in 40 

D. coccinellae is governed by genomic adaptation to coccinellid host populations. 41 
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Introduction 47 

Parasitic Hymenoptera make up at least 280,000 species of all parasitic insects 48 

(Pennacchio and Strand 2006). Numerous studies have examined the relationship between hosts 49 

and their parasitoids. (Hochberg and Ives 2000, Godfray 1994). Importantly, several studies have 50 

shown that the morphological characteristics of adults and fecundity of female parasitoids are 51 

affected by host characteristics, for example, host species (Nicol et al., 1999), host life stage 52 

(Traynor et al., 2005), host instars (Cloutier et al., 2000), and host size (Harvey et al., 2006; 53 

Mackauer et al., 2001). The size and species of hosts have been shown to greatly influence the 54 

evolutionary history of morphological characteristics in parasitoids (Brandl et al., 1987; Belshaw 55 

et al., 2003; Charnov et al., 1984; Bakker K et al., 1985; Moore et al., 2002; Symonds et al., 56 

2013). It has been hypothesized that host-parasitoid co-evolution could eventually lead to 57 

increased fitness of parasitoids allowing them to parasitize multiple species (Charnov et al., 58 

1984; Ellers et al., 2002; Sampaio et al., 2008). This also points to evidence of host-specificity in 59 

a majority of parasitoids, in that parasitoids adaptively evolve in response to host characteristics, 60 

and eventually may specialize in parasitizing only particular host species. Few studies examine 61 

generalist parasitoids that parasitize multiple host species, and correspondingly exhibit 62 

quantitative variability in morphology, potentially in response to host characteristics. For 63 

example, parasitoid size as a plastic trait has been studied using Aphidus ervi 64 

(Hymenoptera:Aphidiidae), an aphid parasitoid, that attacks multiple host species (Henry et al., 65 

2006). There is little understanding, however, of the biological processes that lead to generalist 66 

behavior of parasitoids.  67 

 68 
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Dinocampus coccinellae (Hymenoptera: Braconidae) is a thelytokous parthenogenic 69 

species, in which females are produced from unfertilized eggs (Ceryniger et al 2012). Males have 70 

been rarely observed; one laboratory study observed mating to occur, but all offspring were 71 

females (Wright 1980). This process results in offspring being maternal clones. D. coccinellae 72 

are generalist wasps, capable of parasitizing over 50 species of coccinellids across various 73 

climates worldwide (Balduf 1926, Ceryniger et al 2012). Within the beetle host, D. coccinellae 74 

larvae feed on teratocytes derived from the parasitoid egg, thus the adult beetle host typically 75 

survives the larval development of D. coccinellae (Ceryniger et al 2012). However, most 76 

parasitized adult beetles die following the exit of the parasitoid larva, when they become 77 

entangled in the pupal coccoon produced by the parasitoid (Ceryniger et al 2012, Dheilly et al 78 

2015). Several predatory lady beetle hosts of D. coccinellae are natural enemies that are 79 

beneficial species for biological control (including the native North American species 80 

Hippodamia convergens, and two non-native species in North America, Coccinella 81 

septempunctata, and Harmonia axyridis). Coupled with low survival rates of parasitized beetles, 82 

and the generalist nature of D. coccinellae, these wasps are of biological, ecological, and 83 

economic interest. Specifically, we are interested in examining the ecological basis of host-84 

specific plastic or adaptive morphological traits, that make D. coccinellae amenable to 85 

parasitizing coccinellid beetles. In this study we analyze the geometric morphometrics of field-86 

collected, lab-reared D. coccinellae and their coccinellid beetle hosts (from six host species), 87 

sampled across the United States. Our goals in this study were twofold: (1) to quantify the 88 

variability in morphometrics of D. coccinellae across its primary range in the United States, (2) 89 

to correlate the variability in morphometrics of D. coccinellae with morphometrics of their hosts. 90 
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Broadly, we hypothesize that morphometric diversity of the host species will dictate the 91 

morphometrics of the parasitoid wasps parasitizing them.  92 

 93 

Methods 94 

Ninety-nine parasitoid wasps within their adult hosts (Harmonia axyridis (Har. axyridis), 95 

Coleomegilla maculata (Col. maculata), Coccinella septempunctata (Cocc. septempunctata), 96 

Hippodamia convergens (H. convergens), Cycloneda munda (Cyc. munda), and Hippodamia 97 

parenthesis (H. parenthesis)) were field-collected in the states of Kentucky, Ohio, Illinois, New 98 

York, Missouri and Kansas (see Fig. 1) The Hippodamia convergens samples from Arizona were 99 

field-collected and shipped to the authors. Adult lady beetles were collected from agricultural 100 

fields, prairie, and roadside vegetation using sweep nets. Predatory Coccinellidae are commonly 101 

found in these habitats when their aphid prey is present. Following field collection, adult beetles 102 

were reared in the laboratory (L:D 16:8, 22°C, on pea aphids) until the last larval stage of the 103 

wasps’ development at which point the parasitoid larva exits the host and pupates within a 104 

cocoon, typically woven between the coccinellid beetle hosts’ legs. After eclosion of the adult 105 

parasitoid, both the beetle host and parasitoid were then stored in 95% ethanol at -20C. Of these 106 

samples, 89 were viable for the morphological analyses which needed intact, undamaged 107 

samples of both the parasitoid and host. It is of interest to note that of the six host species of 108 

coccinellids, Harmonia axyridis and Coccinella septempunctata are not native to continental 109 

United States (derived from Asia, and Europe respectively, (Obrycki and Kring 1988), thus the 110 

interaction between these host species and North American D. coccinellae may be a recently 111 

evolving interaction. Alternately, D. coccinellae could also be native to Europe or Asia 112 

(Ceryniger et al 2012), and have shifted hosts since their introduction to North America. Dry 113 
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weights of wasps and host were recorded individually on a Mettler Toledo XS105 DualRange 114 

Analytical Balance after 1 minute of air-drying on a Kimtech Kimwipe to allow for evaporation 115 

of alcohol. After weighing, each wasp and its respective host were photographed individually in 116 

two replicate rounds using an optical microscope with a SPOT Idea camera attachment. Wasps 117 

were photographed from a lateral view (see Fig. 3), and their hosts were photographed from 118 

lateral, dorsal, and ventral views to include key morphological characteristics and maintain 119 

consistency in imaging (see Fig. 2). Images were uploaded into Image-J (version 1.51j8) for 120 

morphometric measurement (in mm) of host and wasp morphological characteristics with a scale 121 

bar (included in the parasitoid/host mounting stage) to ensure consistent scaling.  Wing length of 122 

the wasp was not included in further statistical analyses due to many wings being folded, or 123 

crushed during storage. Body depth of hosts (measured as the “height” of a beetle from the 124 

lateral view) was also excluded due to measurement inconsistency on the styrofoam mounting 125 

stage.. All high-resolution images from this study will be deposited with 126 

http://www.morphbank.net/ upon acceptance. 127 

All statistical analyses of morphometric measurements were carried out for each round 128 

separately (except for dry weight which was recorded in one round) using Rstudio (version 129 

1.0.143) and the package: ggplot2. Variation in means of recorded morphometrics of wasps and 130 

their hosts were visualized using boxplots, and summaries (means, medians, standard deviations) 131 

were computed. Due to lack of normality across most morphometric measures, a Wilcoxon 132 

signed rank test was performed across wasp morphometric measures (grouped by their respective 133 

host species) to test the null hypothesis of non-significant deviation from the mean. Similar 134 

Wilcoxon signed rank tests were also performed on coccinellid host morphometrics. We then 135 

performed a Kruskal-Wallis non-parametric one way ANOVA, followed by a posthoc Dunn's 136 
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Test on each morphometric measure in the parasitoid versus its host species, to test for 137 

significant morphometric differences by host. Parasitoid dry-weight was also regressed onto host 138 

dry-weight, as a proxy of size variation between the two. Additionally, a Principal Components 139 

Analysis (PCA) was used to orthogonally transform morphometrics (including dry-weights) of 140 

parasitoids and their hosts, and project their variability onto principal components of maximum 141 

variance.  142 

 143 

Results 144 

Summaries of morphometric measurements in coccinellid hosts (Table 1), and parasitoid wasps 145 

(Table 2) are shown in Figures 4 and 5. The smallest hosts (Fig. 4 as judged by all 146 

measurements), H. parenthesis produced the smallest adult wasps (Fig. 5). Similarly, the largest 147 

hosts, Coccinella septempunctata, produced the largest wasps. This directional cline (Fig. 6) in 148 

morphology of wasps and their coccinellid hosts is also reflected in a dry-weight regression (R2 149 

= 0.4066, p-value < 0.0001). A non-parametric Kruskal-Wallis one-way analysis of variance 150 

(ANOVA) test of host morphometric variation and parasitoid wasp morphometric variation was 151 

significant at a p-value threshold of 0.05 on each morphometric measurement, rejecting the null 152 

hypothesis that there is no variation in means of measured morphometric variables in parasitoid 153 

wasps, among  their corresponding host species. Additionally, coccinellid host measurements 154 

were significantly variable (p < 0.001) among all host species measured, indicating significant 155 

variability in sizes of coccinellid hosts. Conservative posthoc Dunn’s tests indicated that the 156 

variability observed between pronotum width in coccinellid adult hosts had the greatest level of 157 

significance. A similar post-hoc Dunn’s test in parasitoid wasp measurements indicated that 158 

thorax length varied more than other morphometric measurements. A Principal Components 159 
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Analysis (PCA) showed that the first two PC’s account for 70 -75% of variability in both rounds 160 

(Fig. 7). Interestingly, morphometric variables in the two introduced beetle species, Cocc. 161 

septempunctata and Har. axyridis share no overlapping points with the native species, Col. 162 

maculata, Cyc. munda, and H. parenthesis, but show close association with the native species H. 163 

convergens. 164 

 165 

Discussion 166 

The parthenogenic parasitoid Dinocampus coccinellae (Schrank) (Hymentoptera: 167 

Braconidae), a cosmopolitan species, attacks over 50 species in the subfamily Coccinellinae 168 

(Ceryngier et al., 2012). This parasitoid typically attacks adults, but laboratory studies and field 169 

collections of pre-imaginal stages have documented that it will attack larval and pupal stages of 170 

ladybird beetle hosts (Ware et al 2010; Obrycki et al 1985). A recent study has shown that the 171 

replication of an endosymbiotic RNA virus in the parasitoid D. coccinellae is correlated with the 172 

changes in host behavior following parasitization (Dheilly et al 2015). Results indicate that the 173 

manipulation of host behaviors by this parasitoid may be regulated by this endosymbiotic virus.  174 

In our current study of the parasitoid-host interactions between D. coccinellae and several 175 

native North American and introduced species of Coccinellidae, we have quantified the influence 176 

of host size on the size of parasitoid females. Our study clearly shows that larger coccinellid 177 

hosts that are parasitized by D. coccinellae produce larger female parasitoids, an observation that 178 

has also been reported by Obrycki (1988, 1989), Belnavis (1988 - except this study indicated that 179 

larger host beetles did not always produce larger wasps). It is interesting to note that two of the 180 

larger host species examined in this study, Cocc. septempunctata and Har. axyridis are 181 

introduced species, which have established and spread throughout North America during the past 182 
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four decades (Sethuraman et al 2017). It is not yet known if populations of D. coccinellae was 183 

introduced with Cocc. septempunctata or Har. axyridis creating a situation that may indicate that 184 

the newly introduced parasitoid populations have adaptively shifted hosts in North America since 185 

introduction in the early 20th century. This possibility will be explored in a follow up study by 186 

delineating the evolutionary history and genomics of D. coccinellae. Nonetheless, our findings 187 

could have two potential causes - (1) morphometric variation in D. coccinellae is governed by 188 

phenotypic plasticity with the size of the emerging offspring contingent on the size of the 189 

coccinellid host (Boivin 2010, Benard 2004), and/or (2) morphometric variation in D. 190 

coccinellae is governed by genomic adaptation to its coccinellid host population (Henry et al., 191 

2006).  192 

Importantly, morphometric size variation in parasitoid wasps play a causal role in 193 

parasitization efficacy across their hosts. Previous studies of D. coccinellae parasitization 194 

efficacy in the non-native Har. axyridis adults have indicated the potential for behavioral 195 

adaptations in adult hosts, resulting in greater time to parasitize, when compared to the native 196 

North American species, Col. maculata (Firlej et al., 2009). It has also been noted that 197 

parasitization efficacy by D. coccinellae is significantly lower in Har. axyridis), when compared 198 

to conspecific native species (Cocc. septempunctata) in England (Comont et al., 2014), and the 199 

native species Col. maculata in North America (Hoogendoorn et al., 2002). However, a 200 

contradictory study of the two species that compared the parasitization rates of D. coccinellae of 201 

native versus introduced populations of Cocc. septempunctata and Har. axyridis in Japan and 202 

England indicated no differences based on their geographical origin, but complement the study 203 

of Firlej et al. 2009 in showing that Har. axyridis are parasitized at a significantly lower rate than 204 

Cocc. septempunctata. Har. axyridis is also known to be a voracious and invasive species across 205 
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its geographical range in the world, potentially owing to behavioral and morphological 206 

adaptations to parasitization, and “enemy release” (Ceryngier et al., 2012). However, a more 207 

recent study by Dindo et al., 2016 compared the interactions of D. coccinellae with Har. 208 

axyridis, and Adalia bipunctata in the field, showing that D. coccinellae had more of a negative 209 

effect on the fitness of the Har. axyridis population, than on that of A. bipunctata. These 210 

contradicting observations in different populations of the same species indicate that behavioral, 211 

morphological, or biochemical adaptations to parasitization potentially have a genomic basis, as 212 

previously observed in D. melanogaster (Orr and Irving 1997). Studying the population genomic 213 

variation across coccinellid species (currently underway in the authors’ laboratories) will thus 214 

allow us to explore functional genomic variation in Har. axyridis and Cocc. septempunctata 215 

leading to defense against parasitization by D. coccinellae. Complementarily, we are also 216 

studying the genomics of D. coccinellae to study changes in the parasitoid wasp and/or 217 

intraspecific variation among populations , that allow for higher rates of successful parasitization 218 

of Har. axyridis in North America, or alternately, adaptively evolving to parasitize a several new 219 

host species in North America. 220 

Body size of coccinellid hosts have also been studied to directly affect the rate of 221 

parasitization by parasitic wasps during different life history stages (Cocc. septempunctata, see 222 

Song et al., 2017). Since our study only controlled for the life history stage of the emerging 223 

wasp, and not for the life history stage of the coccinellid host, further studies are required to 224 

understand the efficacy of parasitization of large versus small parasitoid wasps on larval versus 225 

adult coccinellid hosts. Additionally, the sex of the coccinellid host, and prey availability in the 226 

field could also influence variability in size of adults (Belnavis 1988), which were not controlled  227 

in our study. 228 
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Our study however brings into question the fecundity of larger adult female D. coccinellae 229 

(presumably greater than that of smaller adult female D. coccinellae possibly due to more eggs 230 

and or larger eggs in larger female parasitoids and possibly longer life span of larger females, 231 

and thus greater rates of parasitization of larger hosts - see Obrycki 1989). Thus if there is indeed 232 

positive fecundity selection for larger females in a population, we would expect an ongoing trend 233 

of observing larger D. coccinellae in the field, which thus parasitize a larger number of native, 234 

and non-native species. Of potential interest then is the differential efficacy of parasitization of 235 

small D. coccinellae on larger coccinellid hosts, and vice versa. Within our 99 sampled wasps in 236 

the current study, one D. coccinellae female reared from a field collected Cyc. munda 237 

successfully parasitized and produced female F1 progeny from Cocc. septempunctata, Har. 238 

axyridis and Col. maculata, with the former two species being the largest of Coccinellid host 239 

species studied in this study work. 240 

 241 
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Tables and Figures 342 

Table 1: Summary of Coccinellid host (H. parenthesis, H. convergens, C. maculata, C. 343 

septempunctata, H. axyridis, C. munda) morphometric measurements from the first round of 344 

measurements, including abdominal widths, abdominal lengths, pronotum widths, elytron chord 345 

lengths, pronotum lengths, body lengths, and body widths, in millimeters. The p-values are 346 

derived from Wilcoxon signed-rank tests for significant deviation from mean morphometric 347 

measurements within each host species class.  348 

Table 2: Summary of parasitoid wasp (D. coccinellae) morphometric measurements, including 349 

head length, head depth, thorax length, thorax depth, and abdomen length, in millimeters, from 350 

the first round of measurements. The p-values are derived from Wilcoxon signed-rank tests for 351 

significant deviation from mean morphometric measurements within each host species class. 352 

Figure 1: Map of locations from which Coccinellid hosts with their parasitoid wasp were field-353 

collected (except H. convergens from Arizona, which was shipped to the authors). 354 

Figure 2: Morphometric variables measured from Coccinellid hosts, shown in three perspectives 355 

- dorsal, lateral, and venral views. Image courtesy: D. Sustaita. 356 

Figure 3: Morphometric variables measured from parasitoid wasps, D. coccinellae, shown in a 357 

single lateral perspective. Image courtesy: D. sustaita. 358 

Figure 4: Box plot summary of Coccinellid host (H. parenthesis, H. convergens, C. maculata, C. 359 

septempunctata, H. axyridis, C. munda) morphometric measurements from the first round of 360 

measurements, including abdominal widths, abdominal lengths, pronotum widths, elytron chord 361 

lengths, pronotum lengths, body lengths, and body widths, in millimeters. Shown are means, and 362 

interquartile ranges within each measurement. 363 
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Figure 5: Box plot summary of parasitoid wasp (D. coccinellae) morphometric measurements, 364 

including head length, head depth, thorax length, thorax depth, and abdomen length, in 365 

millimeters, from the first round of measurements, categorized by their respective host species. 366 

Shown are means, interquartile ranges within each measurement. These measurements are 367 

consistent with observations on D. coccinellae in Table 2 of Obrycki 1988. 368 

Figure 6: Regression of coccinellid host dry weight versus parasitoid wasp dry weight in 369 

milligrams, showing the positive correlation between size of the host and the size of its parasitoid 370 

wasp. R2 = 0.407, p-value = 3.09e-11. 371 

Figure 7: A Principal Components Analysis (PCA) plot of all variability in morphometric 372 

measurements from parasitoid wasps, and their coccinellid hosts from round 1 of measurements. 373 

The first two PC’s accounted for most of the variability in the data (PC1: 62.1%, PC2: 13.2%), 374 

with the PC1 describing variation in the coccinellid host morphometrics, and PC2 describing 375 

variation in the parasitoid wasp morphometrics. 376 
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Table 1 386 

 387 

 Host Length       

Coccinellid 

Host        

 
Abdominal 

Width 
Abdominal 

Length 
Pronotum 

Width 

Elytron 

Chord 

Length 
Pronotum 

Length 
Body 

Length 
Body 

Width 

H. 

parenthesis 

2.47 (sd = 0.2, p-

value = 2.384e-

07, min = 1.92, 

median = 2.48, 

max = 2.76,) 

3.42 (sd = 

0.22, p-

value = 

2.886e-05, 

min = 

2.82, 

median = 

3.43, max 

= 3.7,) 

1.98 (sd = 

0.15, p-value 

= 2.883e-05, 

min = 1.64, 

median = 

2.01, max = 

2.24,) 

3.85 (sd = 

0.25, p-

value = 

2.384e-07, 

min = 

3.21, 

median = 

3.96, max 

= 4.22,) 

1.24 (sd = 

0.1, p-value 

= 2.886e-05, 

min = 1.05, 

median = 

1.23, max = 

1.47,) 

4.9 (sd = 

0.39, p-

value = 

2.384e-07, 

min = 

4.26, 

median = 

4.81, max 

= 5.76,) 

2.91 (sd = 

0.2, p-

value = 

2.384e-07, 

min = 2.4, 

median = 

2.93, max 

= 3.24,) 

H. 

convergens 

3.18 (sd = 0.27, 

p-value = 

0.001656, min = 

2.77, median = 

3.06, max = 3.7,) 

4.41 (sd = 

0.42, p-

value = 

0.0002441, 

min = 

3.84, 

median = 

4.35, max 

= 5.22,) 

2.41 (sd = 

0.18, p-value 

= 0.0002441, 

min = 2.19, 

median = 

2.35, max = 

2.77,) 

4.81 (sd = 

0.6, p-

value = 

0.0002441

, min = 

3.39, 

median = 

4.65, max 

= 5.68,) 

1.54 (sd = 

0.11, p-value 

= 0.0002441, 

min = 1.38, 

median = 

1.55, max = 

1.76,) 

5.96 (sd = 

0.46, p-

value = 

0.0002441

, min = 

5.3, 

median = 

5.9, max = 

6.82,) 

3.78 (sd = 

0.32, p-

value = 

0.0002441

, min = 

3.43, 

median = 

3.64, max 

= 4.52,) 

C. 

maculata 

2.6 (sd = 0.19, p-

value = 2.328e-

10, min = 2, 

median = 2.6, 

max = 2.94,) 

3.96 (sd = 

0.28, p-

value = 

2.328e-10, 

min = 

3.02, 

median = 

4.01, max 

= 4.38,) 

2.1 (sd = 

0.12, p-value 

= 5.63e-07, 

min = 1.72, 

median = 

2.1, max = 

2.37,) 

4.35 (sd = 

0.35, p-

value = 

2.328e-10, 

min = 

3.32, 

median = 

4.31, max 

= 5.37,) 

1.3 (sd = 

0.12, p-value 

= 5.642e-07, 

min = 1.06, 

median = 

1.31, max = 

1.51,) 

5.61 (sd = 

0.41, p-

value = 

2.328e-10, 

min = 

4.37, 

median = 

5.72, max 

= 6.26,) 

3.21 (sd = 

0.22, p-

value = 

2.328e-10, 

min = 

2.53, 

median = 

3.22, max 

= 3.66,) 

H. axyridis 

4.32 (sd = 0.28, 

p-value = 0.125, 

min = 3.97, 

median = 4.34, 

max = 4.63,) 

5.21 (sd = 

0.2, p-

value = 

0.125, min 

= 4.96, 

median = 

5.24, max 

= 5.39,) 

3.09 (sd = 

0.2, p-value 

= 0.125, min 

= 2.85, 

median = 

3.08, max = 

3.34,) 

5.79 (sd = 

0.27, p-

value = 

0.125, min 

= 5.57, 

median = 

5.73, max 

= 6.15,) 

1.9 (sd = 

0.06, p-value 

= 0.125, min 

= 1.85, 

median = 

1.89, max = 

1.98,) 

6.81 (sd = 

0.21, p-

value = 

0.125, min 

= 6.59, 

median = 

6.79, max 

= 7.07,) 

5.44 (sd = 

0.27, p-

value = 

0.125, min 

= 5.05, 

median = 

5.52, max 

= 5.66,) 
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C. munda 

2.73 (sd = 0.27, 

p-value = 

0.003906, min = 

2.34, median = 

2.71, max = 

3.12,) 

3.36 (sd = 

0.38, p-

value = 

0.003906, 

min = 

2.91, 

median = 

3.17, max 

= 4.00,) 

2.26 (sd = 

0.18, p-value 

= 0.003906, 

min = 2.05, 

median = 

2.23, max = 

2.51,) 

4.08 (sd = 

0.64, p-

value = 

0.003906, 

min = 

3.38, 

median = 

3.96, max 

= 5.5,) 

1.34 (sd = 

0.07, p-value 

=  0.003906, 

min = 1.22, 

median = 

1.37, max = 

1.41,) 

4.58 (sd = 

0.45, p-

value =  

0.003906, 

min = 

3.98, 

median = 

4.52, max 

= 5.28,) 

3.69 (sd = 

0.3, p-

value =  

0.003906, 

min = 

3.18, 

median = 

3.69, max 

= 4.14,) 

C7 

4.08 (sd = 0.41, 

p-value = 

0.02225, min = 

3.93, median = 

3.74, max = 

4.86,) 

5.19 (sd = 

0.53, p-

value = 

0.01563, 

min = 

4.72, 

median = 

4.91, max 

= 6.17,) 

3.26 (sd = 

0.34, p-value 

= 0.01563, 

min = 2.93, 

median = 

3.07, max = 

3.78,) 

5.57 (sd = 

0.92, p-

value = 

0.01563, 

min = 

4.21, 

median = 

5.8, max = 

6.89,) 

2.01 (sd = 

0.42, p-value 

= 0.01563, 

min = 1.13, 

median = 

2.09, max = 

2.48,) 

6.85 (sd = 

0.64, p-

value = 

0.01563, 

min = 

6.33, 

median = 

6.52, max 

= 8.1,) 

5.4 (sd = 

0.44, p-

value = 

0.01563, 

min = 

4.81, 

median = 

5.54, max 

= 5.98,) 
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Table 2 403 

 Wasp Length     

Coccinellid 

Host      

 Head Length Head Depth Thorax Length Thorax Depth Abdomen Length 

H. 

parenthesis 

0.77 (sd = 0.05, p-

value = 2.384e-07, 

min = 0.65, median 

= 0.77, max = 

0.83,) 

0.49 (sd = 0.04, 

p-value = 2.88e-

05, min = 0.43, 

median = 0.48, 

max = 0.56,) 

1.28 (sd = 0.15, p-

value = 2.384e-07, 

min = 0.94, median 

= 1.29, max = 

1.62,) 

0.68 (sd = 0.09, p-

value = 2.886e-05, 

min = 0.5, median 

= 0.7, max = 0.87,) 

2.52 (sd = 0.37, p-

value = 2.384e-07, 

min = 1.85, median 

= 2.44, max = 

3.18,) 

H. 

convergens 

0.82 (sd = 0.05, p-

value = 0.0002441, 

min = 0.71, median 

= 0.83, max = 

0.93,) 

0.51 (sd = 0.05, 

p-value = 

0.001651, min = 

0.42, median = 

0.51, max = 

0.58,) 

1.35 (sd = 0.11, p-

value = 0.0002441, 

min = 1.21, median 

= 1.33, max = 

1.56,) 

0.72 (sd = 0.07, p-

value = 0.0002441, 

min = 0.61, 

median = 0.7, max 

= 0.84,) 

2.52 (sd = 0.37, p-

value = 0.0002441, 

min = 2.00, median 

= 2.48, max = 

3.13,) 

C. 

maculata 

0.78 (sd = 0.05, p-

value = 5.639e-07, 

min = 0.67, median 

= 0.78, max = 

0.91,) 

0.5 (sd = 0.05, p-

value = 5.636e-

07, min = 0.37, 

median = 0.51, 

max = 0.63,) 

1.29 (sd = 0.14, p-

value = 5.642e-07, 

min = 0.92, median 

= 1.3, max = 1.51,) 

0.7 (sd = 0.1, p-

value = 5.639e-07, 

min = 0.5, median 

= 0.69, max = 

0.91,) 

2.35 (sd = 0.33, p-

value = 2.328e-10, 

min = 1.68, median 

= 2.28, max = 

3.12,) 

H. axyridis 

0.86 (sd = 0.03, p-

value = 0.09751, 

min = 0.83, median 

= 0.85, max = 0.9,) 

0.61 (sd = 0.02, 

p-value = 0.125, 

min = 0.58, 

median = 0.62, 

max = 0.64,) 

1.44 (sd = 0.05, p-

value = 0.125, min 

= 1.37, median = 

1.45, max = 1.49,) 

0.79 (sd = 0.1, p-

value = 0.125, min 

= 0.66, median = 

0.81, max = 0.9,) 

2.93 (sd = 0.45, p-

value = 0.125, min 

= 2.54, median = 

2.83, max = 3.51,) 

C. munda 

0.76 (sd = 0.05, p-

value = 0.003906, 

min = 0.67, median 

= 0.77, max = 

0.82,) 

0.53 (sd = 0.05, 

p-value = 

0.009091, min = 

0.46, median = 

0.52, max = 0.6,) 

1.26 (sd = 0.1, p-

value = 0.009091, 

min = 1.07, median 

= 1.29, max = 

1.44,) 

0.69 (sd = 0.03, p-

value = 0.003906, 

min = 0.65, 

median = 0.69, 

max = 0.72,) 

2.27 (sd = 0.4, p-

value = 0.003906, 

min = 1.85, median 

= 2.18, max = 3.2,) 

C7 

0.87 (sd = 0.05, p-

value = 0.01563, 

min = 0.8, median 

= 0.87, max = 

0.96,) 

0.52 (sd = 0.06, 

p-value = 

0.01563, min = 

0.42, median = 

0.52, max = 

0.58,) 

1.55 (sd = 0.1, p-

value = 0.01563, 

min = 1.37, median 

= 1.57, max = 

1.65,) 

0.82 (sd = 0.06, p-

value = 0.01563, 

min = 0.75, 

median = 0.84, 

max = 0.88,) 

2.89 (sd = 0.37, p-

value = 0.01563, 

min = 2.26, median 

= 2.88, max = 

3.36,) 
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Figure 1 411 
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Figure 2 418 
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Figure 3 425 
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Figure 4 429 
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Figure 5 432 
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Figure 6 446 
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Figure 7 456 
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