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Abstract 

 Meditation practices are used to cultivate internally-oriented attention to bodily 

sensations, which may improve health via cognitive and emotion regulation of bodily signals. 

However, it remains unclear how meditation impacts internal attention states due to lack of 

measurement tools that can objectively assess mental states during meditation practice itself, and 
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produce time estimates of internal focus at individual or group levels. To address these 

measurement gaps, we tested the feasibility of applying multi-voxel pattern analysis (MVPA) to 

single-subject fMRI data to (1) learn and recognize internal attentional (IA) states relevant for 

meditation during a directed IA task, and (2) decode or estimate the presence of those IA states 

during an independent meditation session. Within a mixed sample of experienced meditators and 

novice controls (N=16), we first used MVPA to develop single-subject brain classifiers for 5 

modes of attention during an IA task in which subjects were specifically instructed to engage in 

one of five states (i.e., meditation-related states: breath attention, mind wandering, and self-

referential processing, and control states: attention to feet and sounds). Using standard cross-

validation procedures, MVPA classifiers were trained in five of six IA blocks for each subject, 

and predictive accuracy was tested on the independent sixth block (iterated until all block 

volumes were tested, N=2160). Across participants, all five IA states were significantly 

recognized well above chance (>41% vs. 20% chance). At the individual level, IA states were 

recognized in most participants (87.5%), suggesting that recognition of IA neural patterns may 

be generalizable for most participants, particularly experienced meditators. Next, for those who 

showed accurate IA neural patterns, the originally trained classifiers were then applied to a 

separate meditation run (10-min) to make an inference about the percentage time engaged in 

each IA state (breath attention, mind wandering, or self-referential processing). Preliminary 

group-level analyses demonstrated that during meditation practice, participants spent more time 

attending to breath compared to mind wandering or self-referential processing. This paradigm 

established the feasibility of using MVPA classifiers to objectively assess mental states during 

meditation at the participant level, which holds promise for improved measurement of internal 

attention states cultivated by meditation. 
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Mind-body practices such as meditation are increasingly practiced by the public to 

improve health (Clarke and Stussman 2018), and train internal qualities of attention to the body 

that include sustained focus, nonjudgment, and compassion (Kabat-Zinn 2008; Gunaratana 2010; 

Lutz et al. 2015). Through practicing these attentional qualities to bodily sensations such as the 

breath, meditation practices may strengthen interoception (awareness of internal bodily 

sensations; Farb et al., 2015; Khalsa et al., 2017), cognitive processes (including sustained 

attention, cognitive monitoring, and meta-awareness; Lutz et al., 2008; Dahl et al., 2015; Tang et 

al., 2015), and emotion regulation (less judgment and more equanimity with internal 

experiences; Chambers et al., 2009; Desbordes et al., 2015). With practice, these skills may lead 

to better monitoring and regulation of physical, emotional, and social processes, contributing to 

improved health decision-making and behaviors (Farb et al. 2015; Khalsa et al. 2017). However, 

interoceptive processes trained through meditation cannot be directly observed during practice 

because they are internal and fluctuate among various mental states (such as attention or 

inattention to the body; Van Dam et al., 2018). While previous studies assess neural activation 

during meditation to identify networks present at the aggregate level, currently no measure uses 

neural data to objectively assess whether attention is indeed focused on the body or not during 

meditation practice itself. 

In other modalities of mental training, such as working memory training with external 

visual stimuli, the trained skills can be directly observed and measured in real-time with 

quantifiable metrics such as working memory performance (Klingberg 2010). In addition, 
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subsequent transfer effects to other cognitive skills can be assessed (that are related but not 

directly trained), such as improvements in working memory in another sensory modality or 

inhibition (Klingberg 2010). Thus, relationships between skills gained directly from training can 

be associated with transfer effects. Currently, interventions that train internally-oriented attention 

(such as meditation and yoga) have been studied mostly through transfer effects (i.e. downstream 

effects on external attention, emotion regulation, or well-being; Van Dam et al., 2018), largely 

because we lack measures that can objectively assess the focus of internal attention during 

practice itself. The field therefore does not currently have a parallel measure to working memory 

performance, or metric of interoceptive focus or stability, that is both objective and unobtrusive 

to practice and could provide metrics such as proportion time attending (or not) to the breath 

during meditation practice. With these metrics, we could more precisely understand how 

cultivating qualities of internal attention transfers to other psychological processes and more 

global states such as mental and physical health.  

 A measure that could directly assess the meditative process would be able to track 

various mental states as they fluctuate through time. For example, in a core practice of focused 

attention to the breath, attention is focused on sensations of the breath, until distracted by other 

internal or external stimuli, and then nonjudgmentally returned to the breath. Even in this simple 

practice, distinct mental states may occur and dynamically fluctuate over time: the object of 

attention (breath or distractions), level of meta-awareness (awareness of object of attention), as 

well as attitudinal qualities such as nonjudgment, kindness, and curiosity (Hasenkamp et al. 

2012; Lutz et al. 2015). Previous studies have mapped out neural networks associated with 

components of this process using fMRI, identifying greater activation in networks involved in 

interoception (Farb, Segal, and Anderson 2013; Fox et al. 2016) and executive functioning 
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(Brefczynski-Lewis et al., 2007; Fox et al., 2016), and decreased activation of the Default Mode 

Network (Brewer et al., 2011; Fox et al., 2016), which is engaged during mind wandering and 

self-referential processing (Andrews-Hanna, Smallwood, and Spreng 2014; Christoff et al. 

2016).  

Traditional univariate fMRI analysis focuses on mean regional changes in brain activity 

and therefore usually requires the collapsing of data across many time points to improve signal 

estimation. The downside of this approach, particularly for the study of meditation, is that such 

data averaging obscures the fluctuating nature of distinct mental states, such as interoception, 

mind wandering, and self-referential processing. These measurement issues can be addressed by 

instead applying multivariate multi-voxel pattern analysis (MVPA; Norman et al., 2006; Haxby, 

2012), which uses pattern recognition technology to (i) distinguish and recognize neural patterns 

associated with external or internal attention, and (ii) then apply these learned brain patterns to 

decode or estimate the presence of various mental states in a separate task. In this way, MVPA 

uses objective brain data to “read the mind” during tasks where the mental states are otherwise 

inaccessible (Norman et al. 2006; Haxby 2012). For example, MVPA of fMRI data has been 

used to reliably differentiate the attentional status of two items held in working memory across 

an 8-sec memory delay (Lewis-Peacock and Postle 2012). On a trial-by-trial basis, these discrete 

neural measurements of internal attention have been linked to the precision of behavioral 

responses on short-term recognition tests (Emrich et al. 2013) and to recognition confidence in 

tests of long-term memory (Lewis-Peacock and Norman 2014).  

In this proof-of-principle study, we aimed to produce quantifiable metrics of 

interoceptive attention by integrating MVPA methodology to study internal attention states 

relevant for meditation. We developed the EMBODY framework (Evaluating Multivariate Maps 
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of Body Awareness), where MVPA is applied to neural data to (i) learn and recognize internal 

attention (IA) states important for breath-focused meditation, and (ii) decode or estimate the 

presence of those IA states during an independent meditation period. These decoded IA states 

could then be used to estimate the percentage time engaged in attention or inattention to the 

breath. Notably, MVPA is often applied using a within-subjects approach, with more data 

collected from each person so that MVPA classifiers can learn and decode brain patterns that are 

participant-specific (Norman et al. 2006; Haxby 2012). Similar to what is commonly done in the 

visual sciences, this approach concentrates experimental power and high-powered tests of effects 

at the individual level (Smith and Little 2018), and the generalizability of the findings can be 

assessed by examining the proportion of the subjects in which MVPA is reliable. 

We tested the feasibility of the EMBODY framework within 16 participants in 3 steps 

(Fig. 1). In Step 1, we tested whether IA brain patterns (breath, mind wandering, self-referential 

processing) could be reliably learned and distinguished above chance levels by MVPA 

classifiers. In a directed internal attention task, participants were specifically instructed to engage 

in one of five states (i.e., meditation-related states: breath attention, mind wandering, and self-

referential processing, and control states: attention to feet and sounds), and MVPA was applied 

to develop single-subject brain classifiers for five modes of attention. Using standard cross-

validation procedures, MVPA classifiers were trained in five of six IA blocks for each subject, 

and predictive accuracy was tested on the independent sixth block (iterated until all block 

volumes were tested, N=2160). In Step 2, for participants who showed accurate IA neural 

patterns, we applied the originally trained classifiers to a separate meditation run (10-min) to 

decode or classify IA brain states in a separate 10-min period of breath-focused meditation 

(N=600). In Step 3, we used these classified IA states to  make an inference about attention 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 17, 2020. ; https://doi.org/10.1101/461590doi: bioRxiv preprint 

https://doi.org/10.1101/461590
http://creativecommons.org/licenses/by-nc-nd/4.0/


BRAIN DECODING OF MEDITATION STATES 

 

7

states during meditation, including percentage time engaged in breath-focus, mind wandering, or 

self-referential processing. Finally, we conducted preliminary assessments of construct validity 

by associating these brain-derived attention metrics with 1) subjective reports of internal 

attention within each subject, and 2) attention profiles across the group during the breath-focused 

meditation period, where we hypothesized participants would spend more time attending to the 

breath vs. other mental states. 

 

METHOD 

General framework and approach. We tested the feasibility of the EMBODY framework, 

which uses MVPA applied to fMRI data to learn and decode mental states during meditation, 

producing novel individual-level metrics of internal attention during meditation. At a participant-

specific level, we first tested whether MVPA classifiers could distinguish between brain patterns 

of internal attention relevant for meditation significantly above chance levels (Step 1), by 

directing participants to change their focus of internal attention using the Internal Attention (IA) 

task (Fig. 2a). To maximize this within-subjects approach, we collected more data within each 

participant (2160 brain patterns for classifier training and testing, 432/condition). We tested this 

framework in 8 meditators and 8 controls (an adequate N for within-subjects MVPA studies; 

Norman et al., 2006) and included individuals from both groups because a) meditators are more 

likely to produce distinct brain patterns from consistent practice in directing and sustaining 

internal attention, and b) novices are the population most studied in clinical intervention studies. 

To further test whether MVPA classifier accuracy of internal attention was meaningful, we 

associated accuracy with within-subject subjective ratings of attention.  
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By first establishing that MVPA classifiers could reliably distinguish and identify internal 

attention brain states in Step 1, we could then apply these learned brain patterns to objectively 

decode the continuous focus of attention using the neural data from a separate 10-min meditation 

period (600 novel brain patterns, Step 2). This is a common application of MVPA, where 

classifiers learn neural patterns from distinct categories in one task (and classifier accuracy is 

validated using within-task cross-validation), which are then used to estimate information in a 

separate task (across-task decoding where classifier training from the first task is used to inform 

classifier decisions in the second task; Norman et al., 2006), and the EMBODY framework 

extends this approach into decoding IA states during meditation. We then further analyzed the 

classifier decisions in Step 3, where we computed novel metrics of attention during meditation, 

including estimating the percentage time attending to the breath or engaging in mind wandering 

or self-referential processing. This thus served our main measurement goal of estimating the 

interoceptive focus or stability during meditation practice for each individual. Finally, to assess 

construct validity and inform future research, we preliminarily characterized the meditation 

metrics at the group level, and tested whether participants attended longer to breath vs. other 

mental states during meditation.  

 

Participants. Participants were medically and psychiatrically healthy adults age 25-65, non-

smokers, and MRI-compatible. Meditators were recruited from Bay Area meditation centers 

through flyers, online postings, and word of mouth. They reported consistent meditation practice 

in the past 5 years (≥90 min/week, ≥14 days of silent retreat practice, at least half of practice on 

breath and bodily sensations). Control participants were recruited through flyers and online 
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postings, had not engaged in regular meditation or other mind-body practices (>20 min at least 

twice weekly), and were age (within 5 years) and gender-matched to meditators.  

Participants included 8 meditators (1 female, 1 non-binary person, 6 male, mean age = 

38.4 [range 28-61], race/ethnicity: 6 White, 2 multiracial) and 8 matched novice control 

participants (mean age = 38.3 [range 25-63], race/ethnicity: 6 White, 1 Asian, 1 Latinx/Hispanic; 

see Table S1 in Supplemental Information [SI] for full demographics). Average lifetime 

meditation practice in meditators was 3495 hours (range 509-6590; Table S2). Two additional 

novices were excluded for inability to align images due to excessive movement and incorrect 

gender-matching to a meditator.  

 

Procedure. Eligibility was assessed by online questionnaire and phone interview. Participants 

were consented, trained in MRI task procedures, and then completed a 2-hour MRI protocol. 

They were paid $65 for participation and ≤$20 for travel. All participants provided written 

informed consent approved by the Institutional Review Board of the University of California, 

San Francisco. The study was registered at clinicaltrials.gov (NCT03344081). 

 

fMRI Paradigm. Overall Framework. The EMBODY Framework used multi-voxel pattern 

analysis (MVPA; Norman et al., 2006) with fMRI data to decode the focus of internal attention 

during meditation in 3 steps: 1) participant-specific brain patterns were trained for internal 

attention states relevant for breath meditation (n=2160), 2) brain patterns learned from Step 1 

were applied to a 10-min period of breath meditation to estimate the focus of internal attention 

for each data point (600s), and 3) metrics of attention during meditation were computed from the 

decoded brain states (Fig. 1).  
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Step 1 data: Internal Attention (IA) task. fMRI data from the IA task were used to train a 

machine learning classifier to learn neural patterns associated with five internal mental states. To 

create training data that closely resembled brain activity during meditation, participants’ eyes 

remained closed, and the only stimulus change was their internal focus of attention. Neural 

patterns associated with breath, mind wandering, and self-referential processing were chosen to 

be most relevant for decoding the meditation period, which modeled the intended focus of 

meditation (breath) and two common distractors (mind wandering and self-referential 

processing). Neural patterns associated with attention to feet (another body area) and awareness 

of ambient sounds (consistent MRI sounds) were chosen as control conditions to improve 

classification specificity of the desired brain states.  

Participants received randomized 2-s auditory instructions to pay attention to 1) 

sensations of the breath (Breath), 2) sensations of the feet (Feet), 3) to stop paying attention and 

let their minds go wherever they would like (mind wandering or MW), 4) self-referential 

processing regarding the past, present, and future (Self), and 5) ambient sounds (Sounds; Fig. 

2a). For breath-focus, attention was maintained where they felt the breath most strongly (e.g., 

nose, throat, chest). For self-referential processing, participants generated 5 events from the past 

week, and 5 events that would occur in the next week during the training session. Instructions 

were also presented visually, which participants could briefly view as a reminder. Six blocks 

were administered from one of four randomized stimulus order sets.  

Each block contained 20s of baseline (black screen) at the beginning and end, and 

consisted of 13 trials/block, resulting in 72s/condition within each block (balanced across 5 

conditions). This yielded 2160 training brain patterns over the entire experiment, with 432 

patterns/condition. Trial durations ranged from 16-32s for attending to breath, feet, and sounds (3 
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trials/block each; every even-numbered trial length was randomized and administered 

twice/condition across the experiment), and 22-50s in MW and Self (allowing more time for 

these states to occur, 2 trials/block each, covering most of the duration range across the 

experiment). In the last three IA blocks, participants subjectively rated how well they paid 

attention after each trial using a button box (How well did you pay attention? 1=less attention, 

4=more attention), and were encouraged to use the full range of responses.  

Step 2 data: Meditation Period. Participants engaged in 10 min of breath-focused 

meditation in 2 blocks, administered between the 6 IA blocks. The meditation period was split 

into two blocks (4 and 6 min) to help control participants stay engaged in the task. Participants 

were instructed to pay attention to sensations of the breath, and if their minds wandered, to return 

attention to the breath. For each block, they received a 6-s instruction at the beginning, and a 2-s 

reminder to pay attention 60s before the end. After the meditation period, participants verbally 

rated the percentage time they paid attention to the breath and thoughts for each block. 

Data acquisition. Experiments were run using E-Prime (Psychology Software Tools). 

Neuroimaging data were acquired with a 3T MRI scanner (Siemens Prisma) using a 64-channel 

head coil. A high-resolution 1×1×1 mm MPRAGE T1 anatomical scan was acquired for offline 

spatial registration. Functional images were acquired using a multiband gradient-echo EPI 

sequence (2.4×2.4×2.4 mm, TE/TR = 30.2 ms/1 s, FOV=220 mm, 92×92 matrix, 56 slices, 

multiband acceleration=4, TR=1.0s; Auerbach et al., 2013) that covered most of the brain. 

EMBODY fMRI data analyses: machine learning.   

fMRI preprocessing. Data were preprocessed in AFNI (Cox 1996), and were slice time 

corrected, aligned and motion-corrected to the first volume of the first EPI scan, and linearly de-
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trended in native space, respectively using 3dTshift, 3dAllineate, 3dvolreg, 3dDetrend. See SI 

and Tables S3-S4 for control analyses using head motion and respiration data. 

Step 1 machine learning: Distinguishing neural patterns of internal attention (within-task 

cross-validation). Pattern classification analyses were conducted using MVPA (Norman et al., 

2006; Princeton MVPA Toolbox https://github.com/PrincetonUniversity/princeton-mvpa-

toolbox), in conjunction with in-house software using Matlab (MathWorks) and Python (for 

post-processing of meditation period classifications in Steps 2-3). Using wholebrain 

preprocessed fMRI signal in native space, a pattern classifier was trained separately for each 

participant for trial periods from each condition (Breath, MW, Self, Feet, and Sounds; TR=1.0s, 

432s/condition) using penalized logistic regression with L2 regularization and a penalty 

parameter of 0.01 (which prevents over-fitting by punishing large weights during classifier 

training; Duda et al., 2000). Condition labels were shifted in time by 6s to account for 

hemodynamic lag. A binary logistic regression (1 vs. the others) was run for each of the 5 

conditions, resulting in continuous classifier evidence values (0-1) for each condition at each 

time point in the experiment (Fig. S1). The condition that was assigned the highest evidence 

value yielded the categorical decision from the classifier (see SI and Table S9 for alternate 

analyses of classifier evidence and decisions). We evaluated classification accuracy by 

performing k-fold cross-validation analysis, training on five blocks of data (fMRI task runs) and 

testing on the novel sixth block. The training blocks were then rotated, and a new block of data 

was tested until all six blocks of data had been classified (2160 decisions).  

Classification accuracy for each condition was computed for each participant (the 

percentage out of 432 accurate decisions output by the machine learning classifier). Group-level 

accuracy for each condition was tested with a one-sample t-test vs. 20% (theoretical chance level 
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for 5 conditions), and the effect size was estimated with Cohen’s D. Individual-level accuracy 

was tested with a Chi-square test determining whether the number of accurate vs. inaccurate 

decisions in each condition were significantly above chance distribution (87 vs. 345). Individuals 

that showed above-chance accuracy in 2/3 categories for Breath, MW, and Self conditions were 

used for subsequent analyses including decoding meditation states (all 8 meditators and 6/8 

controls).  

IA ratings and classifier accuracy. Attention ratings were collected for the second half of 

trials (33/39 trials, excluding MW trials where no rating was administered). To estimate the 

correlation of classifier accuracy and ratings within each subject, a Pearson’s correlation was 

computed between trial-level classifier accuracy and subjective ratings of attention. To test the 

strength of correlations across the group, each individual r-value was transformed using a Fisher 

r-to-Z transform, and the group mean Z-score was tested vs. 0 using a one-sample t-test. Because 

this task was designed to measure breath attention, we also examined accuracy-rating 

correlations specifically in Breath trials (n=9). 

Individualized brain pattern importance maps. Classifier importance maps were 

computed for each participant using classifier weight information which identifies which voxels 

were most important in distinguishing neural patterns of Breath, MW, and Self (McDuff, 

Frankel, and Norman 2009). To identify voxels that distinguished between conditions which 

were not due to differences in head motion, the analyses were conducted with fMRI data where 

motion variables were covaried out. We identified voxels with “positive importance” (both the 

weight and z-scored average activation value are positive) and voxels with “negative 

importance” (both the weight and z-scored average activation value are negative). Note that this 

approach identifies voxels which aid classifier distinction between mental states, and does not 
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test for differences in average activity like standard univariate analyses (Haxby 2012). For 

display purposes, each individual’s importance maps were non-linearly warped to the MNI152 

2mm template using FSL (FNIRT; Smith et al., 2004), smoothed with an 8mm Gaussian kernel, 

converted to z-scores (across voxels), and thresholded at ±2 SD to identify the most important 

voxels for each condition. See SI for group-level importance map analyses.  

Step 2 machine learning: Decoding the internal focus of attention during breath 

meditation (across-task decoding). Individualized brain patterns learned from Step 1 were 

applied to the 10-min meditation period to decode the internal focus of attention. The meditation 

period consisted of a completely independent dataset, and these classifiers were not influenced in 

any way by the previous Step 1 cross-validation analyses. The classifier was trained with all five 

mental states from the IA task (2160 total brain patterns) and decoded with the three states that 

were most relevant for breath-focused meditation: Breath, MW, and Self. For each data point 

during meditation (n=600, excluding instruction periods), the classifier output a categorical 

decision of whether internal focus was on the Breath, MW, or Self (as well as continuous 

evidence values for each mental state). This produced a continuous estimate of mental states 

during meditation over time.  

To ignore spurious measurements of brain states that may fluctuate from one time point 

to the next, we focused our analyses on relatively stable periods. We defined a “mental event” as 

the classification of three or more consecutive time points for a given category. To facilitate this, 

we smoothed the data such that a single incongruous decision between two events of the same 

type (e.g., MW event–Self decision–MW event) were relabeled according to the category of the 

surrounding events (e.g., Self=>MW; average data points smoothed=1.3%, SD=0.41). Events 

were then quantified as 3 or more consecutive decisions of the same category, excluding any data 
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that did not meet these criteria (average data excluded = 15.7%, SD = 4.82). See SI for additional 

analyses with no smoothing function and varying mental event lengths (2 and 4s).  

Step 3: Quantify internal attention metrics during meditation. From the mental state 

classifications from Step 2, novel metrics of internal attention during meditation were computed 

for each participant. For each mental state, percentage time engaged, number of events, mean 

duration of events, and variability (SD) of event duration were computed. Data were 

preliminarily analyzed at the group level by testing for differences in metrics between conditions 

(Breath, MW, Self) with a one-way ANOVA. To test our main hypotheses that breath-focused 

meditation would result in differences between Breath vs. other mental states, significant results 

were followed up with planned pair-wise t-tests of Breath vs. MW and Breath vs. Self. Data were 

analyzed in SPSS (v. 24), figures were created with R, and brain maps were displayed using 

AFNI or FSLview.  

 

RESULTS 

Step 1: Distinguishing neural patterns of internal attention 

The first aim of the EMBODY framework was to test whether MVPA applied to within-

subject fMRI data could recognize individualized neural patterns associated with internal 

attention states important for breath meditation (Fig. 2a). Across all participants, each attentional 

state yielded a distinct neural signature (all classification accuracies>41% vs. 20% chance for 5 

categories, ps<0.001; Fig. 2b). Furthermore, each attentional state was distinguished at more 

than twice chance levels, including the brain patterns most relevant for breath meditation 

(breath=50.5%, mind wandering=41.2%, self-referential processing=49.0%; ts15>4.65, ps<0.001, 
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Cohen’s ds>1.16) and the control conditions (feet=43.2%, sounds=43.7%, ts15>5.67, ps<0.0001, 

Cohen’s ds>1.41; Fig. 2b; see Table S5 for classifier confusion matrix.  

The breath meditation-relevant brain patterns were reliably classified in 14/16 or 87.5% 

participants (at least 2/3 ps<0.001 for breath, mind wandering, and self-referential processing, 

Table S7). This included all 8 meditators and 6 of 8 novices, all of whom were used in 

subsequent analyses. Within-subject correlations of trial-level classification accuracy and 

subjective ratings of internal attention (across all conditions except mind wandering) showed a 

positive association overall across the group (mean Z=0.16, one-sample t13=2.35, p=0.035; Fig. 

2c). Because the task was designed to specifically measure breath attention during meditation, 

we also examined associations between accuracy and ratings in breath trials only and found a 

higher mean correlation (mean Z =0.41, t13=2.96, p=0.011; Fig. 2c).  

Distributed brain patterns contributing to accurate IA classification. Classifier 

importance maps identified the voxels most important in distinguishing between the attentional 

states (McDuff, Frankel, and Norman 2009), which were distributed throughout the brain and 

unique for each participant (Fig. 3a). For initial characterization of brain regions that supported 

classification and were common across individuals, a frequency map was computed representing 

the sum of individual importance maps (Fig. 3b). This indicated that no brain region was 

important for all 14 participants in any mental state (maximum frequency≤10, Fig. 3b, Fig. S2a-

b), and frequency histograms showed that most voxels were important for only 1-3 participants 

(Fig. S2c-e). See Table S7 for preliminary identification of brain regions where voxels were 

important in a higher frequency of participants (N≥5). 

 

Step 2: Decoding the focus of attention during breath meditation 
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 Individualized brain patterns for each participant were used to decode the focus of 

attention during 10 minutes of breath meditation, producing a continuous estimate of internal 

attention states of attending to the breath, mind wandering, or self-referential processing (Fig. 

4a-d). Classifier decisions at each time point were based on the class with the highest classifier 

evidence values (Fig. S1). From these data, “mental events” were defined whenever there were 3 

or more consecutive time points that were classified as belonging to the same mental state (Fig. 

4b). See SI and Table S9 for additional analyses with alternate data reduction of classifier 

evidence, decisions, and mental event length.  

 

Step 3: Quantifying metrics of internal attention during breath meditation 

 Based on MVPA classification of mental states during meditation from Step 2, we 

computed metrics of attention during meditation for each participant, including percentage time 

spent engaged in each mental state, number of mental events (or discrete periods engaged in each 

mental state), the duration of each mental event, and the variance of the durations (SD).  

 

Attention profiles during breath-focused meditation. Although the main goal of this study 

was to test the feasibility of using MVPA to estimate IA states during meditation at the 

individual level, we preliminarily characterized attention profiles at the group-averaged level 

(Fig. 5; Table S8). For breath-focused meditation, we hypothesized that participants would 

direct their attention more to the breath than engaging in mind wandering or self-referential 

processing. Therefore, compared to the other mental states, participants should show greater: 1) 

percentage time attending to the breath, 2) number of breath mental events, 3) mean duration of 

attention to the breath, and 4) variance in duration on the breath (greater inter-trial variability due 
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to longer durations). Attention metrics differed in the percentage time engaged in each mental 

state (F2,12=8.93, p=0.001), the mean duration of mental events (F2,12=6.47, p=0.005), and the 

mean variance of event durations (F2,12=4.20, p=0.026). Consistent with our hypotheses, we 

found that during meditation, participants spent more time paying attention to their breath 

compared to mind wandering or self-referential processing (t13s>3.18, ps<0.007). These results 

remained consistent even with alternate data reduction of classifier decisions, evidence, and 

event length during the meditation period (see SI and Table S9 for full details).  

On average, the 10-min meditation periods contained 56.4 mental events of at least 6-s 

each (SD=11.26). Although the mean number of events across mental states did not differ 

significantly (p=0.31), when participants attended to the breath, the mean duration of those 

events (10.9s [3.5]) was longer than for mind wandering events (8.1s [1.6], t13=3.28, p=0.006) 

and marginally longer than self-referential processing events (9.0s [2.6], t13=1.94, p=0.07). 

Similarly, the variability of event durations tended to be greater for attention to the breath 

compared to both mind wandering (t13=1.92, p=0.08) and self-referential processing (t13=2.46, 

p=0.029). See Table S8 for full statistics (including distraction from breath and mental state 

fluctuations). See SI for preliminary correlations between attention metrics and between-subject 

variables (self-reported attention during meditation, lifetime meditation practice [Fig. S3] and 

trait interoception and mindfulness [Table S10]). For descriptive metrics by group, see Fig. S4 

(classifier accuracy) and Fig. S5 (attention profiles).  

 

DISCUSSION  

This proof-of-principle study tested the feasibility of the EMBODY framework, where 

MVPA pattern classifiers were applied to neural data to learn and decode internal attention states 
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during meditation, producing novel estimates of interoceptive focus during meditation. We 

demonstrated that fMRI pattern classifiers could indeed distinguish between five states of 

internal attention using participant-specific brain patterns. This analysis was successful in all but 

two participants (87.5%; including all 8 experienced meditators and 6/8 novice controls), 

demonstrating that MVPA recognition of directed IA states has high generalizability, particularly 

for experienced meditators. Further, within-subject classification accuracy was positively 

correlated with subjective ratings of internal attention, suggesting that the EMBODY framework 

can reliably assess neural patterns representing internal attention. These neural patterns were 

then used to continuously decode the presence of breath attention, mind wandering, and self-

referential processing during an independent 10-min period of breath-focused meditation. By 

making these invisible internal processes visible and quantifiable, we were able to compute novel 

profiles of attention during meditation, including the percentage of time engaged in breath 

attention, mind wandering, or self-referential processing (as well as number of mental events, 

mean duration, and variance). Preliminarily, across all participants with distinguishable brain 

patterns, attention profiles indicated they engaged more with the breath vs. other states (greater 

percentage of time attending to the breath and greater mean duration of breath events). This 

objective measure provides initial evidence that participants were indeed able to implement the 

meditative goal of sustaining attention to the breath. Together, these findings support the 

feasibility of employing the EMBODY framework to utilize participant-specific neural data to 

estimate interoceptive focus and other mental states during meditation. 

To establish reliable neural patterns to decode meditation states, we first tested whether 

directed internal attention states could indeed be recognized by MVPA in the IA task. 

Interestingly, even with no changes in the external visual environment, by simply directing the 
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internal focus of attention to five types of internal stimuli (sensations of the breath and feet, 

engaging in mind wandering or self-referential processing, and listening to ambient sounds), this 

produced reliable and distinct neural patterns for most participants. Further, initial construct 

validity of the IA task was supported through evidence that within-subject neural classification 

accuracy (which indicates reliability and distinctiveness) was positively correlated with 

subjective attention ratings (particularly breath trials), suggesting that more consistent IA neural 

patterns reflect more stable subjective IA. This approach worked in all experienced meditators 

and most novice controls, suggesting that the task may be applied in both cross-sectional and 

longitudinal study designs. However, the IA task needs further validation in larger samples, and 

should be improved to increase classifier performance (optimizing trial conditions and durations, 

testing different classification algorithms, integrating psychophysiological and behavioral data), 

and use real-time neurofeedback to aid interoceptive focus (Sitaram et al. 2017). These early 

results motivate this future work and support the feasibility of using MVPA to distinguish 

between different internal attention states using a participant-specific approach. 

 Notably, the important voxels that contributed to accurate classification for each mental 

state were distributed across many areas of the brain and tended to be unique for each 

participant, which lends support to using individualized MVPA approaches to measure IA states 

(see SI for discussion of initial group-level regions). Similar to previous research (Kerr et al. 

2011), these results demonstrated that neural signals may differentiate interoception to distinct 

areas of the body (breath vs. feet), which could potentially track attention during body scan 

practices. These findings also showed that the brain patterns for mind wandering, or the 

“movement” from one mental state to another (Christoff et al. 2016), were distinct from self-
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referential processing, which demonstrated that the wandering nature of attention could be 

disentangled from the contents of what the mind wanders to. 

By establishing that MVPA could recognize distinct IA states, we could then apply these 

classifiers to estimate the presence of IA states using neural patterns during a separate meditation 

period. We demonstrated the feasibility of using neural patterns to estimate mental states during 

meditation, producing a temporal read-out of mental states that could be used to estimate the 

percentage time engaged in interoceptive focus. To our knowledge, this study provided the first 

objective measure that enabled continuous estimation of mental states that did not impact the 

meditative process by requiring subjective or motor responses (Levinson et al. 2014). However, 

MVPA decisions of meditative mental states should be further validated with participant 

subjective reports (Hasenkamp et al., 2012) and associations with other measures of 

interoception and mindfulness in larger samples. Although the focus of the current approach was 

on within-subject analyses, we preliminarily assessed differences in attention profiles across 

participants and found that participants spent more time attending to the breath vs. other mental 

states during meditation (even with alternate analyses of classifier evidence and decisions), due 

to longer duration on the breath when attention was directed there. This early result suggests that 

attention can be reliably directed towards a focused internal stimulus such as the breath; 

however, this should be replicated in studies with larger sample sizes, and meditative attention 

profiles should be compared to other states such as resting state. Additionally, given the high 

cost of fMRI-based measures, the framework should be extended using alternative neuroimaging 

methods such as electroencephalography and magnetoencephalography (Zhigalov et al. 2019). 

Overall, the initial EMBODY framework shows promising ability to distinguish unique 

brain patterns of internal attention, which can then be used to estimate mental states during 
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meditation. These new metrics may aid measurement of internal focus during meditation 

practice, which could elucidate how cultivating qualities of internal attention may transfer to 

cognitive and emotion regulation. Given that meditation trains multifaceted qualities of attention, 

the framework may be adapted to measure other aspects of attention (e.g., meta-awareness, 

nonjudgment) and meditation practices (e.g., open monitoring, compassion). By developing 

measures to precisely assess the attentional qualities cultivated by meditation, we will gain the 

measurement power needed to rigorously test the attentional and emotional mechanisms through 

which meditation may improve health and well-being. Finally, the EMBODY framework 

highlights that each individual’s brain signatures and meditation practice are unique, which we 

hope will aid researchers and clinicians in designing interventions that will maximally benefit 

individuals in targeted and specific ways. 
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Figure 1. EMBODY Framework: Evaluating Multivariate Maps of Body Awareness to 

measure internal attention states during meditation.  

Step 1. Brain pattern classifier training. Machine learning algorithms are trained in fMRI 

neural patterns associated with internal mental states in the Internal Attention (IA) task. IA is 

directed via auditory instructions to pay attention with eyes closed to the breath, mind wandering

(MW), self-referential processing (Self), and control conditions of attention to the feet and 

ambient sounds (see Fig. 2). Individualized brain patterns for each participant are learned using 

n-1 cross-validation with 6 blocks of the IA task (volume N=2160).  

Step 2. Meditation period classification. Neural patterns are collected during a 10-min 

meditation period (in this case, focused attention to the breath; administered in the middle of 6 

IA blocks), and are decoded by multi-voxel pattern analysis (MVPA) using the unique brain 

patterns learned in Step 1. Meditation is decoded second-by-second into mental states of 

attention to breath (B), mind wandering (MW), or self-referential processing (S), producing an 

estimate of distinct and fluctuating mental states during meditation.  
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Step 3. Quantification of internal attention during meditation. From the temporal read-out of 

meditative mental states in Step 2, attention metrics during meditation can be quantified and 

estimated including percentage time spent in each mental state, number of times engaged in each 

mental state (“events”), and mean duration spent in each mental state.  

 

Figure 2. EMBODY Step 1: Classifier training of internal mental states. (a) Internal 

Attention (IA) task. With eyes closed, participants were directed via 2-s auditory instructions to 

pay attention to five internal mental states for brief time periods (16-50s). The IA task directed 

attention to three mental states relevant for breath meditation (Breath, MW, and Self), and to two 

control mental states (attention to the Feet [another area of the body] and ambient MRI Sounds 

[consistent external distractor]). Example auditory instructions are displayed in quotes. MW was 

induced by instructing participants to stop paying attention and let their minds attend to whatever 

they wanted. Conditions were randomized over six IA blocks in four orders, with 72s of data 

collected from each condition in each block (total 432s/condition). For the last half of IA task 
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trials, subjective ratings of attention were collected after each trial (except MW) using a button 

box (1=less, 4=more). (b) From the IA task, the prediction accuracy of the classifier for 

identifying internal states of attending to the Breath, MW, and Self, and control conditions of 

attending to the Feet and Sounds. Beeswarm plots present each data point, the median (bold 

black line), and ±25th percentile range (gray lines) of the mean prediction accuracy for all data 

in each condition (n=432) across all subjects. Statistical significance was determined by a one-

sample two-sided t-test against theoretical chance-level for classification of 5 categories (20%, 

denoted by dashed line). *** t15=4.65, p<0.001, **** ts15>5.67, ps<0.0001. (c) Mean z-scores 

representing the within-subject correlation between trial-level classifier training accuracy and 

subjective ratings of attention (administered during the last half of IA task trials) for all 

conditions (except MW) and breath trials only. Error bars indicate standard error of the mean. * 

p<0.05. 

Figure 3. Classifier importance maps representing voxels that accurately distinguish 

internal mental states. a) Subject-level importance maps showing individualized brain patterns 

representing voxels that are important for distinguishing neural signatures of attention to the 

Breath, MW, and Self (X=0). For each task condition, importance values were computed by 
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multiplying each voxel’s classifier weight for predicting the condition and the average activation 

during the condition (McDuff, Frankel, and Norman 2009). The maps were thresholded at ±2 SD 

and displayed on the MNI152 template to identify the most important voxels for each participant.

Orange importance voxel indicate positive z-scored average activation values, and blue 

importance voxels indicate negative z-scored average activation values. b) For initial 

characterization of brain regions that supported classification and were common across 

individuals, group importance frequency maps indicate the number of participants for which the 

voxel accurately distinguished each mental state. All importance voxels were summed, 

irrespective of average positive or negative z-scored activation. Frequency maps were also 

computed that independently summed positive (Fig. S2a) and negative (Fig. S2b) z-scored 

activation voxels, as well as histograms of frequency counts (Fig. S2c-e). Note that the 

maximum frequency for any importance map was 10/14.  

 

Figure 4. EMBODY Step 2: Decoding the internal focus of attention during breath-focused 

meditation using individualized brain patterns. Based on each participant’s unique brain 

signatures for Breath, MW, and Self, classifier decisions were made for each time point of fMRI 
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data (TR=1s), producing a continuous estimate of attention states during breath meditation. The 

middle of the meditation period is displayed for two meditators (a, b) and their matched controls 

(c, d). Mental events were quantified as 3 or more consecutive decisions from the same mental 

state (b), and were used to compute metrics of attention during meditation in Step 3. See 

Methods and SI for details and alternate data reduction of classifier evidence and decisions. 

 

 

Figure 5. EMBODY Step 3: Quantification and mental state profiles of internal attention 

during meditation. Based on the estimate of mental states and event specification from Step 2, 

metrics of attention during breath meditation were quantified for each mental state and initially 

characterized at the group level: percentage time spent in each mental state (Breath, MW, or 

Self), the number of events, mean duration of events (s), and variability (standard deviation or 

SD) of duration of events. Overall, participants spent more time attending to the breath vs. mind 

wandering and self-referential processing. Beeswarm plots present each data point, the median 

(bold black line), and ±25th percentile range (gray lines). See Table S9 for full metric statistics.

* paired t13=2.46 , p=0.029, after one-way ANOVA F2,12 = 4.20, p=0.026 

** paired ts13≥3.18, ps≤0.007, after one-way ANOVA Fs2,12≥6.47, ps≤0.005 

34

ls 

s. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 17, 2020. ; https://doi.org/10.1101/461590doi: bioRxiv preprint 

https://doi.org/10.1101/461590
http://creativecommons.org/licenses/by-nc-nd/4.0/

