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Particular deep artificial neural networks (ANNs) are today’s most accurate

models of the primate brain’s ventral visual stream. Here we report that, us-

ing a targeted ANN-driven image synthesis method, new luminous power pat-

terns (i.e. images) can be applied to the primate retinae to predictably push

the spiking activity of targeted V4 neural sites beyond naturally occurring lev-

els. More importantly, this method, while not yet perfect, already achieves

unprecedented independent control of the activity state of entire populations

of V4 neural sites, even those with overlapping receptive fields. These results

show how the knowledge embedded in today’s ANN models might be used to

non-invasively set desired internal brain states at neuron-level resolution, and

suggest that more accurate ANN models would produce even more accurate

control.

Particular deep feed-forward artificial neural network models (ANNs) constitute today’s

most accurate “understanding” of the initial∼200ms of processing in the primate ventral visual

stream and the core object recognition behavior it supports (see (1) for the currently leading

models). In particular, visually-evoked internal neural representations of these specific ANNs
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are remarkably similar to the visually-evoked neural representations in mid-level (area V4) and

high-level (area IT) cortical stages of the ventral stream (2, 3), a finding that has been extended

to neural representations in visual area V1 (4), to patterns of behavioral performance in core

object recognition tasks (5, 6), and to both magnetoencephalography and fMRI measurements

from the human ventral visual stream (7, 8). Notably, these prior findings of model-to-brain

similarity were not curve fits to brain data – they were predictions evaluated using images not

previously seen by the ANN models, showing that these models have some generalization of

their ability to capture key functional properties of the ventral visual stream.

However, at least two important potential limitations of this claim have been raised. First,

because the visual processing that is executed by the models is not simple to describe, and the

models have only been evaluated in terms of internal functional similarity to the brain (above),

perhaps they are more like a copy of, rather than a useful “understanding” of, the ventral stream.

Second, because the images to assess similarity were sampled from the same distribution as that

used to set the model’s internal parameters (photograph and rendered object databases), it is un-

clear if these models would pass a stronger test of functional similarity – does that similarity

generalize to entirely novel images? That is, perhaps their reported apparent functional similar-

ity to the brain (3, 7, 9), substantially over-estimates their true functional similarity.

Here we conducted a set of non-human primate visual neurophysiology experiments to as-

sess the first potential limitation by asking if the detailed knowledge that the models contain is

useful for one potential application (neural activity control), and to assess the second potential

limitation by asking if the functional similarity of the model to the brain generalizes to entirely

novel images.

Specifically, we used one of the leading deep ANN ventral stream models (i.e. a specific

model with a fully fixed set of parameters) to synthesize new patterns of luminous power (“con-

troller images”) that, when applied to the retinae, were intended to control the neural firing
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activity of particular, experimenter-chosen neural sites in cortical visual area V4 of macaques

in two settings. i) Neural “Stretch”: synthesize images that “stretch” the maximal firing rate

of any single targeted neural site well beyond its naturally occurring maximal rate. ii) Neu-

ral Population State Control: synthesize images to independently control every neural site in a

small recorded population (here, populations of 5-40 neural sites). We here tested that popu-

lation control by aiming to use such model-designed retinal inputs to drive the V4 population

into an experimenter-chosen “one hot” state in which one neural site is pushed to be highly

active while all other nearby sites are simultaneously all “clamped” at their baseline activation

level. We reasoned that successful experimenter control would demonstrate that at least one

ANN model can be used to non-invasively control the brain – a practical test of useful, causal

“understanding” (10, 11).

We used chronic, implanted microelectrode arrays to record the responses of 107 neural

multi-unit and single-unit sites from visual area V4 in three awake, fixating rhesus macaques

(nM=52, nN=33, nS=22). We first determined the classical receptive field (cRF) of each site

with briefly presented small squares (for details see Methods). We then tested each site using a

set of 640 naturalistic images (always presented to cover the central 8◦ of the visual field that

overlapped with the estimated cRFs of all the recorded V4 sites), and using a set of 370 complex

curvature stimuli previously determined to be good drivers of V4 neurons (12) (location tuned

for the cRFs of the neural sites). Using each site’s visually evoked responses (see Methods)

to 90% of the naturalistic images (n=576), we created a mapping from a single “V4” layer of

a deep ANN model (13) (Conv-3 layer; that we had established in prior work) to the neural

responses. The predictive accuracy of this model-to-brain mapping has previously been used as

a measure of the functional fidelity of the brain model to the brain (1, 3). Indeed, using the V4

responses to the held-out 10% of the naturalistic images as tests, we replicated and extended

that prior work – we found that the neural predictor models correctly predicted 89% of the
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explainable (i.e. image driven) variance in the V4 neural responses (median over the 107 sites,

each site computed as the mean over two mapping/testing splits of the data; see Methods).

Besides generating a model-V4-to-brain-V4 similarity score (89%, above), this mapping

procedure produces a potentially powerful tool – an image-computable predictor model of the

visually-evoked firing rate of each of the V4 neural sites. If truly accurate, this predictor model

is not simply a data fitting device and not just a similarity scoring method – instead it must

implicitly capture a great deal of visual “knowledge” that may be difficult to express in human

language, but is hypothesized (by the model) to be used by the brain to achieve successful

visual behavior. To extract and deploy that knowledge, we used a model-driven image synthesis

algorithm (see Figure-1 and Methods) to generate controller images that were customized for

each neural site (i.e. according to its predictor model) so that each image should predictably

and reproducibly control the firing rates of V4 neurons in a particular, experimenter-chosen way.

That is, we aimed to test the hypothesis that experimenter-delivered application of a particular

pattern of luminous power on the retinae will reliably and reproducibly cause V4 neurons to

move to a particular, experimenter-specified activity state (and that removal of that pattern of

luminous power will return those V4 neurons to their background firing rates).

While there are an extremely large number of possible neural activity states that an exper-

imenter might ask a controller method to try to achieve, we restricted our experiments to the

V4 spiking activity 70-170 ms after retinal power input (the time frame where the ANN models

are presumed to be most accurate), and we have thus far tested two control settings: Stretch

control and One-hot population control (described below). To test and quantify the goodness of

control, we applied patterns of luminous power specified by the synthesized controller images

to the retinae of the animal subjects while we recorded the responses of the same V4 neural

sites (see Methods).

Each experimental manipulation of the pattern of luminous power on the retinea are col-
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loquially referred to as “presentation of an image”, but we state the precise manipulation here

of applied power that is under experimenter control and fully randomized with other applied

luminous power patterns (other images) to emphasize that this is logically identical to more

direct energy application (e.g. optogenetic experiments) in that the goodness of experimental

control is inferred from the correlation between power manipulation and the neural response

in exactly the same way in both cases (see (11) for review). The only difference of the two

approaches is the assumed mechanisms that intervene between the experimentally-controlled

power and the controlled dependent variable (here V4 spiking rate) – steps that the ANN model

aims to approximate with stacked synaptic sums, threshold non-linearities, and normalization

circuits. In both the control case presented here and the optogenetics control case, those inter-

vening steps are not fully known, but approximated by a model of some type. That is, neither

experiment is “only correlational” because causality is inferred from experimenter-delivered,

experimenter-randomized application of power to the system.

Because each experiment was performed over separate days of recording (one day to build

all the predictor models, one day to test control), only neural sites that maintained both high

SNR and consistent rank order of responses to a standard set of 25 naturalistic images across

the two experimental days were considered further (nM=38, nN=19, and nS=19 for Stretch

experiments; nM=38, and nS=19 for One-hot-population experiments; see Methods).

“Stretch” Control: Attempt to maximize the activity of individual V4 neural sites We

first defined each V4 site’s “naturally-observed maximal firing rate” as that which was found

by testing its response to the best of the 640 naturalistic test images (cross-validated over re-

peated presentations, see Methods). We then generated synthetic controller images for which

the synthesis algorithm was instructed to drive one of the neural site’s firing rate as high as

possible beyond that rate, regardless of the other V4 neural sites. For our first Stretch Control
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experiment, we restricted the synthesis algorithm to only operate on parts of the image that

were within the classical receptive field (cRF) of each neural site. For each target neural site

(nM=21, nN=19, and nS=19), we ran the synthesis algorithm from five different random image

initializations. For 79% of neural sites, the synthesis algorithm successfully found at least one

image that it predicted to be at least 10% above the site’s naturally observed maximal firing rate

(see Methods). However, in the interest of presenting an unbiased estimate of the stretch con-

trol goodness for randomly sampled V4 neural sites, we included all sites in our analyses, even

those (∼20%) that the control algorithm predicted that it could not ”stretch.” Visual inspection

suggests that the five stretch controller images generated by the algorithm for each neural site

are perceptually more similar to each other compared to those generated for different neural site

(see Figures 2 and S1), but we did not psychophysically quantify that similarity.

An example of the results of applying the Stretch Control images to the retinae of one

monkey to target one of its V4 sites is shown in Figure 2-A), along with the ANN-model-

predicted responses of this site for all tested images. A closer visual inspection of this neural

site’s “best” natural and complex curvature images within the site’s cRF (Fig. 2 top) suggests

that it might be especially sensitive to the presence of an angled convex curvature in the middle

and a set of concentric circles at the bottom left side. This is consistent with extensive systematic

work in V4 using such stimuli (12, 14), and it suggests that we had successfully located the

cRF and tuned our stimulus presentation to maximize firing rate by the standards of such prior

work. Interestingly however, we found that all five synthetic stretch control images (red) drove

the neural responses above the response to each and every tested naturalistic image (blue) and

above the response to each and every complex curvature stimulus presented within the cRF

(purple), (Fig. 2-A).

To quantify the goodness of this stretch control, we measured the neural response to the best

of the five synthetic images (again, cross-validated over repeated presentations, see Methods)
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and compared it with the naturally-observed maximal firing rate (defined above). We found that

the stretch controller images successfully drove 68% of the V4 neural sites (40 out of 59) sta-

tistically beyond its maximal naturally-observed firing rate (unpaired-samples t-test at the level

of p < 0.01 between distribution of highest firing rates for naturalistic and synthetic images;

distribution generated from 50 random cross-validation samples, see Methods). Measured as

an amplitude, we found that the stretch controller images typically produced a firing rate that

was 39% higher than the maximal naturalistic firing rate (median over all tested sites, Figure-2

panel B and C).

Because our fixed set of naturalistic images was not optimized to maximally drive each V4

neural site, we considered the possibility that our stretch controller was simply rediscovering

image pixel arrangements that are already known from prior systematic work to be good drivers

of V4 neurons (12,14). To test this hypothesis, we tested 19 of the V4 sites (nM = 11, nS = 8)

by presenting – inside the cRF of each neural site – each of 370 complex curve shapes (14) – a

stimulus set that has been previously shown to contain image features that are good at driving

V4 neurons when placed within the cRF. Because we were also concerned that the fixed set

of naturalistic images did not maximize the local image contrast within each V4 neuron’s cRF,

we presented the complex curved shapes at a contrast that was matched to the contrast of the

synthetic stretch controller images (see supplementary Figure S4). Interestingly, we found that

for each tested neural site, the synthetic controller images generated higher firing rates than

the most-effective complex curve shape (Figure 2-D). Specifically, when we used the maximal

response over all the complex curve shapes as the reference (again, cross-validated over repeated

presentations), we found that the median stretch amplitude was even larger (187%) than when

the maximal naturalistic image was used as the reference (73% for the same 19 sites). In sum,

the ANN-driven stretch controller had discovered pixel arrangements that were better drivers of

V4 neural sites than prior systematic attempts to do so.
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“One-Hot-Population” Control: Attempt to only activate one of many V4 neural sites

Similar to prior single unit visual neurophysiology studies (15–17), the stretch control experi-

ment attempted to optimize the response of each V4 neural site one at a time without regard to

the rest of the neural population. But the ANN model potentially enables much richer forms

of population control in which each neural site might be independently controlled. As a first

test of this, we asked the synthesis algorithm to try to generate controller images with the goal

of driving the response of only one “target” neural site high while simultaneously keeping the

responses of all other recorded neural sites low (aka a “one-hot” population activity state; see

Methods).

We attempted this one-hot-population control on neural populations in which all sites were

simultaneously recorded (One-hot-population Experiment 1; n=38 in monkey-M; Experiment

2; n=19 in monkey-S). Specifically, we randomly chose a subset of neural sites as “target” sites

(14 in monkey-M and 19 in monkey-S) and we asked the synthesis algorithm to generate five

one-hot-population controller images for each of these sites (i.e. 33 tests in which each test is an

attempt to maximize the activity of one site while suppressing the activity of all other measured

sites from the same monkey). For these control tests, we allowed the controller algorithm to

optimize pixels over the entire 8◦ diameter image (that included the cRFs of all the recorded

neural sites, see Fig. 3), and we then applied the one-hot-population controller images to the

monkey retinea to assess the goodness of control. The synthesis procedure predicted a softmax

score of at least 0.5 for 77% of population experiments (as a reference, the maximum softmax

score is 1 and is obtained when only the target neural site is active and all off-target neural sites

are completely inactive; for an example near 0.3 see Fig. 3).

While the one-hot-population controller images did not achieve perfect one-hot-population

control, we found that the controller images were typically able to achieve enhancements in the

activity of the target site without generating much increase in off-target sites (relative to natu-
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ralistic images; see examples in Figure 3-A). To quantify the goodness of one-hot-population

control in each of the 33 tests, we computed a one-hot-population score on the responses of the

activity profile of each population (softmax score, see Methods), and we referenced that score

to the one-hot-population control score that could be achieved using only the naturalistic im-

ages (i.e without the benefit of the ANN model and synthesis algorithm). We took the ratio of

those two scores as the measure of improved one-hot population control, and we found that the

controller typically achieved an improvement of 57% (median over all 33 one-hot-population

control tests; see Fig. 3-B and C) and we found that that improved control was statistically

significant for 76% of the one-hot population control tests (25 out of 33 tests; unpaired-samples

t-test at the level of p < 0.01).

We considered the possibility that the improved population control was resulting from the

non-overlapping cRFs that would allow neural sites to be independently controlled simply by

restricting image contrast energy to each site’s cRF. To test this possibility, we analyzed a sub-

sample of the measured neural population in which all sites had strongly overlapping cRFs (see

Fig. 3-D). We considered a neural population of size 10 in monkey-M and of size 8 in monkey-

S for this experiment with largely overlapping cRFs (see Fig. 3-D). In total we performed

the experiment on 12 target neural sites in two monkeys (4 in monkey-M and 8 in monkey-

S) and found that the amplitude of improved control was still 40%. Thus, a large portion of

the improved control is the result of specific spatial arrangements of luminous power within

the retinal input region shared by multiple V4 neural sites that the ANN-model has implicitly

captured and predicted and the synthesis algorithm has successfully recovered (Fig. 4).

As another test of one-hot-population control, we conducted an additional set of experiments

in which we restricted the one-hot control synthesis algorithm to operate only on image pixels

within the shared cRF of all neural sites in a sub-population with overlapping cRFs (Fig. 3-E).

We compared this within-cRF synthetic one-hot population control with the within-cRF one-hot
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population control that could be achieved with the complex curved shapes (because the prior

experiments with these stimuli were also designed to manipulate V4 responses only using pixels

inside the cRF). We found that, for the same set of neural sites, the synthetic controller images

produced a very large one-hot population control gain (median 112%, Fig. 3-E) and the control

score was significantly higher than best curvature stimulus for 86% of the neural sites (12 out

of 14).

Does the functional fidelity of the ANN brain model generalize to novel images? Besides

testing non-invasive causal neural control, these experiments also aimed to ask if ANN models

would pass a stronger test of functional similarity to the brain than prior work had shown (2,3).

Specifically, does that model-to-brain similarity generalize to entirely novel images? Because

the controller images were synthesized de novo from random pixel arrangement and they were

optimized to drive the firing rates of V4 neural sites both upwards (targets) and downwards (one-

hot-population off-targets), we considered them to be a highly novel set of neural-modulating

images that is far removed from the object naturalistic images. Indeed, visual inspection sug-

gests the novelty of these images (Fig. 5). We thus used the V4 neural responses to all the

tested synthetic images to ask if the ANN model “neural” responses matched the brain’s re-

sponses, using the same similarity measure as prior work (2, 3), but now with zero parameters

to fit. That is, a good model-to-brain similarity score required that the ANN predictor model for

each V4 neural site accurately predict the response of that neural site for all of many synthetic

images that are each very different than those that we used to train the ANN (photographs) and

also very different from the images used to map ANN “V4” sites to individual V4 neural sites

(naturalistic images).

Consistent with the control results (above), we found that the ANN model accounted for

54% of the explainable variance for the set of synthetic images (median over 76 neural sites in
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three monkeys; Fig. S3). While this model-to-brain similarity score is lower than that obtained

for naturalistic images responses (89%), it is still a substantial portion of the variance consider-

ing the fact that all parameters were fixed to make these “out-of-domain” image predictions. We

believe this is the strongest test of generalization of today’s ANN models of the ventral stream

thus far, and it again shows that the model’s internal neural representation is both remarkably

similar to the brain’s intermediate ventral stream representation (V4), but also that it is still not

a perfect model of the representation.

How do we interpret these results? In sum, we here demonstrate that, using a deep ANN-

driven controller method, we can push the firing rates of most V4 neural sites beyond naturally

occurring levels and that V4 neural sites with overlapping receptive fields can be partly – but

not yet perfectly – independently controlled. In both cases, we show that the goodness of this

control is unprecedented in that it is superior to that which can be obtained without the ANN.

Finally, we find that – with no parameter tuning at all – the ANN model generalizes quite well

to predict V4 responses to synthetic images – images which are strikingly different than the

real-world photographs used to tune the ANN synaptic connectivity and map the ANN’s “V4”

to each V4 neural site. We believe that these results are the strongest test thus far of today’s

deep ANN models of the ventral stream.

Beginning with the work of Hubel and Wiesel (18, 19), decades of visual neuroscience has

closely equated an understanding of how the brain represents the external visual world with an

understanding of what stimuli cause each neuron to respond the most. Indeed, textbooks and

important recent results tell us that V1 neurons are tuned to oriented bars (19), V2 neurons

are tuned to correlated combinations of V1 neurons found in natural images (20), V4 neu-

rons are tuned to complex curvature shapes in both 2D and 3D (16, 21) and tuned to boundary

information (12, 14), and IT neurons respond to complex object-like patterns (17) including
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faces (22, 23) and bodies as special cases (24).

While these efforts have been essential to building both a solid foundation and intuitions

about the role of neurons in encoding visual information, our results here show how they can be

further refined by current and future ANN models of the ventral stream. For instance here we

found that synthesis of only few images leads to higher neural response levels that was possible

by searching in a relatively large space of natural images (n=640) and complex curved stimuli

(n=370) derived from those prior intuitions. This shows that even today’s ANN models – which

are clearly not yet perfect (1,6) – already give us new ability to find manifolds of more optimal

stimuli for each neural site at a much finer degree of granularity and to discover such stimuli

unconstrained by human intuition and difficult to fully describe by human spoken language (see

examples in Fig. S1). This is likely to be especially important in mid and later stages of the

visual hierarchy (e.g. in V4 and inferior temporal cortex) where the response complexity and

larger receptive fields of neurons makes manual search intractable.

In light of these results, what can we now say about the two important critiques of today’s

ANN models raised at the outset of this study (understanding and generality)? In our view, the

results strongly mitigate both of those critiques, but they do not eliminate them.

On understanding: the ability to use knowledge to gain improved control over things of

interest in the world (as we have demonstrated here) is an important test of understanding.

However we acknowledge that this is not the only possible view, and many other notions of

“understanding” remain to be explored to see if and how these models add value.

On generality: because we found that even today’s ANN models show good generalization

to entirely novel images, we believe these results close the door on critiques that argue that

current ANN models are extremely narrow in the scope of images they can accurately cover.

However, we note that while 54% of the explainable variance in the generalization test was

successfully predicted, this is lower than the 89% explainable variance that is found for images
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that are “closer” to (but not identical to) the mapping images. This not only confirms that these

brain models are not yet perfect, but also suggests that a single metric of model similarity to

each brain area is insufficient to characterize and distinguish among alternative models (e.g. (1)).

Instead, multiple similarity tests at different generalization “distances” could be useful, as we

can imagine future models that show less decline in successfully predicted variance as one

moves from images “near” the training and mapping distributions (typically photographs and

naturalistic images) to “far” (e.g. synthetic images like those use here, and others).

From an applications standpoint, the results presented here show how today’s ANN models

of the ventral stream can already be used to achieve improved non-invasive, population control

(e.g. Fig 4). However, the control results are clearly not yet perfect. For example, in the

one-hot population control setting we were not able to fully suppress each and every one of

the responses of the “off-target” neural sites while keeping the target neural site active (see

examples in Figures-3, 4). Post-hoc analysis showed that we could partially anticipate which

off-target sites would be most difficult to suppress – they were typically (and not surprisingly)

the sites that had high patterns of response similarity with the target site (r = 0.49, p < 10−4;

correlation between response similarity with the target neural site over naturalistic images and

the off-target activity level in the full image one-hot population experiments; n=37 off-target

sites). Such results raise very interesting scientific and applied questions of if and when perfect

independent control is possible at neuron-level resolution. Are our current limitations on control

due to anatomical connectivity that restricts the potential population control, the non-perfect

accuracy of the current ANN models of the ventral stream, non-perfect mapping of the model

neurons to the individual neural site in the brain, inadequacy of the controller image synthesis

algorithm, or some combination of all of these and other factors?

Consider the synthesis algorithm: Intuitively, each particular neural site might be sensitive

to many image features, but maybe only to a few that the other neural sites are not sensitive to.
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This intuition is consistent with the observation that, using the current ANN model, it was more

difficult for our synthesis algorithm to find good controller images in the One-hot-population

setting than in the Stretch setting (the one-hot-population optimization typically took more than

twice as many steps to find a synthetic image that is predicted to drive the target neural site

response to the same level as in the Stretch setting), and visual inspection of the images suggests

that the one-hot-population images have fewer identifiable “features” (Figure 5). As the size of

the to-be-controlled neural population is increased, it would likely become increasingly difficult

to achieve fully independent control, but this is an open experimental question.

Consider the current ANN models: Our data suggest that future improved ANN models are

likely to enable even better control. For example, better ANN V4 population predictor models

generally produced better one-hot population control of that V4 population (Fig. S5). One

thing is clear already – improved ANN models of the ventral visual stream have led to control

of high-level neural population that was previously out of reach. With continuing improvement

of the fidelity of ANN models of the ventral stream (1, 25, 26), the results presented here have

only scratched the surface on what is possible with such implemented characterizations of the

brain’s neural networks.
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Figure 1: Overview of the synthesis procedure. A) Schematic illustration of the two tested
control scenarios. Left - the controller algorithm synthesizes novel images that it believes will
maximally drive the firing rate of a target neural site (Stretch). In this case, the controller
algorithm does not attempt to regulate the activity of other measured neurons (e.g. they might
also increase as shown). Right - the controller algorithm synthesizes images that it believes
will maximally drive the firing rate of a target neural site while suppressing the activity of other
measured neural sites (one-hot population). B) Top - gray lines (overlapping): responses of a
single example V4 neural site to 640 naturalistic images (averaged over∼40 repetitions for each
image). Vertical wide black line marks the image presentation period. Bottom - raster plots of
highest (black) and lowest (purple) neural response to naturalistic images. Shaded area indicates
the time window over which the activity level of each V4 neural site is computed (i.e. one value
per image for each neural site). C) The neural control experiments are done in four steps. (1)
Parameters of the neural network are optimized by training on a large set of labeled natural
images (Imagenet (27)) and then held constant thereafter. (2) ANN “neurons” are mapped to
each recorded V4 neural site. The mapping function constitutes an image-computable predictive
model of the activity of each of those V4 sites. (3) The resulting differentiable model is then
used to synthesize “controller” images for either single-site or population control. (4) The
luminous power patterns specified by these images are then applied by the experimenter to the
subject’s retinae and the degree of control of the neural sites is measured. D) Classical receptive
fields of neural sites in monkey M (black), Monkey N (red) and Monkey S (blue; see Methods).
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Figure 2: Maximal drive of individual neural sites (Stretch). A) Results for an example
successful “stretch” control test. Normalized activity level of the target V4 neural sites is shown
for all of the naturalistic images (blue dots), complex curved stimuli (purple dots) and for its
five synthetic “stretch” controller images (red dots; see Methods). Best driving images within
each category, and the zoomed view of the receptive field are shown on the top. B) Difference
in firing rate in response to naturalistic (blue boxes) and synthetic images (red boxes) for each
neural site in three monkeys. Controller image synthesis was restricted within the receptive
field of the target neural site. C) Histogram of increase in the firing rate over naturalistic images
for cRF-restricted synthetic images. D) Histogram of increase in the firing rate over complex
curved stimuli. Black triangle with dotted black line marks the median of the scores over all
tested neural sites. The red arrow highlights the gain in firing rate in each experiment achieved
by the controller images. “N” indicates the number of neural sites included in each experiment.
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Figure 3: Neural Population Control. We synthesized controller images that aimed to set
the neural population in a one-hot state (OHP) in which one target neural site is active and
all other recorded neural sites are suppressed. A) Two example OHP experiments (left and
right). In each case, the neural activity of each of the validated V4 sites (see Methods) in the
recorded population are plotted (most have overlapping cRFs), with the target V4 site indicated
in dark blue/red). Note that responses are normalized individually on a normalizer image set
to make side-by-side comparison of the responses meaningful (see Methods). Upper panel:
activity pattern for the best (“best” in the sense of OHP control, see Methods) naturalistic image
(shown on the right). Lower panel: activity pattern produced by retinal application of the
ANN-model-synthesized controller image (shown on the right). The red dashed line marks the
extended receptive field (2-std) of each site. B) Distribution of control scores for best synthetic
and naturalistic images for all 33 OHP full-image controller experiments (nM = 14, nS =
19). Control Scores are computed using cross-validation (see Methods). C) Histogram of OHP
control gain (i.e. improvement over naturalistic images) for results in (B). (i) and (ii) indicate
the scores corresponding to example experiments shown in (A). D) Same experimental data
as (C) except analyzed for sub-populations selected so that all sites have highly overlapping
cRFs (see cRFs below). E) OHP control gain where gain is relative to best complex curvature
stimulus in the shared cRF (see text) and controller algorithm is also restricted to operate only
in that shared cRF (n=14 OHP experiments). Receptive fields of neural sites in each setting
(C-E) (black: monkey-M; blue: monkey-S). “N” indicates the number of experiments in each
setting. Red arrow highlights the median gain in control (black triangle) achieved in each case.
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Figure 4: Example of independent control of each neural site on a subset of V4 neural sites
with highly overlapping cRFs. Controller images were synthesized to try to achieve a one-
hot-population over a population of eight neural sites (in each control test, the target neural site
is shown as dark red). Despite highly overlapping receptive fields (center), most of the neural
sites could be individually controlled to a reasonable degree. Controller images are shown along
with the extended cRF (2-std) of each site (red).
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Figure 5: Example controller images synthesized in “Stretch” and “One-hot population”
settings for six example target neural sites. Controller images were synthesized from the
same initial random image, but optimized for each target neural site and for each control goal
(“Stretch” or “One-hot population”, see text). Visual inspection suggests that, for each target
site, the One-hot population control images contain only some aspects of the image features in
the “Stretch” images.
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Supplementary materials

Materials and Methods

Figs. S1 to S5

References (12-31)

Methods

Electrophysiological Recordings in Macaques We sampled and recorded neural sites across

the macaque V4 cortex in the left, right, and left hemisphere of three awake, behaving macaques,

respectively. In each monkey, we implanted one chronic 96-electrode microelectrode array

(Utah array), immediately anterior to the lunate sulcus (LS) and posterior to the inferior occip-

ital sulcus (IOS), with the goal of targeting the central visual representation (<5◦ eccentricity,

contralateral lower visual field). Each array sampled from∼25 mm2 of dorsal V4. On each day,

recording sites that were visually-driven as measured by response correlation (rpearson > 0.8)

across split-half trials of a fixed set of 25 out-of-set naturalistic images shown for every record-

ing session (termed, the normalizer image set) were deemed “reliable”.

We do not assume that each V4 electrode was recording only the spikes of a single neuron.

Hence we use the term neural “site” throughout the manuscript. But we did require that the

spiking responses obtained at each V4 site maintained stability in its image-wise “fingerprint”

between the day(s) that the mapping images were tested (i.e. the response data used to build the

ANN-driven predictive model of each site, see text) and the days that the Controller images or

the complex curvature images were tested (see below). Specifically, to be “stable,” we required

an image-wise Pearson correlation of at least 0.8 in its responses to the normalizer set across

recording days.

Neural sites that were reliable on the experimental mapping day and the experimental test
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days, and were stable across all those days, were termed “validated.” All validated sites were

included in all presented results. (Note that, to avoid any possible selection biases, this selection

of validated sites was done on data that were completely independent from the main experimen-

tal result data.) In total, we recorded from 107 validated V4 sites during the ANN-mapping day

which included 52, 33 and 22 sites in monkey-M (left hemisphere), monkey-N (right hemi-

sphere), and monkey-S (left hemisphere), respectively. Of these sites, 76 of were validated for

the Stretch control experiments (nM=38, nN=19, nS=19) and 57 were validated for the One-hot

population control experiments (nM=38, nS=19).

To allow meaningful comparisons across recording days and across V4 sites, the raw spik-

ing rate of each site from each recording session was normalized (within just that session) by

subtracting its mean response to the 25 normalizer images and then dividing by the standard

deviation of its response over those normalizer images (these are the arbitrary units shown as

firing rates in Figs. 2A, 3A and 4). The normalizer image set was always randomly interleaved

with the main experimental stimulus set(s) run on each day.

Control experiments consisted of three steps. In the first step, we recorded neural responses

to our set of naturalistic images that were used to construct the mapping function between the

ANN activations and the recorded V4 sites. In a second, offline step, we used these mapping

functions (i.e. a predictive model of the neural sites) to synthesize the controller images. Finally

in step three, we closed the loop by recording the neural responses to the synthesized images.

The time between step 1 and step 3 ranged from several days to 3 weeks.

Fixation Task All images were presented while monkeys fixated a white square dot (0.2◦)

for 300 ms to initiate a trial. We then presented a sequence of 5 to 7 images, each ON for

100 ms followed by a 100 ms gray blank screen. This was followed by a water reward and an

inter-trial interval of 500 ms, followed by the next sequence. Trials were aborted if gaze was
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not held within ±0.5◦ of the central fixation dot during any point. To estimate the classical

receptive field (cRF) of each neural site, we flashed 1◦×1◦ white squares across the central 8◦

of the monkeys’ visual field, measured the corresponding neural responses, and then fitted a 2D

Gaussian to the data. We defined 1-std as the cRF of each site.

Naturalistic Image Set We used a large set (N=640) of naturalistic images to measure the

response of each recorded V4 neural sites and every model V4 neural site to each of these

images. Each of these images contained a three-dimensional rendered object instantiated at a

random view overlaid on an unrelated natural image background, see (28) for details.

Complex Curvature Stimuli We used a set of images consisting of closed shapes constructed

by combining concave and convex curves (12). These stimuli are constructed by parametrically

defining the number and configuration of the convex projections that constituted the shapes. Pre-

vious experiments with these shapes showed that curvature and polar angle were quite good at

describing the shape tuning (12). The number of projections varied between 3 to 5 and the angu-

lar separation between projections was in 45◦ increments. These shapes were previously shown

to contain good drivers of V4 neurons of macaque monkeys (12,14). The complex curve images

were generated using the code generously supplied by the authors of that prior work (http:

//depts.washington.edu/shapelab/resources/stimsonly.php). The stim-

uli were presented at the center of the receptive field of the neural sites (detailed below).

Cross-Validation Procedure for Evaluating Control Scores To evaluate the scores from the

neural responses to an image set, we divide the neural response repetitions into two, randomly-

selected halves. We then compute the mean firing rate of each neural site in response to each

image in each half. The mean responses from the first half are used to find the image that

produces the highest score (in that half) and the response to that image is then measured in the
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second half (and this is the measurement used for further analyses). We repeat this procedure

50 times for each neural site (i.e. 50 random half splits). For Stretch and One-hot population

experiments the score functions were the “neural firing rate” and “softmax score” respectively.

We compute each score for the synthetic controller images and for the reference images (either

the naturalistic or the complex curvature sets, see text). The synthetic “gain” in the control score

is calculated as the difference between the synthetic controller score and the reference score,

divided by the reference score.

V4 encoding model To use the ANN model to predict each recorded neural site (or neural

population), the internal V4-like representation of the model must first be mapped to the specific

set of recorded neural sites. The assumptions behind this mapping are discussed elsewhere (9),

but the key idea is that any good model of a ventral stream area must contain a set of artificial

neurons (a.k.a. features) that, together, span the same visual encoding space as the brain’s

population of neurons in that area (i.e. the model layer must match the brain area up to a linear

mapping). To build this predictive map from model to brain, we started with a specific deep

ANN model with locked parameters. Here we used a variant of Alexnet architecture trained on

Imagenet (13) as we have previously found the feature space at the output of Conv-3 layer of

Alexnet to be a good predictor of V4 neural responses (we here refer to this as model “V4”). We

used the same training procedure as was described in (13), except we did not split the middle

convolutional layers between GPUs.

In addition, the input images were transformed using an eccentricity-dependent function that

mimics the known spatial sampling properties of the primate retinae. We termed this the “retinae

transformation”. We had previously found that training deep convolutional ANN models with

retinae-transformed images improves the neural prediction accuracy of V4 neural sites (an in-

crease in explained variance by∼ 5− 10%). The ”retinae transformation” was implemented by
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a fish-eye transformation that mimics the eccentricity-dependent sampling performed in primate

retinae (code available at https://github.com/dicarlolab/retinawarp). All in-

put images to the neural network were preprocessed by randomly cropping followed by applying

the fish-eye transformation. Parameters of the fish-eye transformation were tuned to mimic the

cones density ratio in fovea at 4◦ peripheral vision (29).

We used the responses of the recorded V4 neural sites in each monkey and the responses of

all the model “V4” neurons to build a mapping from model to the recorded population of V4

neural sites (Figure 1). We used a convolutional mapping function that significantly reduces

the neural prediction error compared to other methods like principal component regression.

Our implementation was a variant of the 2-stage convolutional mapping function proposed in

(30). The first stage of the mapping function consists of a learnable spatial mask (Ws) that is

parameterized separately for each neural site (n). The second stage consists of a mixing point-

wise convolution (Wd) that computes a weighted sum of all feature maps at a particular layer

of the ANN model (Conv3 layer in our case). The final output is then averaged over all spatial

locations to form a scalar prediction of the neural response. Parameters are jointly optimized

to minimize the prediction error Le on the training set regularized by combination of L2 and

smoothing Laplacian losses Llaplace (defined below).

ŷn =
∑(

(W (n)
s ·X) ∗W (n)

d

)
+ w

(n)
b (1)

L2 = λs
∑
n

W (n)
s

2
+ λd

∑
n

W
(n)
d

2
(2)

Llaplace = λs

√∑
n

(W
(n)
s ∗ L)2, L =

 0 −1 0
−1 4 −1
0 −1 0

 (3)
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Le =

√∑
n

(ŷn − y)2 (4)

L = Le + Llaplace + L2 (5)

We evaluated our model using 2-fold cross-validation and observed that ∼89% of the ex-

plainable variance could be explained with our model in three monkeys (EVM = 92%, EVN =

92%, EVS = 80%). The addition of the retinae transformation together with the convolutional

mapping function increased the explained variance by ∼13% over the naive principal compo-

nent regression applied on features from the model trained without the retinae transformation

(two monkeys: EVM = 75%, EVN = 80%, EVS = 73%). For constructing the final mapping

function, adopted for image synthesis, we optimized the mapping function parameters on 90%

of the data, selected randomly.

The resulting predictive model of V4 (ANN features plus linear mapping) is referred to as

the mapped v4 encoding model and, by construction, it produces the same number of artificial

V4 “neurons” as the number of recorded V4 neural sites (52, 33, and 22 neural sites in monkeys

M, N and S respectively).

Synthesized “Controller” Images The “response” of artificial neuron in the mapped V4 en-

coding model (above) is a differentiable function of the pixel values f : Iw×h×c → Rn that

enables us to use the model to analyze the sensitivity of neurons to patterns in the pixels space.

We formulate the synthesis operation as an optimization procedure during which images are

synthesized to control the neural firing patterns in the following two settings:

1. Stretch: We synthesize controller images that attempt to push each individual V4 neural

site into its maximal activity state. To do so, we iteratively change the pixel values in the

direction of the gradient that maximizes the firing rate of the corresponding model V4 neural
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site. We repeated the procedure for each neural site using five different random starting images,

thereby generating five “stretch” controller images for each V4 neural site.

2. One Hot Population: Similar to “Stretch” scenario, except that here we chose the opti-

mization to change the pixel values in a way that (i) attempts to maximize firing rate of the target

V4 neural site, and (ii) attempts to maximally suppress the firing rates of all other recorded V4

neural sites. We formalize the One-hot population goal in the following objective function that

we then aim to maximize during the image synthesis procedure:

S = Softmaxt(y) =
eyt∑
eyi

(6)

where t is the index of the target neural site, and yi is the response of the model V4 neuron i to

the synthetic image.

For each optimization run, we start from an image that consists of random pixel values

drawn from a standard Normal distribution and optimize the objective function for a pre-

specified number of steps using gradient ascend algorithm (steps=700). During the experiments,

monkeys are required to fixate within a 1◦ circle at the center of the screen. This introduces an

uncertainty on the exact gaze location. For this reason, images are synthesized to be robust

to small translations of maximum 0.5◦. At every iteration, we translate the image in random

directions (i.e. jittering) with a maximum translation length of 0.5◦ in each direction, thereby,

generating images that are predicted to elicit similarly high scores regardless of the translations

within the range.

Contrast Energy It has been shown that neurons in area V4 respond more strongly to higher

contrast stimuli (31). To ask if contrast energy (CE) was the main factor in “stretching” the

V4 neural firing rates, we computed the contrast energy within the receptive field of the neural

sites for all the synthetic and the classic V4 stimuli. Contrast energy was calculated as the ratio

between the maximum and background luminances. For all images, the average luminance
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was used as the background value. Because the synthetic images consisted of complex visual

patterns, we also computed the contrast energy using an alternative method based on spectral

energy within the receptive field. We calculated the average power in the cRF in the frequency

range of 1-30 cycles/degree. We ensured that for all tested neural sites, CE within the cRF for

synthetic Stretch Controller images were less than or equal to the classic, complex curvature

V4 stimuli (Supp Figure-S4).
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Figure S1: Stretch synthetic controller images for five example V4 neural target sites (Ex-
ample sites 1-5). Each row displays images generated using the same random starting image,
but optimized for each target site. Note the perceptual similarity of the controller images syn-
thesized for each site and the dissimilarity between the controller images across sites.
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Figure S2: Comparison of population response in Stretch and One-hot Population settings.
Population responses in Stretch and One-hot Population settings are demonstrated for two ex-
ample neural sites. One-hot population images were generated with an objective function in-
cluding 16 neural sites with highly overlapping receptive fields. Compared to the Stretch con-
troller images, the one-hot-population images have fewer identifiable “features”. The displayed
images were synthesized using the same initial random image.

N=76

54%A B

Figure S3: Predictability of synthetic controller images. A) Scatter plots of predicted and
measured V4 neural responses to synthetic controller images for four example neural sites.
For most target neural sites, the predicted and measured neural responses were significantly
correlated. Each dot represents the prediction and average measured response to a single image.
B) The model accounted for 54% (median across all tested neural sites in three monkeys;N=76)
of the explainable variance.
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A B

Figure S4: Comparison of contrast energy between synthetic and curvature images. A)
Distribution of the mean spectral power within target neural sites’ classic receptive fields for
“Stretch” controller (green) and complex curvature (purple) images. Spectral power was com-
puted using 2-D FFT transformation and summed in the frequency range of 1-30 cycles/degree.
B) Distribution of contrast energy within target neural sites’ classic receptive fields for “Stretch”
controller and complex curvature images.
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Monkey-M Monkey-S

Functional Fidelity of V4 Population Model

Figure S5: Higher functional fidelity models increase the ability to control neural re-
sponses. We evaluated the one-hot population control score for each target neural site in each
monkey subject for a range of possible models with different prediction accuracy levels. In
each monkey session, the functional fidelity of a V4 population model (measured by the mean
of: 1) explained variance of target neural site and 2) the mean of the explained variance for all
the off-target sites) was plotted against the one-hot population control score achieved with that
population model. We found that these were significantly correlated as assessed by Spearman
rank order correlation, shown on each panel. For this analysis, for each target neural site, we
included not only the original tests, but also tests in which we swapped the predictive model
of the target neural site with the model of randomly-chosen off-target site (we do this ”mis-
match” test because it is an example of what would have happened in the experiment if the
synthesis algorithm had been given the wrong models – it would have produced OHP control
stimuli that we already tested – so we can compute the resulting control score without doing
new recording experiments). We simply assessed the functional fidelity of V4 population model
using the mismatched models and the population control score achieved using the new popula-
tion model’s synthetic control images (again, from population responses to images that we had
already tested). Red dots correspond to cases where the target neural site’s model and responses
were matched (i.e. results of the original OHP tests, see text), and gray dots correspond to the
cases where they were mismatched. Dark blue line shows an exponential function fitted to the
data points, highlighting the tendency for higher model fidelity to support better control.
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