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Abstract 

Purpose: The primary literature on human genetic diseases includes descriptions of pathogenic 

variants that are essential for clinical diagnosis. Variant databases such as ClinVar and HGMD 

collect pathogenic variants by manual curation. We aimed to automatically construct a freely 

accessible database of pathogenic variants directly from full-text articles about genetic disease. 

Methods: AVADA (Automatically curated VAriant DAtabase) is a novel machine learning tool 

that uses natural language processing to automatically identify pathogenic variants and genes in 

full text of primary literature and converts them to genomic coordinates for rapid downstream 

use. 

Results: AVADA automatically curated almost 60% of pathogenic variants deposited in HGMD, 

a 4.4-fold improvement over the current state of the art in automated variant extraction. AVADA 

also contains more than 60,000 pathogenic variants that are in HGMD, but not in ClinVar. In a 

cohort of 245 diagnosed patients, AVADA correctly annotated 38 previously described 

diagnostic variants, compared to 43 using HGMD, 20 using ClinVar and only 13 (wholly 

subsumed by AVADA and ClinVar’s) using the best automated abstracts-only based approach. 

Conclusion: AVADA is the first machine learning tool that automatically curates a variants 

database directly from full text literature. AVADA is available upon publication at 

http://bejerano.stanford.edu/AVADA. 

 

Keywords: Pathogenic variants database, automatic curation, machine learning, natural language 

processing, medical genetics 
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Introduction 

Rare genetic diseases affect 7 million infants born every year worldwide1. Exome or genome 

sequencing is now entering clinical practice in aid of the identification of molecular causes of 

highly penetrant genetic diseases, and in particular Mendelian disorders (genetic diseases caused 

by pathogenic variants in a single gene2–4). In a Mendelian context, typically one or two of the 

patient’s genetic variants in a single gene are causative of the patient’s disease. After following 

standard variant filtering procedures, a typical singleton patient exome contains 200-500 rare 

functional variants5. Identifying causative variants is therefore very time-consuming, as 

investigating each variant and deciding whether or not it is causative can take up to an hour6. 

Various approaches are in development to accelerate this process7–10. Identifying causative 

variants can be greatly accelerated if the patient’s genome contains a previously reported 

pathogenic variant that partly or fully explains their phenotype. The American College of 

Medical Genetics (ACMG) guidelines for the interpretation of sequence variants recommend 

variant annotation using databases of reported pathogenic variants11. 

The rapidly growing literature on human genetic diseases12, the costly process of manual variant 

curation13, and improved computational access to the full text of primary literature14,15 serve to 

incentivize automatic variant curation. Creating a variant database from the primary literature 

involves finding variant descriptions (such as “c.123A>G”), linking them to a transcript of the 

correct gene mention, and converting them to genomic coordinates (chromosome, position, 

reference and alternative alleles) so they can be readily intersected with any patient variants. 

Previous work on automatic variant discovery in the literature has largely focused on finding 

variant descriptions in paper titles and abstracts with high accuracy without converting the 

discovered variants to genomic coordinates16–22.  Previous automatic variant curation tools have 

also focused on mapping variant mentions to dbSNP23 variant identifiers (rsIDs). Mapping 

textual variant descriptions directly to reference genome coordinates requires significant effort, 

and has thus far largely been left to manually curated databases such as HGMD24 and ClinVar25, 

which devote many thousands of wo/man-hours to the task of collecting genetic variants from 

either the scientific literature or clinical laboratories. 

The recently started ClinGen project has proposed to “develop machine-learning algorithms to 

improve the throughput of variant interpretation”26 and note that a rate limiting factor for clinical 
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use of variant information is the lack of openly accessible knowledgebases capturing genetic 

variants. We posed the question as to whether manual variant curation to genome coordinates 

can be accelerated with the help of machine learning approaches by first training an automatic 

curation system on a sample of manually curated variants (from ClinVar and HGMD), and then 

applying the trained system to the entire body of PubMed indexed literature for automatic 

curation of published variants. AVADA (Automatically curated VAriant DAtabase), our 

automated variant extractor, identifies variants in genetic disease literature and converts all 

detected variants into a database of genomic (GRCh37/hg19) coordinates, reference and 

alternative alleles. We show that AVADA improves on the state of the art in automated variant 

extraction, by comparing it to tmVar 2.027, a best-in-class tool used to harvest variants from 

PubMed abstracts. Combining the free ClinVar and AVADA variant databases, we find that we 

can recover a significant fraction of diagnostic disease-causing variants in a cohort of 245 

patients with Mendelian diseases.  

Materials and Methods 

Identification of relevant literature 

PubMed is a database containing titles and abstracts of biomedical articles, only a subset of 

which contain descriptions of variants that cause human genetic disease. A document classifier is 

a machine learning classifier that takes as its input arbitrary text and classifies it as “positive” 

(here, meaning an article about genetic disease) or “negative” (otherwise). We trained a scikit-

learn28 LogisticRegression29 classifier to identify relevant documents using positive input texts 

(titles and abstracts of articles cited in OMIM30 and HGMD24) and negative input texts (random 

titles and abstracts from PubMed). Machine learning classifiers take as input a real-valued vector 

(the “feature vector”) describing the input numerically. Input texts were converted into a feature 

vector by means of a scikit-learn CountVectorizer followed by a TF-IDF31 transformer (an 

operation that converts input text to a feature vector based on the frequency of words in input 

documents). After training the title/abstract document classifier, we applied it to all 25,793,020 

titles and abstracts in PubMed to identify articles that might be relevant to the diagnosis of 

genetic diseases. Full text PDFs of relevant articles were then downloaded and converted to text 

using pdftotext32 version 0.26.5. Because identifying potentially relevant articles based upon title 

and abstract alone often yields articles whose full text does not turn out to be relevant for the 
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diagnosis of genetic diseases, we subsequently trained a full-text scikit-learn LogisticRegression 

classifier to classify downloaded full-text documents as “relevant” or “irrelevant” based upon the 

article’s full text. As with the title/abstract classifier, full text documents were converted to a 

feature vector by means of a CountVectorizer followed by a TF-IDF transformer. Filtering full-

text articles for relevance resulted in a subset of downloaded articles more relevant to the 

diagnosis of genetic disease (Supplementary Methods). A total of 133,410 articles were 

downloaded and subsequently classified as relevant to the diagnosis of human genetic diseases 

based on the articles’ full text. We refer to this set of articles as the “AVADA full-text articles” 

(Figure 1). 

Variant and gene mention detection 

In order to extract genetic variants from the full-text articles about human genetic disease and 

convert them to genomic coordinates, it is necessary to detect both mentions of genes and variant 

descriptions in articles about genetic disease. Extracting variant descriptions alone does not 

suffice, because variant descriptions in HGVS notation, such as “c.123A>G”, can only be 

converted to genomic coordinates if a transcript of the gene that the variant refers to is identified 

(Table 1). 

AVADA extracts gene mentions from articles’ full text using a custom-built database of gene 

names containing gene name entries from the HUGO Gene Nomenclature Committee (HGNC) 

and UniProt databases. Gene and protein names from these were matched case-insensitive to 

word groups of length 1-8 in the document to identify gene mentions. To identify variant 

mentions, we manually developed a set of 47 regular expressions based on commonly observed 

HGVS-like variant notations in articles about human genetic disease (Supplementary Methods, 

Supplementary Table S1 and Figure 2A). At this step, we refer to every string that matches one 

of the 47 regular expressions as a “variant description”. In the AVADA full-text articles, variant 

descriptions in 92,436 articles were identified, with a mean of 11.1 variant descriptions per 

article (Figure 1). 

Mentioned genes form gene-variant candidate mappings with all mentioned variants 

that “fit” the gene 

Having identified gene mentions and variant descriptions in text, it is now necessary to link 

variant descriptions with the genes that they refer to. Articles often mention variant descriptions 
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without explicitly stating to which gene each variant description maps. The gene to which each 

variant description maps can be inferred by expert readers of the article. However, an automatic 

algorithm cannot easily infer to which gene a variant description maps, because gene mention 

and variant description do not necessarily occur in the same sentence or even the same paragraph 

or page. 

To identify which variant description maps to which mentioned gene in the article, AVADA first 

forms so-called gene-variant candidate mappings between each variant description and each 

mentioned gene if the variant appears to “fit” at least one RefSeq33 transcript of the gene. Given 

an extracted variant description “c.123A>G”, the variant description forms gene-variant 

candidate mappings with all mentioned genes that have an “A” at coding position 123 of at least 

one transcript (Supplementary Methods and Figure 2B). A variant description can form gene-

variant candidate mappings with multiple genes, which are filtered in the next step. Gene-variant 

candidate mappings are converted to genomic coordinates in the GRCh37/hg19 reference 

assembly. In the AVADA full-text articles, an extracted variant description initially mapped to a 

mean of 4.6 different genomic coordinates (Figure 1). 

Machine learning classifier selects the correct gene-variant mapping out of multiple 

gene-variant candidate mappings 

AVADA uses a machine learning framework to decide which gene-variant candidate mappings 

are likely to be correct. The machine learning classifier is a scikit-learn 

GradientBoostingClassifier34. The training set for the classifier comprised positive gene-variant 

mappings curated from the literature in ClinVar, and a set of negative gene-variant mappings 

created by assigning variants from the positive training set to genes mentioned in the paper to 

which they did not map. Each gene-variant mapping was converted to a feature vector, based 

upon which the classifier decided if the gene-variant candidate mapping was true or false. The 

feature vector included the Euclidean distance between the 2D coordinates (consisting of page 

number, x and y coordinates of a mention) of the closest mentions of the variant and the gene in 

the PDF, the number of words between variant and gene mentions, the number of short 

“stopwords” (like “and”, “or”, “of”, …) around gene and variant mentions, and a number of 

other textual features containing information about the relationship between gene and variant 

mentions (Supplementary Methods and Figure 2C; performance analyzed below).  
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The classifier successfully reduced 4.6 candidate gene-variant mappings per variant description 

to a mean of 1.2 genomic positions in the AVADA full-text articles (Supplementary Methods 

and Figures 1, 2D). 

Results 

AVADA identified 203,608 variants in 5,827 genes from 61,117 articles 

A total of 61,117 articles made it into the final AVADA database, with a mean of 8.8 identified 

variant descriptions per article. From these articles, 203,608 distinct genetic variants in 5,827 

genes were automatically curated (Figure 1), comprising a variety of different variant types in a 

distribution strikingly similar to that of manually curated HGMD and ClinVar: for each of 6 

categories of variant (stoploss, nonframeshift, splicing, stopgain, frameshift, missense), the 

fraction of variants AVADA extracted are between the fraction of the respective category in 

HGMD and ClinVar ±1% (Table 2). The articles used to construct AVADA are from a variety of 

journals, which are similar to the journals targeted by HGMD to curate its variants (9 out of the 

top 10 journals being the same between AVADA and HGMD; Figure 3A,B).  

Each variant, defined by chromosome, position, reference and alternative allele, is annotated 

with: PubMed ID(s) of publications where this variant was extracted from; HUGO Gene 

Nomenclature Committee35 (HGNC) gene symbol, Ensembl ID36, and Entrez ID37 of the gene in 

which the variant is found, the inferred variant effect (e.g., “missense”), the RefSeq ID of the 

gene’s transcript to which the variant was mapped (e.g., NM_005101.3), and the exact variant 

description from the original article (e.g., “c.163C.T”). The latter allows clinicians to later 

rapidly locate mentions of this variant within the body of the article.  

AVADA is 72% precise 

To estimate the precision (the fraction of extracted variants that are correctly extracted), 100 

distinct random variants mapped to genomic coordinates by AVADA were manually examined. 

AVADA variants were manually counted as true extractions whenever the scientist reading the 

paper (using all lines of evidence in the paper such as Sanger sequencing reads, UCSC genome 

browser shots etc.) independently mapped the paper’s variant mention to the same genomic 

coordinates as AVADA. Of the 100 distinct random variants, 72% were extracted and mapped to 

the correct genomic position in GRCh37/hg19 coordinates without error by AVADA 
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(Supplementary Table S2). 

AVADA recovers nearly 60% of disease-causing HGMD variants directly from the 

primary literature 

We compared AVADA to HGMD and ClinVar versions with synchronized time stamps 

(Supplementary Methods). 85,888 AVADA variants coincided with variants marked as disease-

causing (“DM”) in HGMD, corresponding to 61% of all disease-causing variants in HGMD. 

From this set of 85,888 AVADA variants, we selected 100 random variants and manually 

verified that the genomic coordinates (chromosome, position, reference and alternative alleles) 

were correctly extracted and the variant was reported as disease-causing in 97% of them 

(Supplementary Table S3). Thus, we infer that AVADA contains 59% of all disease-causing 

variants identified by HGMD.  

We compared AVADA’s performance to the best previously published automatic variant 

curation tool, tmVar 2.027, which attempts to map variant mentions in all PubMed abstracts to 

dbSNP identifiers (rsIDs). tmVar extracted only 19,424 disease-causing HGMD variants, or 14% 

of HGMD (Supplementary Figure 1 and Figure 3C). 

Considering only single nucleotide variants (SNVs), the largest class of known pathogenic 

variant, AVADA contains 70% of all DM SNVs in HGMD, of which an estimated 97% were 

extracted correctly. Similarly, AVADA contains 55% of all likely pathogenic or pathogenic 

variants in ClinVar (clinical significance level 4 or 5) and 62% of pathogenic or likely 

pathogenic SNVs in ClinVar. tmVar 2.0 extracted only 13,664, or 31%, of pathogenic or likely 

pathogenic variants in ClinVar.  

Strikingly, AVADA contains 63,521 variants that are in HGMD (“DM” only) but not in ClinVar 

(clinical significance level 4 or 5). An analysis of a representative subset of 100 of the remaining 

115,612 variants that were extracted by AVADA, but not reported as disease-causing in either 

HGMD or ClinVar, revealed them to be mostly benign or incorrectly extracted variants 

(Supplementary Table S4). 

Diagnosis of patients with Mendelian diseases using AVADA 

We analyzed the accuracy of patient variant annotation with AVADA, tmVar, ClinVar and 

HGMD using a set of 245 patients from the Deciphering Developmental Disorders38 (DDD) 
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study, harboring 260 causative variants reported by the original DDD study. De-identified DDD 

data were obtained from EGA39 study number EGAS00001000775  (Supplementary Methods). 

The DDD study is a large-scale sequencing study in which children affected with developmental 

disorders were sequenced in search of a molecular diagnosis. Disease-causing variants reported 

in DDD were obtained from Supplementary Table 4 in reference 38. 

Sensitivity of variant annotation using AVADA, tmVar, HGMD and ClinVar 

The more complete a variant database is, the higher its sensitivity when annotating patient 

genomes and the higher the likelihood of finding a causative variant in the patient’s genome. We 

determined how many of the 260 causative DDD variants were found in AVADA, tmVar, 

HGMD and ClinVar. The more causative variants are found in a database, the more rapidly some 

patients can be diagnosed. For the DDD patient variant annotation comparison, we subset 

AVADA and tmVar 2.0 to reference only articles until 2014 (before the publication of the DDD 

study), HGMD to use only variants added until 2014, and took the latest ClinVar version from 

2014 (ClinVar version 20141202). 

Of 260 different causative variants reported by the DDD study, a total of 45 variants were found 

by AVADA in the scientific literature. For each of these variants, all articles from which the 

variant was extracted were manually inspected. The variant was counted as correct if at least one 

article was found in which the variant’s genomic coordinates (chromosome, position, reference 

and alternative allele) were correctly extracted, the variant was reported as causative and the 

article did not cite the DDD study (pre-publication). 38 of the 45 variants found by AVADA 

fulfilled these criteria (Supplementary Table S5). 

Only 20 variants reported to be causative by the DDD study were listed in ClinVar and ascribed 

a pathogenicity level of “pathogenic” or “likely pathogenic”. 43 variants were in HGMD, 

reported as “DM” (disease-causing). tmVar 2.0 contained 13 causative variants (Supplementary 

Table S6). AVADA and ClinVar together contained 41 causative variants. All of tmVar’s 

variants were either in AVADA or ClinVar. Thus, combining the free variant databases AVADA 

and ClinVar resulted in our annotating almost as many causative variants as are listed in HGMD. 

Combining all three databases yielded 51 variants (Figure 3D). 
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Discussion 

We present AVADA, an automated approach to constructing a highly penetrant variant database 

from full-text articles about human genetic diseases. AVADA automatically curated nearly a 

hundred thousand disease-causing variants from tens of thousands of downloaded and parsed 

full-text articles. All AVADA variants are stored in a Variant Call Format40 (VCF) file that 

includes the chromosome, position, reference and alternative alleles, variant strings as reported 

in the original article, and PubMed IDs of the original articles mentioning the variants. AVADA 

recovers nearly 60% of all disease-causing variants deposited in HGMD at a fraction of the cost 

of constructing a manually curated database41, over 4 times as many as the tmVar 2.0 database 

that relies on PubMed abstracts, and maps only to dbSNP rsIDs. From a cohort of 245 previously 

diagnosed patients from the Deciphering Developmental Disorders (DDD) project, AVADA 

pinpoints 38 DDD-reported disease-causing variants, fewer than HGMD (43) but almost twice as 

many as ClinVar (20) and almost three times as many as tmVar 2.0 (13), showing that this new 

resource will be useful in clinical practice. Combining the free variant databases AVADA and 

ClinVar recovers 41 diagnostic variants. This shows that AVADA is an important step into the 

direction of using machine learning approaches to improve the throughput of variant 

interpretation as proposed by ClinGen26. 

Multiple lessons were learned from AVADA. First, curating variants from full text articles 

scattered between dozens of publishers’ web portals is worth the extra effort. However, while 

gene to variant linking is often relatively simple in the context of an abstract, this task is much 

more challenging in the context of sprawling full texts that may well discuss many additional 

genes beyond the causal few. A two-pronged approach is therefore necessary to further improve 

AVADA’s precision. First, our ability to link variants to the correct transcripts and genes can be 

improved. Second, non-pathogenic mentioned variants need to be better distinguished from 

pathogenic mentioned variants. Implementing patterns for more exotic variant notations and 

parsing supplements of articles would improve sensitivity, but also decrease precision. 

AVADA curates variants without costly human input and can be re-run continually to discover 

newly reported variants without incurring significant additional cost. While the approach cannot 

currently replicate manual curation efforts, it is nevertheless well suited to support the work of 

manual curators in improving and extending existing variant databases. Blending the AVADA 
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automatic variant curation approach with manual verification should facilitate rapid variant 

classification42 and the cost-effective annotation of patient variants.  

Publishers can help further improve the automatic variant curation process by supplying database 

curation tools with simpler, stable programmatic access to full text and supplementary data of 

appropriate articles, a win-win step that would lead to both better variant databases, and increase 

the circulation of articles among their target audience. Requiring authors to abide by strict HGVS 

notation would also help. Moreover, the approach presented here can be extended to the 

automatic curation of genetic variants (in canonicalized representation) from other valuable 

modalities, such as somatic variants in cancer genes, animal models, cell lines, or non-model 

organisms with reference genomes and transcripts. The approach described could therefore 

support the rapid and cost-effective creation and upkeep of multiple different variant databases 

beyond human genetic diseases43 directly from the primary literature. 

By comprehensively annotating each variant with information from the original articles (such as 

the originally reported variant string), AVADA enables rapid re-discovery and verification of a 

large fraction of reported variants in the scientific literature. Previously, manual curation efforts 

such as HGMD24 have demonstrated the power of systematic curation of pathogenic variants 

from the primary literature. AVADA shows that automatic variant curation from the full text 

literature is feasible and useful with regard to accelerating the creation of genetic variant 

databases. Combining automatic curation approaches like AVADA with manual curation will 

enable the creation and upkeep of cheaper, better, faster updating variant databases from the 

primary literature enabling both rapid diagnosis42 and reanalysis12.  
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Figures 

Figure 1 

 

Figure 1. Construction of the automated variant database AVADA. Identification of 

relevant literature: Step 0: titles and abstracts of articles are downloaded from PubMed. Step  

1: a suitable subset of relevant literature is identified by a document classifier that classifies titles 

and abstracts deposited in PubMed as possibly relevant or irrelevant to genetic disease. Step 2: 
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full text PDFs of potentially relevant articles are downloaded wherever possible and converted to 

text. Step 3: the relevance of each paper to genetic disease gene knowledge extraction is 

reassessed using a full text document classifier. Variant mapping: Step 1: gene mentions are 

detected using a list of gene names and synonyms, and variant mentions are detected using 47 

manually built regular expressions (Figure 2A). Step 2: a super-set of possible gene-variant 

candidate mappings is constructed out of all mentioned variants and genes in a paper where the 

variant appears to “fit” the gene: e.g., if a variant description is “c.123A>G”, the variant fits all 

genes mentioned in the paper that have at least one transcript with an “A” at coding position 123 

(Figure 2B). Step 3: A machine learning classifier using a number of textual features (Figure 2C 

and Methods) describing the relationship between variant and gene mention in the article’s full 

text decides which of the previously constructed gene-variant candidate mappings are true, i.e., 

which variant actually refers to which gene (Figure 2D). AVADA extracts 203,608 distinct 

genetic variants in 5,827 genes from 61,117 articles.  
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Figure 2 

 

Figure 2. Automatic conversion of variant mentions to genomic coordinates from full-text 

literature. (A) AVADA uses 47 different regular expressions to detect variants in articles. 

Regular expressions are designed in forms of regular expression generators such as 

“{sep}c\.{pos}{space}?{plusMinus}{space}?{offset}[,]*?{origDna}{space}?{arrow}{space}?{mutDna}”.  

These regular expression generators contain named matching group generators, such as 

“{origDna}” (reference nucleotide, such as “A” or “T”) or “{pos}” (numeric position of the 
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mutated nucleotide relative to the start of the transcript). Named matching group generators 

describe parts of the HGVS description that contain information about the variant. Regular 

expression generators are expanded into regular expressions by replacing the matching group 

generators, such as “{pos}”, into a named matching group, such as “(?P<pos>[1-9][0-9]*)”. 

Expanding all named matching group generators into named matching groups gives a full regular 

expression. If a full regular expression matches any string in a given article, the matched string is 

assumed to be a variant description. (B) Given a detected variant description and a set of genes 

detected in the text of an article, AVADA first checks if the variant matches any of the gene’s 

transcripts. In the current example, the variant p.M34T matches transcripts of the genes GJB2 

and GJB6 because both have a methionine residue at position 34, but not the gene RPL14 (with 

an asparagine at position 34). The variant p.M34T therefore forms gene-variant candidate 

mappings (p.M34T, GJB2) and (p.M34T, GJB6), which are filtered in the next step.  (C) Given a 

gene-variant candidate mapping (variant=p.M34T and gene=GJB2 in this example, highlighted 

in green), AVADA lets a Gradient Boosting classifier decide if the variant refers to the candidate 

gene using a set of 125 numerical features that contain information about the textual relationship 

between the variant mention and the textually closest mentions of the candidate gene (GJB2), as 

well as textually closest mentions of alternative nearby mentioned genes (connexin 30 (encoded 

by GJB6) in the example, in red). The 125 features are based on the relative positions of the 

closest candidate gene mentions to the variant mention, closest alternative gene mentions to the 

variant mention, information about the genes’ importance in the article, and words and characters 

surrounding the gene and variant mentions (see Methods). (D) The Gradient Boosting classifier 

takes these 125 features as input and returns a probability between 0 and 100% indicating the 

classifier’s assessment of whether the variant actually refers to the given candidate gene. If the 

classifier returns a likelihood greater than 90%, the gene-variant candidate mapping is 

transformed to Variant Call Format (chromosome, position, reference and alternative alleles) and 

entered into the AVADA database. In the present example, AVADA correctly decides that 

p.M34T only maps to GJB2 and not connexin 30 (encoded by the gene GJB6). Example taken 

from PubMed ID 23808595. 
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Figure 3 
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Figure 3. Automatic variant curation results. (A) Top ten journals in terms of number of 

articles curated in AVADA. AVADA extracted variants from 3,159 articles in “Human 

Mutation”, 2,330 articles in “American Journal of Human Genetics”, 2,042 articles in “Human 

Molecular Genetics” etc. (B) Top ten journals in terms of number of articles curated in HGMD. 

Similarly to AVADA, the top three journals are “Human Mutation”, the “American Journal of 

Human Genetics”, and “Human Molecular Genetics”. The two lists share 9 of the top 10 journals 

even though HGMD is manually curated whereas AVADA is entirely based on automated 

curation. (C) Extracted variants in AVADA intersected with all disease-causing variants in 

HGMD and ClinVar. AVADA extracts 85,888 variants in literature-based HGMD (subset to 

disease-causing variants) and 24,475 variants in submission-based ClinVar (subset to pathogenic 

and likely pathogenic variants). (D) Comparison of the fraction of Deciphering Developmental 

Disorders (DDD) causative variants found in various combinations of databases. 260 different 

variants were reported to be causative of 245 patients’ diseases in the DDD project, a large-scale 

diagnostic sequencing research project. We subset AVADA, HGMD, ClinVar and the 

automatically curated variant database tmVar 2.0 to sources pre-dating the publication of the 

DDD patient set. Of the causative variants, tmVar 2.0, which automatically parses on PubMed 

abstracts, contained 5%, ClinVar contained 8% reported as (likely) pathogenic, full text-based 

AVADA contained 15% and HGMD contained 17% reported as disease-causing. All tmVar 2.0 

variants were either in AVADA or ClinVar. Combining the free (bars in red) AVADA and 

ClinVar databases recovers 16% of causative variants. Combining all databases facilitates rapid 

diagnosis for 20% of causative variants. 
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Tables 

Table 1 

HGVS(-like) 

variant 

descriptions  

(alternatives 

describing same 

genetic event) 

Explanation of HGVS variant 

description 

Disease caused by variant 

(cited literature uses all  

variant notations shown in 

left column) 

NM_175073.2 

593C>T 

(NP_778243.1 

p.A198V) 

DNA single nucleotide substitution 

reference C replaced by alternative T at 

position 593 in the transcript 

NM_175073.2 

Cerebellar ataxia with 

oculomotor apraxia type 144,45 

NM_006005.3 

460+1G→A  

(NM_006005.3 

IVS4+1G>A) 

Splicing variant 

reference G replaced by alternative A at 

the genomic position 1 basepairs 

downstream of the 3’ end of the exon of 

transcript NM_006005.3 that ends at 

position 460 

Wolfram syndrome46,47 

NP_000518.1 

p.Asp221Thrfs*44 

(NM_000527.4 

c.660delC;  

NP_000518.1 

p.Pro220Profsx45) 

Protein frameshift variant 

reference aspartic acid at residue number 

221 in transcript NP_000518.1 impacted 

by an indel resulting in an alternative 

threonine, with the rest of the protein 

being frameshifted, introducing a stop 

codon 44 amino acid residues 

downstream of residue number 221 

Familial 

hypercholesterolaemia48,49 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2018. ; https://doi.org/10.1101/461269doi: bioRxiv preprint 

https://doi.org/10.1101/461269
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

26 

Table 1. Examples of HGVS or common HGVS-like variant descriptions. Each row contains 

examples of a disease-causing variant description in HGVS or a common HGVS-like notation. 

Each of these variant descriptions describes a single genetic event causing a disease, usually by 

giving at least the position of the change in the gene’s transcript, an optional reference sequence 

and a novel alternative (mutated) sequence. All given variants can be described using multiple 

commonly used notations. Examples of alternatives to the notations are shown in the left hand 

column that denote the exact same genetic variants. Transcript identifiers for variant 

descriptions, which enable the mapping of variants to reference genome positions, are usually 

omitted by article authors, and must therefore be inferred by automated methods like AVADA. 

The right hand column lists the disease along with two articles using the variant descriptions 

given in the left hand column. The difficulty of parsing different variant notations that refer to 

the same genetic event warrants the development of automated approaches for variant curation 

from the literature. 
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Table 2 

Variant type AVADA HGMD ClinVar 

stoploss 0.30% 0.14% 0.10% 

nonframeshift 2% 3% 3% 

splicing 8% 7% 4% 

stopgain 12% 14% 9% 

frameshift 14% 22% 11% 

missense 65% 53% 74% 

Table 2. Variant type percentages in AVADA, HGMD and ClinVar. Despite being based 

purely on automatic Natural Language Processing methods, AVADA variant type fractions are 

always within the range between manually curated HGMD and ClinVar ± 1%. 
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Supplementary Methods 

Variant Extraction Directly from Primary Literature  

Download of literature 

Articles were identified as potentially relevant based upon title and abstract in PubMed as 

previously described9. Briefly, all 25,793,020 available titles and abstracts from PubMed were 

downloaded. Subsequently, we trained a scikit-learn28 LogisticRegression29 classifier featurized 

by TF-IDF-transformed words (a common transformation of word frequencies into a feature 

vector). The training set for the title/abstract document classifier was based on 51,637 positive 

titles and abstracts cited in OMIM “Allelic Variants” sections or HGMD PRO version 2016.02, 

and 66,424 random negative titles and abstracts from PubMed. PDFs of articles were 

downloaded directly from publishers using PubMunch50. 

Identification of relevant articles based on the full text of articles 

We created a full-text classifier that assigns a score between 0 and 1 to each downloaded article, 

providing an estimate of the article’s likelihood of containing human pathogenic variant data. To 

create a TF-IDF feature vector, for use by a machine learning classifier, out of an article’s full 

text, each article was transformed by means of a scikit-learn CountVectorizer with parameters 

max_df=0.95 and min_df=100 followed by a TfidfTransformer with default parameters. The 

training set was based on 267,267 random articles in PubMed that were downloaded as a 

negative training set, and 46,291 full text articles cited in OMIM “Allelic Variants” sections or 

HGMD PRO version 2016.02. Based on this training set, a scikit-learn LogisticRegression29 

classifier was trained.  

Identifying candidate gene mentions in full text 

Identification of candidate genes in full text was performed as previously described9. Briefly, a 

list of 188,975 gene and protein names was compiled from HGNC35 and UniProt51. Gene and 

protein names in this list were matched to word groups in the PDF text. Extractions were 

supplemented by PubTator52 gene extractions where available by matching gene names 

deposited in PubTator for a particular article to words occurring in that article.  

Identifying candidate variant descriptions in full text 

Candidate variant descriptions in Human Genome Variation Society (HGVS) or HGVS-like 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2018. ; https://doi.org/10.1101/461269doi: bioRxiv preprint 

https://doi.org/10.1101/461269
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

29 

notation53 were identified using 47 regular expressions (Supplementary Table S1 and 

Supplementary Table S7). We partition mentioned variants into 3 broad categories: cDNA 

variants (“c.” variants, such as “c.123T>C”), protein variants (“p.” variants such as “p.T34Y”) 

and splicing variants (“c.” variants with a position and an offset, such as “c.123-2A>G” or “IVS” 

variants, such as “IVS4-2A>G”). Variant descriptions generally consist of a subset of the 

following components: variant type (cDNA, protein, splicing), position of the variant relative to 

the given transcript, reference nucleotide or amino acid, mutated nucleotide or amino acid, and 

type of genetic event (deletion, insertion, …). Using regular expression matching groups, 

information about all of these components is saved for each identified variant. 

To create Figure 1, when counting the number of variant descriptions in articles, we removed all 

non-alphanumeric characters from variant descriptions because inconsistencies throughout the 

article with respect to spacing and parentheses used can otherwise lead to double-counting 

variant descriptions. 

Mapping variants to candidate genes 

A gene-variant candidate mapping of a variant onto a gene is a tuple (g, v) comprising a variant 

description v and a gene g such that there is at least one transcript t of g that has the variant’s 

given reference nucleotide/amino acid at the position given in the variant description v. If this is 

the case, the variant v is supported by the gene g, and (g, v) forms a candidate mapping.  

To identify all gene-variant candidate mappings in an article with a set of mentioned variant 

descriptions V and a set of mentioned genes G, AVADA examines each pairwise combination (g, 

v) of a variant v in V and a gene g in G to determine if they form a candidate mapping. Each gene 

is represented by its set of transcripts deposited in the RefSeq33 database. All known RefSeq 

transcripts of g are successively examined to establish if g supports v. Most variants are written 

in a form that includes the position of the variant inside the gene’s transcript, the reference 

sequence, and the mutated sequence (e.g., “c.123A>G”: the position is “123”, the reference 

sequence is “A” and the mutated sequence is “G”). However, some variants only contain a 

position and a mutated sequence, not the original reference sequence (e.g., “c.153_154insGG”: 

the reference sequence is not included, just the novel insertion of “GG” between positions 153 

and 154 inside the transcript). If the variant description v does not contain a reference sequence, 

all candidate genes form candidate gene-variant mappings with the variant. These gene-variant 
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candidate mappings are further filtered using a machine learning classifier in the next section. 

All gene-variant candidate mappings are converted to genomic coordinates (chromosome, 

position, reference allele and alternative allele). A conversion attempt is unsuccessful if the 

underlying nucleotide change cannot be identified given the variant description: e.g., this is the 

case for frameshift variants in “p.” notation such as “p.Val330fsX30”. Here, the precise 

underlying nucleotide change cannot be inferred from the variant description because the given 

frameshift may be caused by a very large number of possible nucleotide indel variants. 

In the case of a missense protein variant (e.g., NM_000025.2:p.Trp64Arg), the variant was 

translated to all possible single nucleotide variants that could cause such an amino acid change at 

the given position in the transcript. Since the Trp at position 64 in NM_000025.2 is encoded by 

the nucleotides TGG, both changing the T to a C (CGG) and the T to an A (AGG) result in an 

Arg codon. All further analysis was performed only on variants where conversion to genomic 

coordinates was successful. 

Distinguishing true from false candidate gene-variant mappings 

Given a set of candidate gene-variant mappings {(g1, v), (g2, v), (g3, v), (g4, v), …}, most of the 

genes gi associated with v through a candidate mapping are false: the variant v does not map to 

gene gi. We constructed a machine learning classifier that distinguishes true gene-variant 

candidate mappings from false gene-variant candidate mappings. This classifier uses a vector of 

real numbers, called features, to determine if a gene-variant candidate mapping is true or false. In 

order to describe these features, some terminology must first be introduced: 

 A “stopword” is a short word such as “by”, “of”, “there”, “if”, “or”, etc. The variant 

classifier uses a list of 122 stopwords (Supplementary Table S8).  

 An alphanumeric character is a character in the ranges a-z, A-Z, and 0-9.  

 A 2D position of a description in a PDF file consists of a page number and x and y 

coordinates of the mention on the page.  

 A word position of a description in a PDF file consists of a single integer that gives the 

index of a word in the PDF document that contains the description.  

 The Euclidean distance of two mentions associated with x and y coordinates (x1, y1) and 
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(x2, y2) is defined as √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 

 The word distance between two mentions m1 and m2 of some genes or variants in an 

article A is defined as |w2 -w1|. 

 A mention m1 occurs “above” a mention m2 in the document if the page number of the 2D 

position of mention m1 is smaller than the page number of the 2D position of m2. If the 

page numbers of the two mentions are the same, m1 occurs before m2 if the y coordinate 

of m1 in the PDF is smaller than the y coordinate of m2 in the PDF. 

Contextual information about a gene or variant mention in a PDF file is defined to consist of the 

following:  

 the number of stopwords among the 20 words preceding the mention in the article’s text 

 the number of stopwords among the 20 words following the mention in the article’s text 

 the number of alphanumeric characters among the 20 characters preceding the mention in 

the article’s text 

 the number of alphanumeric characters among the 20 characters following the mention in 

the article’s text. 

Each gene g is mentioned 1 to n times in an article. Let mention(g)1… mention(g)n be the 

mentions of the gene g in the article. Similarly, each variant v is mentioned 1 to m times in an 

article. Let mention(v)1… mention(v)m be the mentions of the variant v in the article. 

The machine learning classifier used by AVADA to distinguish true from false gene-variant 

candidate mappings is a  scikit-learn GradientBoostingClassifier34. To decide whether a given 

gene-variant candidate mapping is true or false, the GradientBoostingClassifier takes a list of 125 

numerical features containing information about the relationship between mentions of the gene 

and mentions of the variant in the original article. Based on these features, the classifier returns a 

number between 0 and 1 that gives the likelihood of the gene-variant mapping being true or not. 

The 125 features are constructed in 8 different feature groups describing the textual and 

geometric relationship between the candidate gene and candidate variant mention, and other 

genes mentioned close to the candidate variant mention. Further information is available in the 

accompanying code (see “variant_classifier_features.py”, functions “relationship_2d” and 
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“relationship_wordspace”). 

The variant classifier decides if mention(v)j maps to gene g for 1 ≤ j ≤ m based on these 125 

features. The value of these features is determined separately for each variant mention 

mention(v)j. If the classifier decides that any variant mention in mention(v)1…mention(v)m maps 

to g with classifier score greater or equal to 0.9, the variant v is considered to map to the gene g. 

To train the classifier, it was presented with a large number of annotated true and false gene-

variant candidate mappings, called a training set. The training set for the classifier was created as 

follows: gene-variant candidate mappings (g, v) discovered by AVADA in a given article A were 

converted to genomic coordinates in form of chromosome, position, reference and alternative 

allele. If the genomic coordinates of a gene-variant candidate mapping extracted from A were 

deposited in ClinVar version 20170228 and annotated as curated from A, the mapping (g, v) was 

supervised true and all mappings of other genes to the same variant v in the article were 

supervised false. Otherwise, the variant was discarded. Synonymous variants (e.g., 

“p.Trp88Trp”) were also discarded due to the fact that they were largely not disease-causing, or 

were false extractions. This strategy yielded a training set comprising 25,218 positive training 

examples and 91,742 negative training examples from 7,823 articles. The importance assigned to 

each of the 125 features by the GradientBoostingClassifier is listed in Supplementary Table S9. 

All extracted variants in AVADA were pre-processed using bcftools54 to normalize all variants 

(left-align indels and exclude variants where the RefSeq reference nucleotide did not match the 

GRCh37/hg19 nucleotide): 

bcftools norm --check-ref x -f human_g1k_v37.fasta -o avada.vcf 

avada_non_normalized.vcf 

Comparison of AVADA to HGMD, ClinVar, and tmVar 2.0 

The first version of AVADA was created on articles downloaded until June 2016. To ensure a 

fair comparison, we compare AVADA with HGMD PRO version 2016.02 and ClinVar version 

20160705. These were obtained from http://www.hgmd.cf.ac.uk/ac/index.php and 

ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/ , respectively. tmVar 2.0 variants were 

obtained from ftp://ftp.ncbi.nlm.nih.gov/pub/lu/PubTator/mutation2pubtator.gz . The tmVar file 

was subset to contain only tmVar-extracted variants in articles from 2016 and before (same set of 
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articles used as input to AVADA). tmVar-extracted rsIDs were converted to genome coordinates 

by joining with the official dbSNP database mapping rsIDs to genome coordinates at 

ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/All_20180423.v

cf.gz . 

Variants reported in AVADA, HGMD, ClinVar, and tmVar 2.0 were normalized (as above) 

using bcftools: 

bcftools norm --check-ref x -f human_g1k_v37.fasta -o 

<database_normalized>.vcf <database>.vcf 

Variants were counted to be in two variant databases if the full variant description (chromosome, 

position, reference and alternative alleles) in both databases matched exactly. HGMD contained 

165,051 distinct variants, of which 141,926 were marked as disease-causing (“DM”). ClinVar 

contained 142,396 distinct variants, of which 44,631 were marked as “pathogenic” or “likely 

pathogenic”. tmVar 2.0 contained 80,159 distinct variants. 

Variant types contained in AVADA 

To count the fractions of variant types contained in AVADA, each variant was assigned one of 

the types “missense” (single nucleotide variants changing an amino acid in the mapped gene), 

“nonframeshift” (insertion, deletion and indel variants adding a multiple of 3 nucleotides to a 

coding exon), “frameshift” (all other insertion, deletion and indel variants in coding exons), 

“splicing” (splice-site variants), “stopgain” (single nucleotide variants changing an amino acid 

codon in a coding exon to a stop codon) and “stoploss” (single nucleotide variants changing a 

stop codon to an amino acid codon) by automatically analyzing the effect of the variant on the 

mapped transcript. Variants of all types were summed, and fractions of variant types were 

calculated as the number of variants of a particular type over the total number of variants of all 

types in AVADA. 

Variant types contained in ClinVar and HGMD 

To generate fractions of variant types in HGMD and ClinVar, variants in these databases were 

annotated with semantic effect using ANNOVAR55. All HGMD or ClinVar variants that had a 

missense, stoploss, stopgain, splice-site, frameshift or nonframeshift effect in ENSEMBL36 and 

RefSeq33 coding exons, and had a variant frequency of less than 3% in ExAC56 v0.3 and the 

1000 Genomes Project57 phase 3 were counted, and percentages of each variant type were 
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calculated as the number of variants of a particular type over the total number of missense, 

stoploss, stopgain, splice-site, frameshift and nonframeshift variants in HGMD and ClinVar, 

respectively.  

Diagnosis of patients with Mendelian diseases using AVADA 

DDD patient Variant Call Format (VCF) files were obtained from the European Genome-

Phenome Archive39 (EGA) study number EGAS00001000775. We identified VCF files for 

affected patients by matching the phenotypes that each VCF file was annotated with the 

phenotypes that each patient identifier and causative variant were annotated with, and verifying 

that the causative variant was contained in the patient’s associated VCF file. If unique 

identification of a patient’s VCF file was not possible, we omitted the patient. Reported disease-

causing variants that were not found in a VCF file were omitted. Bcftools were used to normalize 

all variants in DDD VCF files using the following command: 

bcftools norm -f human_g1k_v37.fasta -o <normed DDD VCF file> 

<original DDD VCF file> 

Sensitivity of variant annotation using AVADA, tmVar, HGMD, and ClinVar 

ANNOVAR55 was used to annotate variants with a predicted effect on protein-coding genes from 

ENSEMBL36 and RefSeq33, and allele frequencies from the ExAC56 v0.3, the 1000 Genomes 

Project57 phase 3 and the UK10K58 ALSPAC and TWINS sub-cohorts. All variants with a 

frequency of at most 0.5% in all sub-populations of ExAC v0.3, 1000 Genomes Project and the 

UK10K ALSPAC and TWINS sub-cohorts, that affected a protein-coding gene and were 

missense, stopgain, stoploss, frameshift indel, nonframeshift indel or splice-site disrupting were 

retained.  

AVADA and tmVar 2.0 were subset to variants from articles until 2014 by associating each 

article with the publication date stored in PubMed and subsetting to articles until 2014. HGMD 

variants were subset to 2014 by removing all variants with a “new_date” greater than 2014. 

ClinVar version 20141202 was obtained from 

ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/archive_1.0/2014/ . 
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Supplementary Figures 

Supplementary Figure 1 

 

 

Supplementary Figure 1. Extracted variants in tmVar intersected with all disease-causing 

variants in HGMD and ClinVar. tmVar extracts 19,424 variants in HGMD (subset to disease-

causing variants), as compared to 85,888 variants for AVADA and 13,664 variants in ClinVar 

(subset to pathogenic and likely pathogenic variants), as compared to 24,475 for AVADA. 
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