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Abstract 1 
 2 
In India, the country with the world’s largest burden of tuberculosis (TB), most patients first seek 3 
care in the private healthcare sector, which is fragmented and unregulated. Ongoing initiatives 4 
are demonstrating effective approaches for engaging with this sector, and form a central part of 5 
India’s recent National Strategic Plan: here we aimed to address their potential impact on TB 6 
transmission in urban settings, when taken to scale. We developed a mathematical model of TB 7 
transmission dynamics, calibrated to urban populations in Mumbai and Patna, two major cities 8 
in India where pilot interventions are currently ongoing.  9 
 10 
We found that, when taken to sufficient scale to capture 75% of patient-provider interactions, the 11 
intervention could reduce incidence by upto 21.3% (95% Bayesian credible interval (CrI) 13.0 – 12 
32.5%) and 15.8% (95% CrI 7.8 – 28.2%) in Mumbai and Patna respectively, between 2018 and 13 
2025. There is a stronger impact on TB mortality, with a reduction of up to 38.1% (95% CrI 20.0 14 
– 55.1%) in the example of Mumbai. The incidence impact of this intervention alone may be 15 
limited by the amount of transmission that has already occurred by the time a patient first 16 
presents for care: model estimates suggest an initial patient delay of 4-5 months before first 17 
seeking care, followed by a diagnostic delay of 1-2 months before ultimately initiating TB 18 
treatment. Our results suggest that the transmission impact of such interventions could be 19 
maximised by additional measures to encourage early uptake of TB services.  20 
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India has the world’s largest burden of tuberculosis (TB) 1. Over the past two decades India’s 1 
Revised National Tuberculosis Control Programme (RNTCP) has made notable progress in 2 
reducing TB deaths, through the provision of basic TB services via the public sector 2–5. 3 
Nonetheless, major challenges remain: healthcare in India is dominated by the private sector, 4 
where the majority of patients first seek care6–9. Private healthcare providers often use 5 
inaccurate diagnostic tests for TB, or omit testing altogether, leading to diagnostic delays while 6 
patients cycle between different providers 7,10,11. Even once patients are diagnosed, a general 7 
lack of treatment adherence monitoring and support is unfavourable for long-term treatment 8 
outcomes12. Moreover, although tuberculosis was made a notifiable disease in 2012 13, there 9 
remain major challenges in encouraging private providers to comply with these obligations 14,15. 10 
For these reasons, in India’s recently-announced plan to eliminate TB, private sector 11 
engagement forms a key strategic priority 16.  12 
 13 
In a demonstration of private sector engagement in India, the ‘Public Private Support Agency’ 14 
(PPSA) model used a combination of patient subsidies and provider incentives to encourage 15 
higher standards of diagnosis and treatment amongst private providers 17. Originally 16 
implemented in two Indian cities, Mumbai and Patna (respectively by the NGOs PATH and 17 
World Health Partners), these measures have yielded rapid increase in TB notification from the 18 
private sector 3. However, their potential epidemiological impact remains unclear; measuring 19 
such impact empirically presents prohibitive challenges in the intervention coverage, population 20 
size and study duration that would be needed.  21 
 22 
Here we take an alternative approach, using a dynamical model of TB transmission, developed 23 
to capture the complexity of careseeking in urban settings in India. The model is calibrated to 24 
detailed patient careseeking surveys in Mumbai and Patna, as well as data on TB epidemiology 25 
in these settings. While Patna is typical of an urban setting in India, Mumbai is exceptional in its 26 
high burden of MDR-TB 18,19. We ask: What impact could such engagement have on TB 27 
transmission, in particular on TB incidence? What are the key drivers of this impact? 28 
 29 
In what follows we present an overview of the model framework, with further details in the 30 
supporting information. We describe the pathway surveys, and the approach for incorporating 31 
this evidence in the model framework. We then present results for the potential epidemiological 32 
impact of private sector engagement in Mumbai and in Patna, followed by an examination of the 33 
drivers of this impact: in particular, we investigate specific types of patient and provider 34 
behaviour that matter most for TB transmission. Finally we discuss implications for controlling 35 
TB transmission in India, and important questions arising for future work.  36 
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Methods 1 
 2 
Model overview 3 
 4 
We developed a deterministic, compartmental model, whose overall structure is illustrated 5 
schematically in Figure 1. The model divides the population into different states, reflecting their 6 
disease and careseeking states, with a set of coupled, differential equations capturing 7 
transmission dynamics, and the transitions between states (see appendix). We first give an 8 
overview of the essential dynamical processes captured by the model, before describing the 9 
evidence sources used to quantify these dynamics. 10 
 11 
We assumed that each active case of TB causes, on average, ! infections per year. We further 12 
assumed that, upon development of active disease, there is a ‘patient delay’ before first seeking 13 
care. In the model equations (see supporting information), this delay is governed by the per-14 
capita careseeking rate d. As described below, ! and d are calibrated for consistency with the 15 
TB epidemiology in urban slums. Once patients enter the careseeking pathway (denoted by the 16 
circle in Fig.1A), they visit a series of providers: the resulting ‘diagnostic delay’ is the interval 17 
from first careseeking to initiation of anti-TB treatment. This delay is governed by the timeliness 18 
with which these providers can offer an accurate TB diagnosis, and retain a patient for long 19 
enough to initiate appropriate treatment.  20 
 21 
Upon initiating treatment, patients exit the diagnostic pathway illustrated in Figure 1A, where the 22 
next hurdle is to complete high-quality (DOTS standard) treatment. Most patients in the private 23 
sector lack adherence support, and thus do not complete the 6-month, first-line regimen 12,20: we 24 
assume that those defaulting from treatment, although immediately lacking infectiousness and 25 
being relieved of symptoms, face an increased risk of relapse in the long term, compared to 26 
patients successfully completing the 6-month regimen, with a parameter conservatively sourced 27 
from clinical trials of shorter durations of rifampicin treatment.    28 
 29 
In this framework, a PPSA has two functions: (i) to subsidise high-quality diagnosis for patients 30 
in the private sector, increasing the probability of an accurate TB diagnosis, and thus reducing 31 
the overall diagnostic delay (depending on coverage, or the proportion of providers engaged), 32 
and (ii) providing adherence support to maximize treatment completion. In both cases, we 33 
assumed that private providers engaged by a PPSA are able to match the quality of TB care in 34 
the public sector, on these dimensions.  35 
 36 
For simplicity we ignored HIV/TB coinfection, which is estimated to account for only 5% and 1% 37 
of notified TB cases in Maharashtra and Bihar, respectively 3. However, we incorporated the 38 
acquisition and transmission of multi-drug-resistant (MDR) TB. In particular, we assumed that 39 
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each infectious case of MDR-TB, not undergoing appropriate second-line treatment, causes 1 
!"#$ infections per year, to be calibrated to the estimated burden of drug resistance (see 2 
below). We assumed that there is essentially no management of MDR-TB in the private sector, 3 
and populated parameters for second-line treatment outcomes in the public sector to match 4 
those reported by RNTCP 3. 5 
 6 
Epidemiological inputs 7 
 8 
WHO estimates for incidence and prevalence, although often used to inform transmission 9 
models 21–23, pose two important limitations for the present work. First, national incidence 10 
estimates for India are informed by expert opinion on the proportion of cases that are notified to 11 
RNTCP 24, which itself is subject to change 1. Second, WHO national estimates do not address 12 
subnational heterogeneity, and thus would not accurately reflect the epidemiological conditions 13 
in urban settings considered in our study.  14 
 15 
Instead, to relate the model as closely as possible to the primary data available, we used the 16 
Annual Risk of TB Infection (ARTI, a measure of the intensity of transmission in a given setting), 17 
and the prevalence of TB, as estimated by subnational prevalence surveys in India. 18 
Unfortunately, neither Mumbai nor Patna has yet had a prevalence or infection survey (to inform 19 
prevalence or ARTI estimates, respectively). Nonetheless, infection surveys in Chennai and 20 
Delhi 25 suggest that ARTI in urban settings is in the range of 2–3%. We adopted this range in 21 
modelling Mumbai and Patna populations as well. For prevalence, we borrowed from a recent 22 
prevalence survey in Chennai, which estimated urban prevalence at 388 cases per 100,000 23 
population 26. To accommodate the uncertainty in applying these estimates to settings outside 24 
Chennai, As both prevalence and ARTI estimates are being borrowed from other settings, we 25 
incorporated broad uncertainty in applying these estimates in the present study. For example, 26 
for prevalence estimates we adopted uncertainty intervals 25% wider than those published for 27 
Chennai (see table S2, supporting information). 28 
 29 
For the burden of drug resistance, we assumed that Patna is typical of the national average, 30 
with 3 - 5% of incident TB cases being MDR-TB. For Mumbai, we used program-reported data 31 
on routine surveillance for drug-resistant TB to populate a more extreme scenario for drug 32 
resistance, assuming that 8 – 16% of incident cases have MDR-TB. These inputs are 33 
summarized in table S2, supporting information.  34 
 35 
Patient pathways 36 
 37 
We adopted four different categories of provider: (i) those in the public sector (DOTS facilities); 38 
(ii) private chemists; (iii) private, ‘fully qualified’ (FQ) providers with qualifications in allopathic 39 
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medicine; (iv) and private, ‘less-than-fully-qualified’ (LTFQ) providers with other medical 1 
qualifications, or none at all. 2 
 3 
We used data from community-based patient pathway surveys, recently conducted in Mumbai 4 
(76 TB patients and 196 patient-provider interactions) and Patna (64 TB patients and 121 5 
patient-provider interactions), and described in detail elsewhere 11,27. In brief, individuals in the 6 
community, who had been on TB treatment within the preceding 6 months, were administered 7 
an in-depth interview, to identify the sequence and types of providers that each patient visited 8 
before their TB diagnosis. Although subject to the usual limitations of patient recall 28, this 9 
community-based survey has nonetheless cast unprecedented light on the careseeking patterns 10 
in these urban slum settings 11.  11 
 12 
A patient’s contact with a given provider may last several days, sometimes weeks: this process 13 
ends either when the provider eventually suspects and confirms TB, or when the patient drops 14 
out to visit an alternative provider. Here, we model this combination of behaviours using 15 
independent, competing exponential hazards, taking both to be specific to the type of provider 16 
involved (public, FQ, LTFQ or chemist). Figure 1B shows the overall framework: for Mumbai and 17 
Patna separately, we used the pathway survey data to estimate the hazard rates 18 
%#&'()*+&+, %#-*.*/0 in Fig.1B, as well as the probabilities of accurate diagnosis per provider visit. 19 
We also used this data to estimate the role of different provider types in the careseeking 20 
pathway, in particular: the proportions of patients visiting each type of provider on the first 21 
careseeking attempt, and the corresponding proportions on subsequent visits, conditional on the 22 
type of provider last seen. We used the Expectation-Maximisation algorithm as a systematic 23 
approach for estimating rates and uncertainty (see supporting information for further details).  24 
 25 
For parameters related to the treatment cascade (the proportion of TB diagnoses initiating and 26 
completing treatment), we draw from a recent systematic review for the public sector 29. In the 27 
absence of systematic evidence for private providers, we incorporate plausible uncertainty 28 
distributions for these parameters (Table S2, supporting information). 29 
 30 
Simulating impact 31 
 32 
In both Mumbai and Patna, evidence suggests a marked heterogeneity amongst providers, with 33 
certain specialist providers handling a substantially higher TB caseload than others. While this 34 
suggests important opportunities for efficiency, by 'targeting' such providers, in the present 35 
work, for simplicity we chose instead to measure PPSA 'coverage' from a patient perspective: 36 
that is, the proportion of patient-provider interactions that involve a PPSA-engaged provider. 37 
Thus, for example, we present a 75% 'coverage' in the understanding that – in practice – this 38 
could be brought about by recruiting fewer than 75% of providers, in a targeted way. 39 
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 1 
For a given PPSA coverage, we simulated cumulative TB incidence and mortality between 2018 2 
and 2025. We then estimated the TB cases and deaths averted, relative to a ‘no-PPSA’ 3 
baseline, with the standard of TB care in public and private sectors projected forward without 4 
change. We simulated two types of PPSA: an ‘accurate diagnostic’ scenario in which engaged 5 
providers have diagnostic accuracy equal to those of the public sector, and a ‘timely diagnostic’ 6 
scenario which, as well as accurate diagnosis, additionally encouraged private providers to 7 
conduct a diagnostic test as early as possible (whether for TB or not). Note that, in both cases, 8 
treatment outcomes were also assumed to be improved to the level of the public sector.  9 
 10 
Uncertainty 11 
 12 
We used a Bayesian melding procedure 30 to capture uncertainty in the epidemiological and 13 
pathway inputs described above, as well as in other input parameters in the model (see 14 
uncertainty ranges in tables S2, S3, supporting information). In brief, this procedure yields 15 
100,000 parameter sets that, in ensemble, capture simultaneously the uncertainty in the 16 
parameter inputs, and in the data. Projecting the epidemiological impact of a PPSA from each of 17 
these parameter sets, under given scenarios for PPSA coverage, we then calculated the central 18 
estimate and uncertainty in impact by calculating the 2.5th, 50th and 97.5th percentiles in the 19 
outcomes of interest (lives saved, percent cases averted). We refer to these uncertainty 20 
intervals as ‘credible intervals’ (CrI) to distinguish them from the ‘confidence intervals’ arising 21 
from frequentist statistical approaches. Further details are provided in the supporting 22 
information. 23 
 24 
The model includes several different parameters (including epidemiological inputs). To identify 25 
those parameters that are most important for model findings, we performed a multivariate 26 
sensitivity analysis on the output of the Bayesian analysis described above. In particular, we 27 
examined which model inputs accounted for the greatest amount of uncertainty in model 28 
outputs: that is, the inputs that are most influential in the precision of the model output. To do 29 
this we selected, as a model output, the percent cases averted by a PPSA intervention at 75% 30 
coverage under the ‘timely diagnostic’ scenario described above, in both cities. We computed 31 
the partial rank correlation coefficient (PRCC) between this output and each of the model 32 
parameters: in brief, the PRCC quantifies the correlation between a given model input and the 33 
model output, when variance in all other parameters has been accounted for. Those model 34 
inputs expressing the greatest PRCC are those to which the model is most sensitive.  35 
 36 
As well as this parameter uncertainty, we additionally tested the model sensitivity to two forms 37 
of structural uncertainty: (i) First, in the simulations described above we assumed that each TB 38 
case undergoes a constant infectiousness ! through time. In practice, over time ! may increase 39 
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(for example if bacillary load rises with symptom severity), or decrease (for example if TB 1 
patients exhaust their closest contacts as opportunities for infection), with implications for the 2 
transmission that a PPSA could impact 31. To capture these scenarios in a simple way, we 3 
assumed that infectivity during the patient delay in Figure 1A is k times that during the 4 
diagnostic delay. We tested sensitivity of model findings to k. (ii) Second, the PPSA we have 5 
modelled is a combination of interventions, each involving different indicators for the quality of 6 
TB care in the private sector. To examine the most important, we simulated a ‘partial’ PPSA that 7 
could implement improvements in all but one of the indicators for quality of care. We recorded 8 
the resulting drop in impact (percent cases averted), relative to a ‘full’ PPSA, and repeated this 9 
analysis for each of the indicators involved.  10 
 11 
Results 12 
 13 
Figure 2 shows the model fits for prevalence, ARTI and percent MDR-TB, in both cities. The 14 
sampled parameters show agreement with the estimates in ARTI and prevalence data, while 15 
also accommodating the range of uncertainty in these inputs. Estimated parameter values are 16 
shown in Tables S3, S4, supporting information. Mumbai and Patna show contrasting 17 
careseeking patterns, as illustrated by Figure S1 in the appendix (see also Table S3). For 18 
example, chemists play a stronger role in first careseeking in Patna than in Mumbai, while for 19 
formally qualified providers the converse is the case. These differences underline the potential 20 
heterogeneity in healthcare settings across India. 21 
 22 
Figure 3 illustrates the potential epidemiological impact of a PPSA in Mumbai, assuming an 23 
intervention that scales up over 5 years from 2018 to cover 75% of patient visits to a provider. 24 
Such an intervention is focused on improving diagnostic accuracy and treatment outcomes in 25 
the private sector, without addressing the promptness with which a provider offers a diagnosis. 26 
A PPSA of this scale would reduce cumulative TB incidence by 8.5% (95% CrI 4.2 – 15.6%) 27 
over the next ten years. There is a stronger impact on MDR-TB, with a reduction of 21.2% (95% 28 
CrI 13.0 – 32.5%) in cumulative incidence. Further, a PPSA of this scale could have a 29 
substantial effect on TB mortality, reducing TB deaths by 21.7% (95% CrI 10.6 – 35.0%).  30 
 31 
If providers are additionally encouraged to order a diagnostic test as early as possible (i.e. a 32 
‘timely diagnosis’ scenario to pre-empt patient dropout), PPSA impact increases substantially, to 33 
an incidence reduction of 21.4% (95% CrI 11.1 – 32.7%) and a mortality reduction of 38.1% 34 
(95% CrI 20.0 – 55.1%). Figure S2 (supporting information) shows similar, corresponding 35 
results for Patna. Figure S3 (supporting information) illustrates how these types of impact could 36 
vary with PPSA coverage. 37 
 38 
To examine factors that may be limiting the impact shown in Fig. 3, we examined the model 39 
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estimates for the patient and diagnostic delays illustrated in Fig.1. As illustrated in Fig.4, while 1 
the simulated diagnostic delay is consistent with the 1 month estimated in previous analysis 8,11, 2 
results suggest that the initial patient delay could be still longer, at 4.4 months and 5.2 months in 3 
Mumbai and Patna, respectively, although with broad uncertainty around these estimates. 4 
Figure S4 in the appendix shows the potential epidemiological impact of a PPSA that is 5 
enhanced by measures to shorten the patient delay; below we discuss possible examples of 6 
such measures.    7 
 8 
Figure 5 shows the results of parameter sensitivity analysis, in which we quantified the influence 9 
of each model input against ‘simulated impact’, the latter measured as the percent cases 10 
averted by a PPSA at 75% coverage in both Mumbai and Patna (corresponding to the green 11 
shaded region in Figure 3). Figure 5 illustrates the importance of epidemiological inputs, for this 12 
output. In both cities, the assumed prevalence and ARTI are the model inputs accounting for the 13 
greatest amount of output uncertainty. Where the true value of prevalence in either city lies 14 
towards the lower end of the assumed range, the percent cases averted approaches the upper 15 
end of the uncertainty illustrated in Figure 3, and vice versa for ARTI. In both settings the levels 16 
initial loss to followup in the public sector (i.e. those diagnosed who do not initiate treatment) is 17 
also a leading factor; remaining parameters, to which the model is less sensitive, depend on the 18 
local conditions in both of these settings.  19 
 20 
In addition to addressing parameter uncertainty we finally conducted sensitivity analysis to some 21 
underlying assumptions. First, as described above, we allowed for differential infectiousness in 22 
the two stages of delay shown in Figure 4. Figure 6A shows results for the percent cases 23 
averted, as a function of the longitudinal variation in infectiousness. As expected, scenarios with 24 
increasing infectivity over a patient’s clinical course (decreasing k in the figure) yield greater 25 
predicted impact of a PPSA. 26 
 27 
Second, we examined the sensitivity of projected impact to the assumption that all PPSA 28 
activities are performed effectively. We aimed to identify which activities accounted for most of 29 
the impact shown in Figure 3. Results, shown in Figs. 6 B – C, suggest that in Mumbai, the 30 
quality of diagnosis and treatment amongst LTFQ providers is key. In Patna, by contrast, the 31 
quality of care amongst FQ providers is most important. Echoing the contrasting pathways 32 
illustrated in Figure S1, these results highlight how intervention priorities in different cities may 33 
need to be tailored to the local conditions. 34 
 35 
Discussion 36 
 37 
Engaging with India’s vast, fragmented private healthcare sector is a key step in enhancing TB 38 
control in India. Our work adds to other modelling studies capturing the role of the private sector 39 
in TB care in India, including a multi-model comparison examining packages of interventions in 40 
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the context of the End TB goals 23, and the potential impact of implementing molecular 1 
diagnostics in the private sector 21. A strength of the current work is that it is informed by unique, 2 
detailed patient pathway data from Mumbai and Patna. This data enables us to analyse the 3 
relative importance of the different delays illustrated in Figure 1, to a greater extent than in 4 
previous work.   5 
 6 
Our findings illustrate that a PPSA taken to scale in urban settings, such as Mumbai and Patna, 7 
could have a meaningful impact on TB burden (Fig.3, Fig.S3). Improved diagnosis and 8 
treatment adherence could strongly reduce TB mortality. Moreover, the use of rapid molecular 9 
tests in the private sector could have strong implications for MDR-TB: by facilitating the early 10 
recognition of drug sensitivity status, such measures could turn a growing drug resistance 11 
epidemic into a diminishing one (Fig.3B, blue vs green curves). 12 
 13 
Nonetheless, in terms of overall TB burden, our results suggest that engaging the private sector 14 
alone will not be enough to meet the country’s aspirations for TB elimination. Rather, such 15 
measures lay the foundations for TB control by maximising the quality and coordination of basic 16 
TB services, across India’s vast and fragmented healthcare system 16. To explain limitations on 17 
PPSA transmission impact, our work highlights the complexity of the delay from symptoms to 18 
treatment initiation, showing how it arises from a combination of factors. For example, while the 19 
importance of diagnosis accuracy is well-recognised 8,11,32, pre-empting patient dropout, through 20 
offering a rapid diagnosis, can be as impactful for the diagnostic delay (Fig.3, Fig.6B – C). 21 
Second, our results suggest that the ‘patient delay’ in Fig.1A may play a larger role than 22 
previously recognized (Fig.4). 23 
 24 
We note that this latter result is not directly measured, but inferred through reconciling ARTI and 25 
prevalence in the model. Previous studies have approached patient and diagnostic delays 26 
through retrospective patient interviews in various settings in India: a recent meta-analysis of 27 
these studies 8 found a median patient delay of around 18 days. To our knowledge there is no 28 
other independent, direct evidence for the ‘true’ patient delay. Nonetheless, there are some 29 
notable comparisons in a recent TB prevalence survey in Gujarat state. Of the bacteriologically 30 
positive TB cases, only 28% had sought care for their symptoms, including 11% that were on 31 
TB treatment 33. Although cross-sectional, these survey findings appear consistent with the 32 
picture of substantial transmission occurring independently of the ‘diagnostic delay’. 33 
 34 
There are several possible reasons for these discrepancies between model and prevalence 35 
survey findings on the one hand, and patient interviews on the other. For example, in urban 36 
areas with poor air quality, prolonged cough is a common symptom: TB patients may tend to 37 
visit a provider when their symptoms become more advanced (e.g. fever), ultimately reporting 38 
only the duration of these more developed symptoms. Alternatively, the patient delay may truly 39 
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be as short as 18 days, but only amongst those patients who seek care: there may remain a 1 
patient population who never contact the healthcare system, for example due to the opportunity 2 
costs of doing so. These factors may differ by region in India, as well as by gender and 3 
urban/rural setting. As illustrated by Fig.S4, mitigating these factors could maximize the impact 4 
of a PPSA. 5 
 6 
Approaches towards mitigating these factors could involve active case-finding (ACF) 34. India’s 7 
recent National Strategic Plan underlines the potential importance of ACF in risk groups such as 8 
urban slums 16, while recent work in Viet Nam has also demonstrated the potential value of 9 
screening close contacts of diagnosed TB cases, together with longitudinal followup of these 10 
contacts 35. However, it is also possible for the patient delay to be impacted by measures to 11 
improve the demand for TB services; for example, social protection mechanisms 36 could have 12 
the secondary effects of encouraging TB symptomatics to come forward for care 37. Such effects 13 
are currently hypothetical, and present an important evidence gap for future studies to address. 14 
 15 
As with any modelling approach, our model has several limitations to note. First, it takes a 16 
simplified view of the host population, essentially averaging over variations by gender and age. 17 
In future, better data on careseeking and the quality of care with respect to these factors would 18 
support a more refined approach incorporating these factors. Second, our work concentrates on 19 
two major cities in India, informed by the available, community-based studies on careseeking 20 
pathways. Further work, deploying such surveys more broadly, should explore to what extent 21 
these findings may be generalized to other cities India; one potentially important factor is the 22 
greater HIV burden in states like Andhra Pradesh 3. Moreover, this work does not address 23 
potential impact in rural settings. Indeed, recent work has highlighted the phenomenon of TB 24 
prevalence being higher in rural areas than urban 38, suggesting even longer delays before 25 
initiation of appropriate TB treatment: there is therefore a pressing need for a better 26 
understanding of healthcare utilisation in these settings. Third, we have made several 27 
simplifying assumptions on provider behaviour, namely that ‘engaged’ providers would show the 28 
same standard of care as in the public sector. As noted above, it is promising that the PPSA 29 
pilots have shown a dramatic increase in the number of TB cases being notified 1,3: ongoing 30 
data collection during the pilots will cast light on the extent to which the quality of TB care has 31 
been improved. Lastly, these results are quite sensitive to underlying assumptions about 32 
prevalence and ARTI, as well as to transmission over the course of illness. If more transmission 33 
is occurring at later stages of illness, then private provider engagement could more effectively 34 
interrupt transmission and avert twice as many cases as our baseline uninformed assumption of 35 
uniform infectivity. Objective data on the ‘transmission curve’ would be useful to clarify the 36 
appropriate baseline for these and most TB models.  37 
 38 
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 12 

In summary, private sector engagement is a key foundation for managing TB in India. In 1 
addition to its direct benefit to TB patients, an engaged private sector will also enable the 2 
maximum deployment of future interventions against TB in India. While building such favourable 3 
conditions for TB control, there is an urgent need to identify where TB transmission is occurring: 4 
only by addressing this transmission will it truly be possible to accelerate declines in India’s vast 5 
TB epidemic. 6 
 7 
 8 
  9 
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Figure legends 
 

 
 
Figure 1. Schematic illustration of the transmission model. (A) The figure shows two 
important parameters in the model, the annual infections per active TB case (!) and the mean, 
per-capita rate of careseeking once a patient develops active TB (d), which are calibrated to 
yield the correct ARTI and prevalence (see Table S2). The ‘bubble’ in orange denotes the 
sequence of providers that a patient visits before receiving a TB diagnosis. Here, we distinguish 
the associated ‘diagnostic delay’ with the initial ‘patient delay’. This model also includes the 
acquisition and transmission of multi-drug-resistant (MDR) TB, not shown here for clarity. (B) 
Detail of the diagnostic process depicted in the ‘bubble’ in panel (A), showing the case of a 
formally qualified (FQ) provider (this structure applies also to other provider types). Here and 
elsewhere, ‘Dx’ denotes ‘diagnosis’. Solid lines represent hazard rates in the model, while 
dashed lines represent proportions. Note the ‘competing hazards’ of diagnosis vs patient 
dropout. Terms in boxes represent compartments in the model, while terms in italics show 
intermediate stages, associated with the quality of TB care (accuracy of diagnosis, and 
treatment initiation). 
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Figure 2. Illustration of the model fits to key epidemiological indicators (Prevalence, ARTI 
and proportion of TB cases being multi-drug resistant). Shown are the epidemic trajectories 
corresponding to each of the sample parameter sets (in grey); the simulated 95% credible 
intervals over time (blue dashed lines); and the calibration targets (points and vertical ranges, 
plotted in 2015).  
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Figure 3. Illustration of the TB dynamics under scale-up of a PPSA, in the example of 
Mumbai. These results capture the scenario of a PPSA being scaled up (over three years from 
2018) to cover 75% of patient-provider interactions. Lines show central estimates, and shaded 
regions show 95% credible intervals. 
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Figure 4. Components of the mean infectious period, i.e. the duration from the start of active 
disease to treatment initiation, death or self cure. Simulated in the absence of any PPSA 
intervention. The light grey region shows the simulated patient delay, while the dark grey region 
shows the delay in diagnosis (i.e. from first provider visit). Error bars in blue and red show the 
uncertainty in these estimates, respectively. The patient delay estimate is driven by prevalence 
and ARTI, while the diagnostic delay estimate is driven by the process illustrated in Fig.1B. A 
PPSA addressing only patient behaviour would impact only the dark grey regions. 
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Figure 5. Multivariate sensitivity analysis of model inputs (parameters and data). Bars 
show the partial rank correlation coefficient (PRCC) between each model input and a selected 
output: ‘simulated impact’, or the percent cases averted by a PPSA acting at 75% coverage, 
with accurate and early diagnosis. Figures show that in both Mumbai and Patna, the two model 
inputs to which simulated impact is most sensitive are the prevalence and ARTI. Prevalence has 
a negative partial rank correlation with impact: that is, lower values of prevalence are associated 
with higher levels of impact, and vice versa for ARTI. Note that the combined effect of 
uncertainty in all of these parameters corresponds to the full uncertainty range illustrated in 
Figure 3A, green shaded region. This range indicates the maximum extent to which model 
outputs could diverge from central estimates, subject to the assumed uncertainty ranges in 
model inputs.  
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Figure 6. Sensitivity analysis for key assumptions in the model.  (A) Effect of assumptions 
for how TB infectivity varies during the clinical course. Shown is the impact of a PPSA at 75% 
coverage in Mumbai (percent cases averted over ten years). The x-axis shows a range of 
scenarios for the infectivity during the patient delay, relative to that during the diagnostic delay. 
(B, C) Identifying key elements of private provider behaviour. The figures show the drop in 
overall impact that results, when a PPSA that fails to improve the provider behaviour shown 
(while addressing all remaining provider behaviours). For clarity, plots show only the four most 
important factors in each setting. Bar colours denote different provider types, as shown in the 
right-hand legen
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1. Model specification 
 
The model is governed by the following equations (see table S1 for definitions of state 
variables, and table S2 for parameter definitions and sources). First, for the states prior to a 
TB patient’s first visit to a provider, we have: 
 

1̇ = 4 − 167+
+

− 81

9+̇ = (1 − <)7+ >1 +6@9+ + A+
(B&) + A+

(C*)D
+

E − (F + 8)9+

G+̇ = <7+ >1 +6@9+ + A+
(B&) + A+

(C*)D
+

E + F9+ + H(B&)A+
(B&) + H(C*)A+

(C*) − (I + J + 8KL)G+

 

 
where the subscript s denotes the infecting strain (with values 0,1 denoting drug-susceptible 
and drug resistant TB, respectively). The parameter c is the rate of careseeking, its inverse 
representing the average patient delay before first presentation for care. 
 
Upon presenting for care, we assume that a proportion pr of patient visit a provider of type r 
(denoting the public sector; FQ providers; LTFQ providers; and chemists – see table S1). 
We have, for those awaiting diagnosis with provider type r and infected with strain s:  
 

Ṁ-+ = IN-G+ + ON-6PQ+
Q

− (R- + ℎ- + J + 8KL)M-+ 

 
As described in the main text, a patient-provider interaction may last days to weeks. This 
stage ends either when the provider finally offers a diagnosis (whether correctly for TB or 
otherwise), or when the patient leaves the provider, to seek care elsewhere. Here, we model 
these two endpoints through competing hazards of offering a diagnosis (R-), versus the 
patient leaving the provider (ℎ-). As described below, these rates are estimated from the 
patient pathway surveys conducted in Mumbai and Patna 1. 
 
We assume that a proportion T- of TB patients visiting provider type r successfully initiate TB 
treatment (the remainder constituting missed diagnosis as well as initial loss to followup, 
covered below). For those initiating first-line treatment, it is convenient to specify equations 
separately by drug-susceptible (s = 0) and drug-resistant (s = 1) status. Thus we have, for 
drug-susceptible TB: 
 
U̇-,V = R-T-M-,V − WX(YZ) + [- + \ + J + 8]U-,V 
 
where [- is the per-capita rate of default from first-line treatment with provider type r and \ 
represents the per-capita hazard of acquisition of multi-drug-resistance while on first-line TB 
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treatment, only applicable to drug-sensitive TB. We assume that those defaulting from 
treatment are bacteriologically negative, but have an elevated risk of relapse, in comparison 
with those who have successfully completed treatment. The relevant compartments are 
discussed below.  
 
For drug-resistant TB on first-line treatment, we have: 
 
U̇-,^ = R-T-(1 − _-)M-,^ + \U-,V − WX(YZ) + [- + J + 8KL]U-,^ 
 
where _- is the proportion of TB patients presenting to a provider of type r who undergo drug 
sensitivity testing at the point of TB diagnosis.  
 
For second-line treatment (only for DR-TB), we have: 
 
`̇-,^ = RT-_-M-,^ + X(YZ)a-U-,^ − WX(bZ) + 8]`-,^ 
 
where a- represents the proportion of DR-TB patients with provider type r who are switched 
to second-line treatment after failing first-line treatment.  
 
Next, the compartment B captures those patients who have dropped out of the care cascade 
and remain infectious, whether by failed diagnosis, loss to follow up, or failed treatment. We 
have, for B: 
 

Ṗ-+ = c(1 − R-T-)M-+ + ℎ-M-+ + @1 − Nd
(bZ)D X(bZ)`d-+e − (O + J + 8KL)P-+ 

 
Those who have recovered from disease include patients who have completed treatment; 
those who have defaulted from treatment; and those who have recovered spontaneously. 
We assume the latter two to have an elevated risk of relapse compared to the former, in the 
two years following recovery. Following this period, remaining recovered individuals stabilize 
in their relapse risk. Thus we have, for the ‘high’ and ‘low’ relapse risk compartments, 
respectively: 
 

ȦV
(B&) = f∑ [-U-,V + J(M-,V + P-,V)- h + JGV − (H(B&) + 8 + i)AV

(B&)  

ȦV
(C*) = ∑ X(YZ)U-,V- − (H(C*) + 8 + i)AV

(C*)  
 
Finally, for the forces-of-infection 7V, 7^ for DS- and DR-TB respectively, we have: 
 
7V = ![∑ (G-+ + kP-+)- + k∑ M-+- ], 
 
and likewise for 7^, but with !"#$ in place of !.  
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2. Patient pathways 
 
We adopted four different categories of provider: (i) those in the public sector (DOTS facilities); 
(ii) private chemists; (iii) private, ‘fully qualified’ (FQ) providers with qualifications in allopathic 
medicine; (iv) and private, ‘less-than-fully-qualified’ (LTFQ) providers with other medical 
qualifications, or none at all. 
 
We used data from community-based patient pathway surveys, recently conducted in Mumbai 
(76 TB patients and 196 patient-provider interactions) and Patna (64 TB patients and 121 
patient-provider interactions), and described in detail elsewhere 1. In brief, individuals in the 
community, who had been on TB treatment within the preceding 6 months, were administered 
an in-depth interview, to identify the sequence and types of providers that each patient visited 
before their TB diagnosis.  
 
A patient’s contact with a given provider may last several days, sometimes weeks: this process 
ends either when the provider eventually makes a diagnosis, or when the patient drops out to 
visit an alternative provider. Here, we model this combination of behaviours using independent, 
competing exponential hazards with rates %#&'()*+&+	noR	%#-*.*/0 ,specific to the type of 
provider involved (public, FQ, LTFQ or chemist). Figure 1B shows the overall framework: for 
Mumbai and Patna separately.  The rates are estimated from the data and their reciprocals 
give us the average time of diagnosis and the average time of dropout, respectively, for each 
type of provider. The probability of getting a diagnosis at a provider (whether a correct 

diagnosis or not) is equal to -pqrstuvqv
-pqrstuvqvw-pxuyuz{

		, and we estimate the accuracy of diagnosis of 

each type of provider from the data. We also model the role of different provider types in the 
careseeking pathway, in particular: the proportions of patients visiting each type of provider 
on the first careseeking attempt, and the corresponding proportions on subsequent visits, 
conditional on the type of provider last seen. 30 of the 196 patient-provider interactions 
in Mumbai, and 11 of the 121 patient-provider interactions in Patna, are such that the 
providers consulted are private, however, their qualifications, and hence their types 
(LTFQ/FQ), are missing. We let each missing provider type be represented by an unknown 
binary variable. Since the model parameters are specific to the provider type, the expression 
for the likelihood of the pathways data as a function of the model parameters also involves the 
missing binary variables. We use the iterative algorithm Expectation Maximization (EM) to 
obtain the maximum likelihood estimates of parameters. Each iteration involves two steps: E- 
Step: Finding the expectation of the log likelihood function, over the distribution of the missing 
binary variables conditioned on the observed data, under an initial estimate of the parameters, 
and M- Step: Maximizing the expectation of the log likelihood function to obtain a revised 
estimate of parameters. The revised estimate is then used as an initial estimate for the E-Step, 
and the process continues until the values of the maximum expectation of the log likelihood 
converge within a specified tolerance. The associated variance-covariance matrix of the 
estimates is approximated as the inverse of the observed Fisher Information Matrix, which is 
equal to the difference of the negative of the expectation of the Hessian matrix of the complete 
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data log likelihood function, conditioned on the incomplete data and the expectation of the 
square of gradient of complete data log-likelihood function, conditioned on the incomplete data; 
evaluated at the final iteration of the EM algorithm. 
 
For parameters related to the treatment cascade (the proportion of TB diagnoses initiating and 
completing treatment), we draw from a recent systematic review for the public sector 2. In the 
absence of systematic evidence for private providers, we incorporate plausible uncertainty 
distributions for these parameters (Table S2). 
 
3. Model calibration and propagating uncertainty 
 
We denote by | the vector of input parameters, including !, !"#$, I,		and other model inputs 
subject to uncertainty. For a given country, and a given parameter set	|, we initially 
simulated the model to equilibrium in the absence of the public sector (e.g. as in ref. 3) and 
MDR-TB, to capture the early history of the TB epidemic. Subsequently allowing population 
growth, we initiated the emergence and spread of DR-TB from 1980. We also captured the 
expansion of the public sector as a linear increase in NV during the years of RNTCP scale-
up, i.e. from 1997 to 2006 4. By combining these processes, we determined model 
projections for calibration targets (prevalence, ARTI and percent of incident TB cases being 
drug-resistant), assumed to apply in 2017.    
 
To compare these model projections with data D, we defined the posterior density }(|) as: 
 
}(|) ∝ 9(M||). Å(|),  
 
where 9 is the likelihood of the data D given | and P is the joint prior distribution for |. For P, 
we took independent uniform distributions over the ranges shown in table S2 (taking +/- 20% 
of the point values where no ranges are shown). The likelihood 9 is constructed as follows.  
 
We fitted a log-normal distribution to prevalence: in particular, we determined the mean and 
variance of this distribution in order for the 2.5th, 50th and 97.5th percentiles to match 
respectively the lower, mid and upper ranges of prevalence estimates. We write U(Ç-ÉÑ)(∙) for 
the probability density thus obtained. Likewise, we write U(Ü$Ká)(∙), U(."#$)(∙) for the inferred 
probability densities corresponding respectively to prevalence and the proportion of incident 
TB that is MDR in year t. Then we have, for the overall likelihood: 
 

9(M||) = U(Ç-ÉÑ)WÅ%à_(|)] ⋅ U(Ü$Ká)WäAãG(|)] ⋅ U(."#$)(NåMA(|)) 
 
where, for example, äAãG(|) is the simulated value of incidence in 2017 given parameters |, 
and likewise for the other functions of | in the expression above. In practice we compute the 
logarithm of }(|), thus taking the sum of the logarithms of each of the terms shown above.  
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With }(|) thus defined, we sampled the posterior density using a Markov Chain Monte Carlo 
approach. In brief, this approach implements a random walk through the space of parameter 
values |	to obtain an unbiased sample of the posterior density. We implemented the 
‘adaptive’ MCMC algorithm first introduced by Haario et al 5, which incorporates a dynamic 
covariance matrix to adjust endogenously the scale of ‘jumps’ in proposals for each of the 
parameter values. For the set of parameter values thus obtained, we took every tenth 
element to reduce autocorrelation, thus yielding an ‘ensemble’ of parameters |^, |ç, … This 
ensemble captures simultaneously the uncertainty in the parameter inputs, as well as in the 
calibration data. Then, to estimate uncertainty in given simulated outputs (e.g. in the 
reduction of incidence with a given coverage of intervention), we simulated this output è& for 
every |&. We finally estimated uncertainty in è& by determining its 2.5th, 50th and 97.5th 
percentiles. 
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Figure S1. Summary of the contrasting patient careseeking pathways in Mumbai and 
Patna. Circle areas are proportional to the importance of providers as first point of patient 
contact (for example, patients in Patna tend to seek care first amongst fully qualified 
providers). Arrows denote how patients switch providers on subsequent visits, with arrow 
widths proportional to frequency.  
  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2018. ; https://doi.org/10.1101/461426doi: bioRxiv preprint 

https://doi.org/10.1101/461426
http://creativecommons.org/licenses/by-nd/4.0/


 29 

 
 
Figure S2. Simulated impact of a PPSA in Patna. As for Figure 3 in the main text, but for 
Patna. See Figure 3 caption for further details.  
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Figure S3. Potential impact of a PPSA at different levels of coverage, in Mumbai (left-
hand column) and in Patna (right-hand column). Lines show central estimates, and shaded 
regions show 95% credible intervals. 
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Figure S4: Potential PPIA supplemented by demand generation (yellow curve). This 
provides the same scenarios shown in Fig.3 in the main text (a PPSA in Mumbai at 75% 
scale), but with ‘demand generation’ added for comparison. Uncertainty regions not shown, 
for clarity. Here, demand generation is assumed to bring about a 40% reduction in the 
patient delay. Such measures could involve lowering the barriers for access to care, or 
intensified case-finding. The impact shown here corresponds to a 37% (95% CrI 30.9 – 
43.8%) reduction in cumulative incidence.  
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Symbol Meaning 

s Indicator variable for strain: s = 0, 1 respectively for DS- and DR-TB 

ê Proportion uninfected 
ëí Having latent infection with strain s 
ìí Having active disease with strain s, but not yet presented for care 

r 

Indicator variable for provider type: r = 0 for the public sector; r = 1, 2, 3 
respectively for FQ providers, LTFQ providers and chemists who are not 
engaged with the PPSA; and r = 4, 5, 6 for corresponding private providers 
who are engaged with the PPSA  

îïí Awaiting diagnosis with provider type r 
ñïí Undergoing first-line TB treatment with provider type r 
óïí Undergoing second-line TB treatment with provider type r 

òïí 
Patients who have temporarily dropped out of care cascade, having visited 
provider type r 

ôí
(öõ) 

Recovered with ‘high’ relapse risk (treatment defaulters and spontaneous 
recoveries) 

ôí
(úù) Recovered with ‘low’ relapse risk (following successful treatment) 

 
Table S1. List of state variables used in the model. 
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Table S2. Input parameters and data used for the model.  
 
Parameter SYMBOL VALUE SOURCE/COMMENTS 
 
TB epidemiology     

Annual risk of TB infection (ARTI) 
in urban slums as of 2015  !  2 – 3% Gopi (2008)6 

TB prevalence in urban slums as of 
2015  P 388 per 100,000 (233 – 

543)  Baskaran (2015) 7 

Percent of incident TB cases that 
are MDR 

Mumbai pMDR 12% (8 – 16) Assumption 
Patna pMDR 4% (3 – 5) Assumption 

     
 
TB natural history 

    

Per-capita rate of reactivation of 
latent TB 

 r 0.001 yr-1 Horsburgh (2010) 8 

Proportion of infections undergoing 
rapid progression 

 "#$%&  0.1 Vynnycky (1997) 9 

Per-capita rate of relapse 
Low relapse risk '()  0.002 yr-1 (0.001 - 0.004) 

Menzies (2009) 10 
High relapse risk '*+  0.02 yr-1 (0.01 - 0.04) 

Per-capita mortality hazard 
Non-TB ,  0.0152 yr-1 World Bank estimates 

TB cases ,-.  0.089 yr-1 (0.33 - 1.21) Tiemersma (2011) 11 (averaged 
across smear-positive and 
smear-negative TB), 
corresponding to 50% mortality in 
an average of 3 years  

Per-capita rate of spontaneous 
cure 

 /  0.089 yr-1 (0.33 - 1.21) 

 
Anti-TB treatment (a, b) 

    

Rate of completion of first-line TB 
treatment 

 01  2 yr-1 Corresponds to a duration of 6 
months 
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Rate of completion of second-line 
TB treatment 

 02  0.5 yr-1 Corresponds to a duration of 2 
years 

Proportion of diagnosed TB cases 
initiating first-line TB treatment 

Public "3456+7+&  90% RNTCP (2015) 12 

Private "3856+7+&  0.6 (0.4 - 0.8) Assumption 

Proportion of diagnosed TB cases 
initiating second-line TB treatment 

Public "3496+7+&  90% RNTCP (2015) 12 

Private "3896+7+&  --  

Proportion completing first-line TB 
treatment 

Public "3456:);3  85% RNTCP (2015) 12 

Private "3856:);3  0.6 (0.4 - 0.8)% Uplekar (1998) 13 

Proportion completing second-line 
TB treatment 

Public "3496:);3  0.5 RNTCP (2015) 12 
Private "3896:);3  --  

Per-capita rate of acquiring multi-
drug resistance while on first-line 
treatment 

Public <34  0.01 yr-1 
Menzies (2009) 10 

Private <38  0.05 yr-1 

Proportion of MDR-TB cases 
receiving drug susceptibility testing 
at point of TB diagnosis 

Public sector =>?34   0.15 (0.05, 0.25) Using data from national 
GeneXpert demonstration14  

Private (any 
type) =>?38  0 Assumption (c) 

 
Notes: 

(a) As the pathway data does not have information about the quality of TB care, we have only partitioned these parameters by 
public vs private sector, assuming all 'private' parameters to apply to FQ, LTFQ providers alike. 

(b) See Table 2 for parameters relating to diagnosis, all inferred from the pathway surveys. 
(c) With the use of GeneXpert as a diagnostic tool, we assume this rises to 0.9 under a PPSA, with drug-resistant patients being 

referred to the public sector.
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Table S3. City-specific pathway parameters, inferred from the pathway data  
 
  Public FQ LTFQ Chemists 
 
Mumbai 
Proportion visited on initial 
consultation 

0.30 (0.15, 
0.47) 

0.13 (0.06, 
0.22) 

0.45 (0.33, 
0.57) 

0.12 (0.06, 
0.19) 

Proportion 
visiting after 
leaving 
provider of 
type: 

Public 0.47 (0.24, 
0.75) 

0.32 (0.14, 
0.53) 

0.21 (0.06, 
0.39) 0 (0, 0) 

FQ 0.46 (0.16, 
0.81) 

0.43 (0.19, 
0.72) 0.11 (0, 0.3) 0 (0, 0) 

LTFQ 0.46 (0.23, 
0.70) 

0.39 (0.20, 
0.58) 

0.15 (0.03, 
0.29) 0 (0, 0) 

Chemists 0.11 (0, 0.57) 0.44 (0.17, 
0.77) 

0.44 (0.17, 
0.77) 0 (0, 0) 

Probability of TB diagnosis 
per provider visit 

0.94 (0.91, 
0.98) 

0.93 (0.88, 
0.98) 

0.75 (0.56, 
0.94) 0 (0, 0) 

Hazard Rate, provider 
offering diagnosis 

0.087 
(0.069, 0.106) 

0.074 
(0.052, 0.096) 

0.035 
(0.019, 0.051) 0 (0, 0) 

Hazard rate, patient 
shopping 

0.04 (0.03, 
0.05) 

0.04 (0.03, 
0.06) 

0.05 (0.03, 
0.07) 

0.06 (0.05, 
0.08) 

 
Patna 
Proportion visited on initial 
consultation 0.063 (0, 0.29) 0.61 (0.46, 

0.77) 0.08 (0, 0.20) 0.25 (0.14, 
0.36) 

Proportion 
visiting after 
leaving 
provider of 
type: 

Public 1 (1, 1) 0 (0, 0) 0 (0, 0) 0 (0, 0) 

FQ 0.24 (0.08, 
0.42) 

0.76 (0.58, 
0.95) 0 (0, 0) 0 (0, 0) 

LTFQ 0.5 (0, 1) 0.3 (0, 0.9) 0.20 (0, 0.69) 0 (0, 0) 

Chemists 0.44 (0.22, 
0.72) 

0.44 (0.22, 
0.67) 0 (0, 0) 0.11 (0, 0.26) 

Probability of TB diagnosis 
per provider visit 1 (1, 1) 0.95 (0.89, 1) 0 (0, 0) 0 (0, 0) 

Hazard Rate, provider 
offering diagnosis 

0.18 (0.14, 
0.23) 

0.10 (0.07, 
0.14) 0.0 (0, 0.17) 0 (0, 0) 

Hazard rate, patient 
shopping 

0.008 (0.006, 
0.011) 

0.06 (0.04, 
0.08) 

0.14 (0.04, 
0.27) 

0.12 (0.09, 
0.16) 

 
 
 
 
 
Table S4. Model outputs for key transmission parameters 
 
  

Infectivity, mean infections per year per 
case 

Mean duration, patient 
delay (months)  

!"#  !$"%  1/d 
MUMBAI 16.1 (9.7 – 28.8) 12.8 (7.9 – 20.9) 4.39 (1.64 – 9.57) 
PATNA 15.1 (10.1 – 27.8) 8.9 (5.3 – 17.5) 5.24 (2.19 – 9.40) 
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