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ABSTRACT 

The realization that non protein-coding RNA (ncRNA) is implicated in an increasing number 

of cellular processes, many related to human disease, makes it imperative to understand and 

predict RNA folding. RNA secondary structure prediction is more tractable than tertiary 

structure or protein structure. Yet insights into RNA structure-function relationships are 

complicated by coupling between RNA folding and ligand binding. Here, we introduce a 

simple statistical mechanical formalism to calculate perturbations to equilibrium secondary 

structure conformational distributions for RNA, in the presence of bound cognate ligands. For 

the first time, this formalism incorporates a key factor in coupling ligand binding to RNA 

conformation: the differential affinity of the ligand for a range of RNA-folding intermediates. 

We apply the approach to the SAM-I riboswitch, for which binding data is available for analogs 

of intermediate secondary structure conformers. Calculations of equilibrium secondary 

structure distributions during the transcriptional “decision window” predict subtle shifts due to 

the ligand, rather than an on/off switch. The results suggest how ligand perturbation can release 

a kinetic block to the formation of a terminator hairpin in the full-length riboswitch. Such 

predictions identify aspects of folding that are most affected by ligand binding, and can readily 

be compared with experiment. 
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1 INTRODUCTION 

Ribonucleic acid (RNA) folding is intimately connected with its biological functions. Many of 

these functions involve interactions with ligands (1). As the known range of biological roles 

for RNA has expanded-including, for example, enzyme catalysis and diverse mechanisms of 

regulating gene expression-the ability to predict folding from base sequence has become 

increasingly important (2).  

However, as with proteins, folded RNAs often function in partnership with other cellular 

components, such as proteins, other nucleic acids, or small molecules. These interactions often 

perturb RNA folding in a manner that cannot be ignored when attempting to explain biological 

function. For example, the ribosome undergoes a series of conformational changes that are 

coupled to a series of binding and dissociation events involving translation factors (3). Thus, 

the issue of ligand binding is tightly coupled to the dynamic nature of RNA folding. The latter 

coupling, in turn, is essential for understanding how RNA performs its diverse biological roles. 

Therefore, it would be desirable to predict not only RNA secondary structure, but also to 

compute the perturbation to this dynamic folding in response to ligand binding. Programs have 

been presented to predict the effect of binding by oligonucleotide ligands, with focus on the 

accessibility of RNA segments, but not, to our knowledge, on binding by non-nucleic acid 

ligands (4,5). 

Even more important is to have a rigorous, quantitative, testable, and preferably simple 

conceptual framework for understanding how ligand binding is coupled to RNA flexibility. 

Currently the issue is usually discussed in terms of qualitative descriptive models such as “lock 

and key”, “induced fit” and “conformational capture” (6-8). These descriptive models and 

computationally intensive atomistic calculations (9,10), as well as crude virtual screening 

scoring functions (11,12), are problematic for predicting all but the smallest local 

conformational changes. The same is true for Molecular Mechanics Poisson-Boltzmann 

Surface Area (MM-PBSA), Free Energy Perturbation (FEP) and related continuum 

approximation methods for calculating binding energies (11,13,14). The relative feasibility of 

calculating plausible free energies for RNA secondary structures, on the other hand, offers an 

alternative approach to understanding large scale conformational dynamics and relating them 

to ligand binding. 

Ab initio RNA structure calculations are hampered by the fact that complex tertiary interactions 

influence secondary structure (15-17). In spite of these difficulties, ab initio RNA secondary 

structure prediction generally produces a more suitable starting point for alignment-based 

secondary structure prediction than is the case for proteins (18,19). In many cases, reasonable 

hypotheses for the secondary structure can be generated based on empirical values for modular 

components of the RNA, such as nearest neighbor sets of base pairs (20). Experimental studies 

of RNA structures, including chemical reactivity maps, provide rigorous tests of RNA 

secondary structure predictions (18,21,22). On the theoretical side, standard prediction of the 

base pairing arrangement of a single sequence identifies the lowest (minimal) Free Energy 

structure (MFE) and suboptimal structures of slightly higher predicted energy (23). This set 

can then be readily narrowed based on sequence alignments and co-variation analysis. Thus, if 

one initiates one’s prediction limited to the secondary structure of the unliganded RNA, the 

chance of success is strong, especially with sequence alignment data or sparse structural data. 
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This prediction can then provide a good basis for the more challenging task of tertiary structure 

prediction (16).  It also provides a strong starting point for incorporating ligand binding into 

RNA structure prediction. 

Bacterial riboswitches present an ideal model system to extend RNA secondary structure 

calculations to the prediction of secondary structure of RNA molecules in complex with 

ligands. Riboswitches have been found most often in bacteria, where they usually lie in the 5’ 

Untranslated Regions (5’-UTR) upstream of biosynthetic genes (24-26). They contain a bio-

sensing element, called the aptamer, which binds a signaling molecule, and a so-called 

expression platform. The riboswitch undergoes a perturbation in secondary structure upon 

ligand binding, leading to significant changes in expression of downstream genes (27-30). 

Riboswitch thermodynamic and kinetic behavior has been modeled using a systems approach, 

incorporating coupled rate equations for binding and folding (31-35). These simulations 

assumed a binding constant for the ligand to the aptamer-forming structure, which could be 

estimated based upon biophysical measurements. This type of formalism also allows for a 

(presumably reduced) binding affinity for the alternative conformer(s), which are presumed to 

predominate in the absence of ligand. To our knowledge, no previous small molecule binding 

prediction took account of differential binding affinities to the populations of intermediate 

conformers (36). Yet such differential affinity could significantly affect the population 

distribution of conformers at equilibrium. 

Using the well-studied S-Adenosyl Methionine (SAM)-I riboswitch as a model system, we 

hypothesized that a range of secondary structures could play a role in ligand-induced refolding 

(30,37). Riboswitch fragments designed to mimic these intermediate structures were shown to 

bind to SAM but with reduced affinity compared to the fragments which have been truncated 

to form the aptamer fold exclusively (38). These findings gave rise to potential thermodynamic 

and kinetic mechanisms for coupling SAM binding to riboswitch secondary structure (30). 

In this study, we describe a statistical mechanical formalism to simulate and predict the impact 

of a small molecule ligand on RNA population. As far as we know, no previous study has used 

a rigorous statistical mechanics approach to thermodynamically simulate ligand induced 

conformational changes in RNA. We apply the method on the SAM-I riboswitch incorporating 

previous experimental findings to secondary structure calculations for the B. subtilis yitJ SAM-

I riboswitch in the presence and absence of SAM. As in previous work (37), we compute 

thermodynamic properties at a series of transcript lengths, to simulate co-transcriptional 

folding. In this work, rather than calculating base pairing probabilities, we directly compute 

the probabilities of secondary structure folds at the range of transcript lengths, for which 

thermodynamic calculations suggest a “sensing window” (37,39), in the presence and absence 

of SAM. The aim of this study is to determine the effect of the ligand (SAM), on the SAM-I 

riboswitch conformational population distribution. Here, we focus on how the ligand influences 

the population, including strand migration intemediates, at increasing RNA lengths within the 

decision window. 

The results indicate a significant increase in the fraction of conformations containing a 

nucleated P1 helix, an important component of the aptamer secondary structure, in the presence 

of SAM, but only for a narrow range of transcript lengths. The study illustrates that simple 

statistical thermodynamic models can be used to determine the effect of a ligand on the 
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energetics of a RNA population, and quantitatively simulate the conformational shifts 

associated with the ligand binding.  

2 METHODS 

In this work, we introduce a formalism describing the effect of the presence and absence of the 

ligand on the RNA population, as a thermodynamic product and without considering kinetic 

barriers. 

2.1 The energetic description of the system 

A macromolecule-ligand interaction, such as the interaction between RNA and a ligand, can 

be represented as: 

 

𝑅𝑁𝐴 +  𝐿 ⇌  𝑅𝑁𝐴. 𝐿 (1) 

where, 𝑅𝑁𝐴, 𝐿 and 𝑅𝑁𝐴. 𝐿 are the concentrations of the RNA, the ligand and the RNA-

ligand complex, respectively. At equilibrium the reaction free energy ∆𝐺, is 0, and we can 

write: 

 

∆𝐺0 = −𝑅𝑇 ln 𝐾𝑎 = 𝑅𝑇 ln 𝐾𝑑 (2) 

where, ∆𝐺0 is the molar free energy difference at standard conditions i.e. at 𝑇 = 298.15 Kelvin 

and at 1 atm pressure. The free energy of the system is described relative to a reference state 

(an RNA in the same conformation plus the free ligand). 𝑅 is the gas constant, and the 

equilibrium association constant, 𝐾𝑎, represents the equilibrium ratio between the 

concentrations of the products and the reactants, which is given by, 

 

𝐾𝑎 =
[𝑅𝑁𝐴. 𝐿]

[𝑅𝑁𝐴]. [𝐿]
= 1/𝐾𝑑 (3) 

where, 𝐾𝑎 and 𝐾𝑑are the association and dissociation constants, respectively, and the [ ] 

notation denotes the concentrations. Upon binding with ligand, the equilibrium free energy 

difference for the system of RNA plus ligand, relative to the reference state of free RNA of the 

same conformation plus free ligand, can be described by: 

∆𝐺𝑏𝑜𝑢𝑛𝑑 𝑅𝑁𝐴
0 = ∆𝐺𝑢𝑛𝑏𝑜𝑢𝑛𝑑 𝑅𝑁𝐴

0 + ∆ 𝐺𝐵𝑖𝑛𝑑𝑖𝑛𝑔
0  (4) 

where, ∆𝐺𝑢𝑛𝑏𝑜𝑢𝑛𝑑 𝑅𝑁𝐴
0 and ∆𝐺𝑏𝑜𝑢𝑛𝑑 𝑅𝑁𝐴

0  are the free energy of the RNA population before and 

after binding to the ligand, respectively. The quantity ∆ 𝐺𝐵𝑖𝑛𝑑𝑖𝑛𝑔
0  is the total free energy change 

associated with ligand binding. In fact, the last term in equation 4 refers to a free energy change 

for a bimolecular system, and thus includes a contribution from the change in free energy of 

the ligand upon binding. The free energy difference is independent of the ligand concentration 

and RNA conformer population.  

The above treatment assumes that the RNA forms two conformations, or that any variation 

among bound comformations does not affect ligand affinity. To account for differential binding 

to RNA conformers, a statistical mechanical treatment, incorporating a partition function, is 
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required. The treatment above allows us to compute altered folding free energies for the 

individual conformers in the presence of the ligand. The altered free energies for individual 

conformers are incorporated into the statistical mechanical treatment described below. 

2.2 Determining the RNA population: probabilities of the RNA conformers in the 

presence and absence of the ligand 

The partition function (40,41) 𝑄 for 𝑁 conformers, assuming neglegible ligand-ligand 

interaction, is generally considered to be decribed by the equation, 

 

𝑄 =  ∑ 𝑒−∆𝐺𝑖
0/𝑅𝑇

𝑁

𝑖=1

 (5) 

where, 

𝑄 is the partition function, 

∆𝐺𝑖 is the free energy of the conformer 𝑖 in the units of kcal/mol, 

𝑅 is the Gas constant 

𝑇 is the temperature in Kelvin 

Then, 𝑃𝑖 which is the probability of conformer 𝑖 is given by, 

 

𝑃𝑖 =
1

𝑄
 . 𝑒−∆𝐺𝑖

0/𝑅𝑇 (6) 

In the absence of the ligand (before binding), the partition fuction 𝑄𝐵𝐵 is thefore given by, 

 

𝑄𝐵𝐵 =  ∑ 𝑒−∆𝐺𝑖
0

𝑢𝑛𝑏𝑜𝑢𝑛𝑑 𝑅𝑁𝐴
/𝑅𝑇

𝑁

𝑖=1

 (7) 

where, 

𝑄𝐵𝐵 is the partition function for the system before binding, 

∆𝐺𝑖 𝑢𝑛𝑏𝑜𝑢𝑛𝑑 𝑅𝑁𝐴
0  is the folding free energy of the conformer 𝑖 before binding, in the units of 

kcal/mol, as calculated by the RNAsubopt program. 

 

Then, 𝑃𝑖 𝐵𝐵 the probability of conformer 𝑖 before binding is given by, 

𝑃𝑖 𝐵𝐵 =
1

𝑄𝐵𝐵
 . 𝑒−∆𝐺𝑖

0
𝑢𝑛𝑏𝑜𝑢𝑛𝑑 𝑅𝑁𝐴

/𝑅𝑇 (8) 

To determine the probabilities of the RNA population in the presence of the ligand (after 

binding), the partition function is re-calculated using the modified free energies after the 

binding from the equation, 

𝑄𝐴𝐵 =  ∑ 𝑒−∆𝐺𝑖
0

𝑏𝑜𝑢𝑛𝑑 𝑅𝑁𝐴
/𝑅𝑇

𝑁

𝑖=1

 (9) 

where, 

𝑄𝐴𝐵 is the partition function for the system after binding, 
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∆𝐺𝑖
0

𝑏𝑜𝑢𝑛𝑑 𝑅𝑁𝐴
 is the free energy difference of the conformer 𝑖 after binding, in the units of 

kcal/mol. 

 

Then, the probability 𝑃𝑖 𝐴𝐵 of conformer 𝑖 after binding is calculated from, 

𝑃𝑖 𝐴𝐵 =
1

𝑄𝐴𝐵
 . 𝑒−∆𝐺𝑖

0
𝑏𝑜𝑢𝑛𝑑 𝑅𝑁𝐴

/𝑅𝑇 (10) 

The modified/ re-scaled free energies ∆𝐺𝑖
0

𝑏𝑜𝑢𝑛𝑑 𝑅𝑁𝐴
 are obtained according equation (4). 

It should be noted that, since the focus of the calculation is purely on the RNA conformer 

populations in the bound state, the relative values of ∆𝐺𝑖
0

𝑏𝑜𝑢𝑛𝑑 𝑅𝑁𝐴
 will determine the outcome. 

The value of ∆𝐺𝑖
0

𝑏𝑜𝑢𝑛𝑑 𝑅𝑁𝐴
 is independent of the total concentration of reactants. Thus, the 

calculation does not account for the overall ligand concentration dependence for the conformer 

population distribution. It does, however, provide a rigorous description of the conformer 

distribution for the bound subpopulation of RNA (the population “after binding”). The quantity 

∆ 𝐺𝐵𝑖𝑛𝑑𝑖𝑛𝑔
0  is assumed to be equal to the summation of free energy contributions of both 

specific and non-specific binding. 

 

If ligand binding is associated with a specific substructure, then the set of conformers 

containing this substructure can be considered as a macrostate. The probability of this 

macrostate before binding to the ligand is calculated as the summation of all probabilities of 

the constituting microstates, 

𝑃𝑠𝑢𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝐵𝐵 = ∑ 𝑃𝑖 𝐵𝐵

𝑆

𝑖=1

=
1

𝑄𝐵𝐵
 . ∑ 𝑒−∆𝐺𝑖 𝑢𝑛𝑏𝑜𝑢𝑛𝑑 𝑅𝑁𝐴

0 /𝑅𝑇

𝑆

𝑖=1

=
𝑞𝐵𝐵

𝑄𝐵𝐵
 (11) 

where,  

𝑄𝐵𝐵 is the partition function before binding with the ligand. 

∆𝐺𝑖 𝑢𝑛𝑏𝑜𝑢𝑛𝑑 𝑅𝑁𝐴
0  is the free energy of conformer 𝑖 before binding with the ligand. 

𝑞𝐵𝐵 is the sum of the Boltzmann factors for conformers that contain a particular 

substructure before binding with the ligand. The summation in the equation above is over 𝑆 

states, which contain that particular substructure. The probability of this macrostate after 

binding is calculated from,  

𝑃𝑠𝑢𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝐴𝐵 = ∑ 𝑃𝑖 𝐴𝐵

𝑆

𝑖=1

=
1

𝑄𝐴𝐵
 . ∑ 𝑒−∆𝐺𝑖 𝑏𝑜𝑢𝑛𝑑 𝑅𝑁𝐴

0 /𝑅𝑇

𝑆

𝑖=1

=
𝑞𝐴𝐵

𝑄𝐴𝐵
 (12) 

where,  

𝑄𝐴𝐵 is the partition function after binding with the ligand. 

∆𝐺𝑖 𝑏𝑜𝑢𝑛𝑑 𝑅𝑁𝐴
0  is the free energy of conformer 𝑖 after binding with the ligand. 

𝑞𝐴𝐵 is the sum of the Boltzmann factors for conformers that contain a particular 

substructure after binding with the ligand. 
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2.3 Constructing free energy landscapes of macrostates in the absence and presence of 

the ligand 

A free energy landscape is constructed by calculating the macrostate free energies from groups 

of conformers having a specific substructure in the presence and absence of the ligand. The 

free energy landscape for macrostates was constructed from their corresponding probabilities 

(obtained from equations 11 and 12, respectively). The corresponding free energy of a 

substructure or macrostate in the absence and presence of the ligand is calculated from, 

∆𝐺𝑠𝑢𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝐵𝐵 = −𝑅𝑇 ln(𝑃𝑠𝑢𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝐵𝐵 × 𝑄𝐵𝐵) (13) 

and,  

      ∆𝐺𝑠𝑢𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝐴𝐵 = −𝑅𝑇 ln(𝑃𝑠𝑢𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝐴𝐵 × 𝑄𝐴𝐵) (14) 

 

 

2.4 Application to the SAM-I riboswitch 

2.4.1 Calculating the binding energies of SAM to the SAM-I riboswitch 

 

The method described above was applied to study the effect of SAM on the yitJ SAM-I 

riboswitch.  As described in the Supplementary Methods, the interaction of the RNA with SAM 

can be represented by the thermodynamic cycle involving RNA in structured or unstructured 

states, and in forms where it is bound or unbound to SAM (Figure S1).To test the robustness 

of the results with respect to uncertainties in experimental equilibrium dissociation constants 

(see Supplementary Note 1) and to evaluate the impact of the differential binding between the 

aptamer and intermediates, calculations were repeated to obtain probability distributions using 

different sets of binding energies, ∆ 𝐺𝐵𝑖𝑛𝑑𝑖𝑛𝑔
0 . The binding energies were obtained from single 

titration point equilibrium dialysis data, from Scatchard plots derived from multiple 

equilibrium dialysis measurements (38) or from two sets of data for hypothetical ligands of 

stronger binding affinity (hypothetical ligand 100x and hypothetical ligand 1000x). 

For single titration point data, the probabilities presented were obtained using an energy range 

of 8 kcal/mol from that of the MFE from data in (38) as described in the Supplementary 

Methods. For the Scatchard plots and hypothetical ligands, all intermediates were assumed to 

bind with similar affinities to the ligand and the probabilities were also obtained using the same 

energy range of 8 kcal/mol from optimum. Specifically, in the case of Scatchard plots, the 𝐾𝑑s 

for all intermediates were assumed to be equal to that which was measured for 3P1_10AT (38), 

which is the only intermediate for which binding was measured using this method. In all cases 

mentioned above, ∆ 𝐺𝐵𝑖𝑛𝑑𝑖𝑛𝑔
0  was assumed to be equal to:  

∆ 𝐺𝐵𝑖𝑛𝑑𝑖𝑛𝑔
0 =  ∆ 𝐺𝑠𝑝𝐵𝑖𝑛𝑑𝑖𝑛𝑔

0 +  ∆ 𝐺𝑛𝑜𝑛−𝑠𝑝𝐵𝑖𝑛𝑑𝑖𝑛𝑔
0  (15) 

where ∆ 𝐺𝑠𝑝𝐵𝑖𝑛𝑑𝑖𝑛𝑔
0  and ∆ 𝐺𝑛𝑜𝑛−𝑠𝑝𝐵𝑖𝑛𝑑𝑖𝑛𝑔

0  in equation 15 are the SAM binding free energies to 

the riboswitch in the presence and absence of the P1 helix structure, respectively. Previous 

studies suggested that, the presence and stability of the P1 helix had been correlated with SAM 

binding (38,42-44). Thus, in our calculations, we assumed the free energy of binding of a 
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construct that lacks the P1 helix (P2-AT in reference (38)) to represent the non-specifc 

binding ∆ 𝐺𝑛𝑜𝑛−𝑠𝑝𝐵𝑖𝑛𝑑𝑖𝑛𝑔
0 . Since all RNA may have non-specific binding, it has no effect on 

the calculated probabilities after binding, and it was assumed to be the same across all binding 

data sets. Hence, only the specific binding ∆ 𝐺𝑠𝑝𝐵𝑖𝑛𝑑𝑖𝑛𝑔
0  was used in the energy re-scaling i.e. 

in obtaining ∆𝐺𝑖
0

𝑏𝑜𝑢𝑛𝑑 𝑅𝑁𝐴
. 

2.4.2 Calculating the probabilities of intermediates and transition states in the presence 

and absence of SAM 

 

The predicted RNA optimal and suboptimal secondary structures were scanned for the presence 

of substructures that are hypothesized, based on data with analogue truncated molecules (38), 

to be capable of binding to SAM. These structures therefore are assumed to manifest a modified 

free energy in the presence of the ligand. Each conformer was classified to belong to either one 

of the following: 

1. Strand Migration Intermediates (binds to SAM), illustrated in Figure 1: 

2P1_11AT, 3P1_10AT, 4P1_9AT, 5P1_8AT, 6P1_7AT, 7P1_6AT, 8P1_5AT 

Here numerals refer to the number of base pairs in the competing P1 and “anti-

terminator” (AT) helices, respectively. The antiterminator helix takes its name due to 

competition with the downstream rho-independent terminator helix, in the absence of 

ligand (45-47). The P1 helix is a critical component of the four-helix containing SAM-

binding aptamer, and potentially blocks the formation of the AT helix, facilitating 

termination of transcription.  

Two sets of calculations were made using a search criteria “continuous AT” and 

“discontinuous AT”. In the latter, one mismatch/unpaired base was allowed in the AT 

stem. For example 2P1_11AT and 2P1_10AT were considered indistiguishable. Hence, 

2P1_10AT, 3P1_9AT, 4P1_8AT, 5P1_7AT, 6P1_6AT, 7P1_5AT, 8P1_4AT were 

assumed to bind to SAM with similar binding energies to the corresponding 

intermediate with continuous/fully base paired AT loop. Here XP1_YAT includes any 

substructure with Y AT base pairs, regardless of their distribution. In other words, the 

single unpaired base may occur anywhere within the AT stem. Additional structures 

within this category include those with base pairs within the AT loop (Figure S2, panels 

C and F), which are assumed to be present within the experimental binding data, and 

therefore are included with the same binding free energy. 

2. Transition States Aptamer_TS (binds to SAM), illustrated in Figure 1, which contains 

a full P1 helix but only a partially base paired AT loop (less than 4 base pairs). In the 

absence of the ligand, this group of intermediates are less stable compared to those 

containing 8P1_5AT (see below). Based on analogy to binding data for the truncated 

aptamer (38,46), however, this group is assumed to bind SAM with more favourable 

free energy. 

 

3. Any conformer that does not belong to one of the two groups above is considered to 

not bind to SAM. 
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The first two categories are classified as “binding-competent” conformers (48), while the third 

category is considered to be “binding-incompetent”. RNA structures which contain a particular 

substructure (that is, a specific configuration within the the P1/AT competition region) were 

considered indistinguishable, regardless of the configuration in other parts of the molecule (i. 

e. helices P2-P4 and linking segments), and likewise for those containing the Aptamer_TS. 

Such “indistinguishable structures” (indistinguishable from the available binding data) were 

lumped into a single macrostate. The probability of this macrostate was calculated as the 

summation of all probabilties of the constituting states according to equation 11. In the case of 

the SAM-I riboswitch, for example, the substructure may exist alongside variations in 

secondary structures in the P4 and in parts of the P2 and P3 helix regions, with limited effect 

on measurable binding parameters. 

A string search through the suboptimal RNA conformers using both their secondary structure 

bracket notation and the corresponding sequence/position was used to identify the occurrence 

of each substructure. In order to account for strand “slippage” and base pairing variations in 

the AT loop (Figure S2), counting the number of base pairs in the AT loop was made flexible, 

in such a way that it allowed base pairing anywhere in the AT loop. As described earlier, the 

corresponding energies of conformers that bind with SAM were re-scaled, while those that do 

not bind with SAM remained unchanged. The resulting new set of energies ∆𝐺𝑖 𝑏𝑜𝑢𝑛𝑑 𝑅𝑁𝐴
0  were 

used to calculate the probabilities of substructures after binding from equation 12. The 

corresponding free energies of macrostates determined by groups of conformers having 

different number of (competing) base pairs in the P1 and AT loops, in the absence and presence 

of SAM, were calculated from equations 13 and 14, respectively. 

2.5 Implementation of the method using RNAsubopt 

The optimal (mimimal free energy or MFE) structure and the suboptimal structures (higher 

energy structures compared to the optimal within a specified energy range) of the SAM-I 

riboswitch were calculated, for a range of increasing transcript lengths. Optimal and suboptimal 

RNA secondary structures were calculated using the Vienna package RNAsubopt software (49). 

For all calculations throughout the manuscript, RNAsubopt options were set to –e 8, i.e. 

suboptimal structures within an energy range of 8 kcal/mol from the MFE unless otherwise 

stated, and -T to 25°C i.e to room temperature 298 Kelvin. Some simplifying assumptions were 

incorporated in order to focus the analysis on the effect of ligand binding on the RNA 

conformational distribution. Specifically, to reduce the number of conformers, the option –

noLP was used, implying that no helices with only a single base pair were allowed. Default 

parameters were used otherwise. It should be noted that the default parameters in the 

RNAsubopt program apply a simple model for the treatment of the dangling ends and usually 

ignore coaxial stacking. Namely, in the default option for the dangling ends and coaxial 

stacking treatment (option -d2), the energetic contributions of the stacking of an unpaired 

dangling base, present between two helices, are added on both sides of the base, whereas 

coaxial stacking of helices are ignored. A more sophisticated treatment of coaxial stacking 

needs be investigated in the future (e.g. (50) and references therein). RNA structures were 

plotted using the RNAplot program (51). 
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3 RESULTS 

We wished to derive a method for simulating conformational shift/rearrangement in the RNA 

population, incorporating the effect of bound ligand. The method was applied to study the effect 

of SAM on the yitJ SAM-I riboswitch. Starting with calculated free energies for suboptimal 

secondary structures, we searched those secondary structures for motifs that have been shown 

to correlate with ligand binding. The method then modifies the free energies of those binding-

competent suboptimal structures to obtain a new set of energies for the RNA population. 

Through the calculated partition function before and after binding, the probabilities of 

conformers containing a specific secondary substructure or motif can be estimated in the 

presence and the absence of the ligand. The method bridges the gap between conformational 

capture and induced fit by making rigorous quantitative prediction of individual conformer 

populations probabilities. 

3.1 The ranges of dissociation constants and binding energies of the SAM-I riboswitch 

aptamer and proposed intermediates 

The binding constants for “strand migration intermediates” (see Materials and Methods section, 

Figure 1 and Table S1 for definitions of those intermediates) were determined from single 

titration point equilibrium dialysis measurements (38) and calculated as described in the 

Supplementary Methods. The 𝐾𝑑 values for constructs representing intermediates (Figure 2 

and Table S2A) ranged from ~ 0.79 −  2.0 micromolar (μM), for the tightest (8P1_5AT) and 

weakest (2P1_11AT) binding intermediates, respectively. The latter 𝐾𝑑 values correspond to 

total binding free energy differences at standard conditions (∆ 𝐺𝐵𝑖𝑛𝑑𝑖𝑛𝑔
0 ) ranging between 

−7.77 to −8.32, kcal/mol. Constructs P2_AT and Aptamer (“Aptamer_Mg_snap_cooled”) 

had 𝐾𝑑 values of 9.99 × 10−5 M and 3.30 × 10−7 M, respectively. Thus, the Aptamer 

construct binds ~ 300-fold more tightly than the P2_AT. The latter 𝐾𝑑 values correspond to 

standard binding free energies (∆ 𝐺𝐵𝑖𝑛𝑑𝑖𝑛𝑔
0 ) of −5.45 and −8.84 kcal/mol, respectively. The 

difference of ~ −3.38 kcal/mol therefore represents the binding energy in the presence of a 

fully base paired P1 and in the absence of a competing strand from the AT loop. A more 

comprehensive list of binding energies for other constructs are compiled in Table S3. 

Upon the subtraction of the non-specific binding energy (∆ 𝐺𝑛𝑜𝑛−𝑠𝑝𝐵𝑖𝑛𝑑𝑖𝑛𝑔
0 ) to obtain the P1 

specific binding energy contribution (∆ 𝐺𝑠𝑝𝐵𝑖𝑛𝑑𝑖𝑛𝑔
0 ) for each construct (which could be defined 

as the energetic cost upon binding due to the presence of the P1 helix for each construct), 

energies with magnitudes ranging between −2.31 and − 2.86 kcal/mol for the strand migration 

intermediates and −3.38 kcal/mol for the Aptamer (Figure 2) were obtained. This variation in 

binding free energy among the binding-competent intermediates is of the order of ~ 0.55 

kcal/mol, while the difference between the intermediates and the Aptamer ranges from 

~ 0.52 to ~1.07 kcal/mol. This free energy difference trends towards stabilization of the 

conformers containing the fully folded P1 helix (and in the absence of a competing strand from 

the AT loop) relative to those with only a partially base paired P1 and/or base pairing 

competition exerted by a strand from the AT loop. Thus, if this equilibrium were reached during 

the respective window during transcription, it would tend to prime the system for the 

downstream unfolding of the AT loop.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 5, 2018. ; https://doi.org/10.1101/461749doi: bioRxiv preprint 

https://doi.org/10.1101/461749


 

11 

 

 

Scatchard plots, that are based on equilibrium dialysis measurement, can provide more accurate 

𝐾𝑑 measurements, since the values are deduced from numerous measurements as opposed to 

single titration point measurements. A small margin of difference had been reported in the 

deduced 𝐾𝑑 from the two techniques (38). To test if this difference would affect the results, we 

performed the calculations using both datasets independently. The limitation of the Scatchard 

plots binding data is that data points for only two constructs, namely the 3P1_10AT and the 

aptamer were available in the previous study (38). The 𝐾𝑑 values derived from Scatchard plots 

and used for probability calculation were 7.90 × 10−7, 9.99 × 10−5 and 3.20 × 10−8 M for 

the intermediates, P2_AT and aptamer, respectively (Table S2B). The latter values reflect a 

superior discriminatory power (higher differential binding) in the favour of the aptamer over 

the intermediates, if compared with single titration point data. The corresponding specific 

binding energies (∆ 𝐺𝑠𝑝𝐵𝑖𝑛𝑑𝑖𝑛𝑔
0 ) for the intermediates and aptamer were −2.87 kcal/mol and 

−4.76 kcal/mol, respectively. Calculations were also performed using two hypothetical ligands 

(hypothetical ligand 100x and 1000x). The 𝐾𝑑 values were set in such a way that they would 

exhibit an even higher differential binding, to determine what differential binding would result 

in the dominance of the Aptamer_TS structure. The 𝐾𝑑  values for these hypothetical ligands 

and their corresponding binding energies are tabulated in Table S2C and Table S2D, 

respectively. A tenfold decrease in 𝐾𝑑 is predicted to tip the balance towards the Aptamer_TS 

structure but intermediate structures become negligible only with another order of magnitude 

in differential affinity. 

3.2 Broader probability distributions in the absence of SAM are observed at longer 

riboswitch lengths (≥ 150 nucleotides) 

Computing the populations of all possible secondary structures of a riboswitch of well over 

100 nucleotides is computationally expensive. On the other hand, conformations with free 

energies above a certain threshold will make a negligible contribution to the overall ensemble. 

We chose to include conformations with free energies up to 8 kcal/mole higher than that of the 

MFE, corresponding to probabilities of suboptimal conformers that are approximately six 

orders of magnitude lower than that of the MFE in the temperature range 298-310 K. The 

number of suboptimal structures within the tested energy range increases as a function of length 

and ranges from ~3.73 x 104- ~2.48 x 105 structures for lengths 145 - 152 (Figure S3A, Table 

S4). From the perspective of this study, we are not concerned of the details of these structures, 

but we need to distinguish between binding-competent and binding-incompetent structures. At 

a transcript length of 145 nucleotides, the number of conformers found within the 8 Kcal/mol 

range relative to the MFE and that are binding-competent is approximately ~ 

2.82 x 104conformers, and this number increases to reach ~ 5.37 x 104 conformers at sequence 

length 149 nucleotides (highest), and then the number of binding-competent conformers 

sharply decreases again at 150 or longer (Figure S3B). Thus, the number of different 

conformers that are capable of binding to SAM within the selected free energy window of the 

MFE peaks at 149. This number of conformers alone is not a measure of the amount of SAM 

bound. First, the number of possible suboptimal structures increases with longer 

transcription/RNA lengths and second, the stability of each conformer must be weighted 

according to the corresponding Boltzmann factor, based on the individual conformer free 

energies. Figure S3C shows the binding-competent conformers as a fraction of suboptimal 

structures within the free energy window, as a function of transcript length. The largest fraction 
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of conformers within the free energy range that are binding-competent (~ 76%) was at length 

146 nucleotides from the beginning of the riboswitch. 

Histograms of the energy distribution of the RNA population (Figure S4) show a smooth 

distribution of free energies of the population at all examined transcription lengths in the 

absence of SAM. In order to predict the binding-competent proportion of the population at a 

given time, we went on to calculate the total probability of conformers having one of the 

substructures, at a given transcription length. The explicit description of the conformer 

population is a unique feature of the current approach, which provides crucial insight into the 

perturbation of the Free Energy Landscape due to ligand binding. In the absence of SAM, the 

sum of probabilities of all binding-competent conformers decreased from 98% to 7% at 

transcription lengths from 145 to 152 (Figure 3, Table S5). The binding-competent strand 

migration intermediates, dominate at lengths 145-147, and still represent a significant 

proportion of the population at transcript length 148. A bigger decrease is seen at 149: only 

35% of the population can bind to SAM. An abrupt reduction, however, of the total probability 

of the population that can bind to SAM was observed at a transcript length of 150 (or longer). 

Further, at this length (≥ 150 nucleotides) a broader probability distribution is observed 

compared to shorter lengths (Figure S5). This result agrees with previously reported 

calculations (37) that the unbound riboswitch favours AT helix formation in a short 

transcription window starting near a length of 150 nucleotides. 

The number of different conformers per intermediate, and corresponding fractions are tabulated 

in Table S6 and illustrated in Figure S6. In the absence of SAM, the riboswitch population is 

dominated by a fully base paired P1 helix (in the unbound state) up to transcript length 148. 

The probability of conformers containing the 8P1_5AT substructure, i.e. with a fully base 

paired P1 helix, represented ~ 83.8% at transcription length 145 and gradually declined with 

the increase of transcription length to reach ~ 4.56% of the population at transcription length 

of 152 nucleotides (Table S5, Figure S7). 

3.3 The effect of SAM on the RNA population: The presence of SAM stabilizes the 

intermediates with fully folded P1 helix 

Calculations were made using binding energies obtained from two experimental and two 

simulated (hypothetical) sets of binding data. The reader may refer to the Materials and 

Methods section for a detailed description of the energetics of the system and the probability 

calculations. Tables S2 (A, B, C and D) show the binding data used and the corresponding free 

energy of binding. These values were added to calculated folding free energies to obtain the 

probabilities after binding (i.e. probabilities in the presence of the ligand). 

We start by presenting results incorporating binding free energies derived from single titration 

point data. Histograms of the energy distribution of the RNA population (Figure S8) show that 

the presence of SAM in the environment sharply perturbs the free energy distribution (or free 

energy landscape) of the SAM-I riboswitch population, by lowering the free energy of only a 

subset of the population (compare to Figure S4). This selection process is reminiscent of the 

so-called conformational capture mechanism, in the sense that pre-existing conformers are 

stabilized upon binding, but differs in that multiple conformers are still present (30). The gap 

observed between two clusters in the histograms becomes less abrupt at transcription length 
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150 or longer. This gap represents the difference in free energy between binding-competent 

and binding-incompetent conformers. 

Figure S5 shows plots of energies versus probabilities of the SAM-I riboswitch, at lengths 

145-152, before and after binding with SAM, hence illustrating the impact of SAM on the 

population. The analysis of the probability distribution after binding showed that at 

transcription lengths 145, 146, 147, 148 and 149 the total probability of binding-competent 

conformers (or bound conformers i.e. containing one of the substructures/intermediates) range 

between ~0.90 and ~1.0 (Figure 3 and Table S5) when SAM is assumed to be bound. A modest 

but significant reduction (6-10%) of the total probability of bound conformers at transcription 

lengths 150 or longer was predicted. Specifically, at transcript lengths of 150, 151 and 152, the 

total probability of conformers containing the intermediates/substructures were 0.93, 0.90 and 

0.90, respectively. 

Conformers having the 8P1_5AT substructure have the lowest energy and hence constitute the 

majority of the population after binding with SAM. Hence, the presence of SAM can be 

correlated with the presence of the fully base-paired P1 helix. Specifically, the calculations 

showed that, in the presence of SAM, the percentage of conformers containing the 8P1_5AT 

substructure declines from 84.6% to 61.1%, for transcription lengths 145-152 nucleotides 

(Table S5, Figure S9). A consequence of the gradual reduction of the percentage of conformers 

with fully base paired P1 helix is that the downstream formation the aptamer with a termination 

loop, which is responsible for transcription termination, will require unpairing of the AT helix. 

While a sharp decline is particularly seen at transcription length 150 or longer in the absence 

of SAM, the decline is much less in the presence of SAM. It is clear, that the effect of SAM on 

the population before transcription in the length range of 148 to 150 is more dramatic compared 

to the limited effect after this transcription length (Figure 3 and Figure S5). 

Comparing the probabilities of conformers in the tables before and after binding to SAM shows 

that the binding of SAM leads to 1) increase of the population of conformers that have a 

nucleated P1 helix, particularly in the “decision window” between 150-152 nucleotides, 2) 

within the latter set of conformers, an increase in the contribution of those with a full P1 helix 

to the point that they dominate the population, 3) an increase in the probability of conformers 

with an unfolded AT loop (Aptamer_TS) and 4) conformers that lack the P1 helix (which are 

binding-incompetent) are reduced to a minority of the population. This stabilization of the P1 

and unfolding of the AT loop subsequently will lead to lowering of the activation energy 

required for the formation of the termination loop once its sequence is transcribed downstream. 

It should be noted that, at any given length in the studied window, if only AT base pairs as 

defined in the expected full length AT helix (i.e. as shown in Figure 1) are included in the 

binding-competent category, and if a continuous AT loop is required, then the total probability 

of the substructures before binding, even at lengths 148 or 149, is found to be low (data not 

shown). Since still a small percent of the RNA population incorporates mismatches and 

“slippage” in the AT loop, and these are not likely to affect binding, the discontinuous AT set 

of probability calculations is likely to be more accurate. As reported in the Materials and 

Methods section, this assumption has been incorporated into the results reported here. The 

effect of this assumption is described in detail in section 3.6. 
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Similar trends were observed upon using binding energies obtained from Scatchard plots 

(Figure S10 and Table S5). The latter calculations yield up to ~ 2.3% increase in the total 

probabilities of the binding-competent conformers after binding (last column in Table S5). 

This difference comes from a significant redistribution in the population. Specifically, the 

Aptamer_TS probability significantly increases (up to ~ 23.65%) compared to the calculations 

using the single titration point data, whereas 8P1_5AT is reduced by ≤ 21.45%. Figure 4 

illustrates the impact of SAM on the probabilities of the intermediates, including the 

aforementioned increase of Aptamer_TS, at a chosen transcription length 149. This shift 

reflects a greater differential binding in favour of the aptamer compared to the intermediates in 

the Scatchard data. 

Because the Aptamer_TS represents conformers that possess an unfolded AT loop, which are 

therefore primed for formation of the terminator loop, we wanted to determine what extent of 

differential binding would be required for the Aptamer_TS to dominate the population. For this 

purpose, two hypothetical ligands with a higher differential binding were tested; hypothetical 

ligand 100x (Figure S11 & Table S7) and hypothetical ligand 1000x (Figure S12 & Table 

S7). The probabilities after binding showed that the Aptamer_TS exceeded other substructures 

(beyond 50%) in the population with the hypothetical ligand 100x, and before transcription 

length of 150. The latter, i.e. the Aptamer_TS, overwhelmingly dominates the population e.g. 

> 90% when the ratio between 𝐾𝑑 of the intermediates/Aptamer is equal to 103. Altogether, 

these results indicate that a bigger differential in aptamer binding to SAM than has been 

observed would be required to complete unfolding of the AT loop before the terminator loop 

is fully transcribed. 

3.4 The predicted effect of key mutations on ligand-induced riboswitch folding 

The presented simulation method can be used to predict the effect of mutations on the 

population in the presence and absence of the ligand. Figure S13 shows the total probability 

of the binding-competent conformers of the SAM-I riboswitch in the absence and the presence 

of SAM (panels A and B, respectively) of various mutants. Mutants that perturb or destabilize 

the P1 helix are predicted to reduce the probability of binding-competent conformers, both in 

the presence and absence of SAM. This outcome should inhibit transcription termination. Some 

mutants increase the stability of the P1 helix compared to the wild type, leading to the predicted 

increase in the population of binding-competent conformers compared to wild type at all 

transcript lengths, including lengths of 150 nucleotides or longer. A predicted consequence 

would be transcription termination even at low SAM concentrations, since the transcript is 

primed to form the terminator even when SAM is not present. 

Interestingly, similar findings have been observed experimentally (46). Mutants that perturbed 

the P1 helix have been shown to reduce the binding and reduce the termination in both the 

presence and absence of SAM (46,52). Whereas, mutants that stabilize the P1 helix increased 

the fraction terminated in both the presence and even in the absence of SAM (52). 

3.5 Validating the appropriate energy range, sufficient conformation sampling, and 

appropriate transcription window 

To verify that the suboptimal structures of free energies more than 8 kcal/mole higher than that 

of the MFE make a negligible contribution to the overall results and conclusion, the total 
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probability of all conformers that are assumed to bind to SAM (strand migration intermediates) 

in the presence and absence of SAM, were calculated at different energy ranges (from 2 - 11 

kcal/mol). For this purpose, we calculated the total probability at length 148, since at this length 

a sufficient proportion of those binding-competent conformers are populated (Figure S3). 

Previous studies indicated that this length allows sampling of conformers representing strand 

migration intermediates (37). The total probability before and after binding with SAM, both 

including binding to substructures with an interruption in AT loop base pairing (Figures S14A 

and S14B, respectively) and including only those with a continuously base paired AT loop 

(Figures S14C and S14D, respectively) are presented. The probabilities, before or after 

binding, showed no significant changes (<< 0.01%), when the energy range was changed from 

8 kcal/mol to 11 kcal/mol. This energy range or wider is therefore generally sufficient to 

estimate the perturbed probabilities to a first approximation. The number of conformers must 

increase as a function of the energy range and sequence length. Hence, the energy range of 8 

kcal/mol can be thought of as a reasonable balance between accuracy and computational time.  

The latter energy range was used for all calculations, unless otherwise explicitly stated. 

Riboswitch structures are normally depicted beginning from the 5’ end of the P1 helix. In this 

case, the length of the full yitJ SAM-I riboswitch is 157 nucleotides. Competition between the 

AT helix and the P1 starts at transcription length 145. The termination loop can be nucleated, 

in principle, using a sequence that is 149 bases long (one base pair can possibly form at this 

length). The window 145 - 152 bases was therefore studied, to determine the effect of SAM on 

the competition between P1 and AT helix formation. Previous studies had indicated that this 

length represents a “decision window” for riboswitch folding (37,39). At the same time, the 

formation of AT base pairs in this window has a downstream impact on the 

induction/nucleation and fomation of the termination loop. 

3.6 Probabilities of the discontinuous AT loop represent the RNA population more 

efficiently compared to the probabilities of the continuous AT loop  

As described in the methods section, the probability calculations for conformers containing the 

substructures that represent strand migration intermediates were made assuming two different 

criteria for substructures. The first set of calculations considered a conformer to have a 

particular substructure if the number of base pairs in both the P1 helix and the AT loop exactly 

match the specific substructure (i.e. having a “continuous AT” loop). The second allowed for a 

single mismatch/unpaired base pair in the AT loop (i.e. having a “discontinuous AT” loop). 

Throughout this manuscript, these two sets of calculated probability values are referred to as 

“continuous AT” (Table S8) and “discontinuous AT” probabilities (Tables S5 and S7).  

Both calculations were carried out to ensure that the criteria used to obtain the probabilities of 

the “intermediates” allow sufficient sampling of the population, and that minute deviations 

from the proposed intermediates would not lead to significant changes in the probability 

calculations. At all transcription lengths in the studied range, the total probability difference 

between the discontinuous AT and continuous AT set of calculations ranged from ~ 0.0 – 0.14 

(i.e. ~ 0 – 14%) before binding and 0.0 – 0.03 (i.e. 0 – 3%) after binding. Thus, the percent of 

RNA population available for binding is sensitive to the criteria for binding-competence, and 

the discontinuous AT criteria, which is the criteria used in calculating the presented results, 

sample the RNA population more efficiently than the continuous AT criteria. 
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4 DISCUSSION 

4.1 The development of a ligand-induced conformational shift simulation method 

RNA secondary structure prediction/folding is now a well-established field, but much less is 

understood about how ligands that specifically bind to RNA can induce structural changes in 

the population. We chose to address this problem using the well-studied SAM-I riboswitch as 

a model system. Many questions have been raised about the SAM-I riboswitch and 

riboswitches in general, (10,30,42,43,53-55) such as: How does SAM influence the base 

pairing competition between the P1 helix and the AT loop? What is the effect of the ligand on 

the RNA conformational population distribution? While many studies, including X-ray and 

NMR structural studies, have addressed riboswitch recognition, we aimed to understand how 

ligand binding perturbs the folding of the RNA, and, in turn, the downstream gene expression. 

While ligand binding to a conformational intermediate has been documented for at least one 

other riboswitch (48,56), the yitJ SAM-I riboswitch is unique in that binding affinity 

measurements are available for a significant proportion of the likely binding-competent 

intermediates. 

To address these questions regarding the fundamental riboswitch mechanism, we combined 

suboptimal structure prediction with experimental binding free energies to re-calculate 

structural features in the population in the presence and absence of the ligand. Hence, the effect 

of the ligand on RNA population was simulated. Conceptually, our approach is similar to that 

of linked equilibria which has been a long established framework for modeling allostery and 

cooperativity in ligand-protein interactions (57). The study illustrates a mechanism by which 

the ligand shifts the equilibrium to favour a certain family of conformations, and hence leads 

to a transcription stop signal. Thus folding, and as a consequence gene expression, is coupled 

to the presence or absence of the ligand. Methods for simulating nucleotide ligand binding to 

RNA motifs have been previously reported (5,36). The latter method was illustrated on the 

binding of short RNA using oligonucleotides as ligands (5). In the current study, however, a 

general method to make use of binding data of small molecules was presented.  

Most importantly, this is the first study to illustrate the possible role of 

differential/discriminatory binding between the fully folded RNA and intermediates in shaping 

the population distribution. Previously, aside from the aptamer forming state, few riboswitch 

experimental or theoretical studies took account of the possibility of binding to alternate 

conformers. The complex details of binding to a particular conformer, such as tertiary 

interactions, are intrinsically taken into account through the binding energy, since the latter was 

measured using an analog RNA that is constrained to form a single secondary structure, but is 

free to adopt a range of tertiary structures (38). By the same principle, variants in secondary 

structure outside of the P1/AT competition region (i.e. helices P2-P4) are implicitly present in 

the binding measurements. 

Additionally, the method provides a means of constructing maps of probability distributions 

(Figure S15 and Figure 5) and corresponding free energies of macrostates (Figure S16 and 

Figure S17) before and after binding with the ligand. Such color maps can be thought of as 

discrete conformational and energy landscapes. Note that, Figures S7 and S9-S12 provide a 

more comprehensive picture by incorporating variants containing AT loop base pairing in 
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conformer populations. In contrast to computing base pairing probabilities (bpp) (37), or 

focusing analysis on discrete lowest free energy conformations in the absence of ligand, the 

current method explicitly and quantitatively delineates the impact of ligand binding at the level 

of individual conformers. While the bpp predicts averaged values for ready comparison with 

popular experimental probes of secondary structure (21) in bulk, the current calculations can 

be compared to single molecule measurements. The experimental validation of statistical 

mechanical predictions provides mechanistic insights that would be lost in a purely empirical 

approach. 

4.2 The differential binding between intermediates and the Aptamer is responsible for 

lowering the energy of the transition state 

As mentioned earlier, the difference between the P2_AT and the Aptamer constructs in their 

binding energies is on the order of ~ −3.38 kcal/mol. The latter represents the maximum 

specific binding energy which is seen in the presence of a fully base paired P1 when there is 

no competition from the AT loop strand. The magnitude of this energy difference is 

approximately comparable to the favourable energy gained by the propagation of a CG pair in 

the neighbourhood of a GC base pair, i.e. 5’GC3’ and 3’CG5’ base pairs (−3.42 kcal/mol), at 

37˚ C upon RNA folding (55). Additionally, to get a feeling for the magnitude of this binding 

energy, one may compare this value to the minimal free energy of the folding of the riboswitch 

at the studied lengths, which ranges from ~ −43.37 to −44.92 kcal/mol for lengths 145 and 

152, respectively.  

Moreover, as mentioned in the results section, the energetic discrepancy between the 

intermediates and the aptamer in their binding energies, as deduced from single titration point 

data, is on the order of ≥ 0.52 kcal/mol. The latter value is comparable to the favourable energy 

gained by the propagation of a GU base pair preceded by an AU base pair, i.e. 5’AG3’ and 

3’UU5’ base pairs (−0.55 kcal/mol), at 37˚ C upon RNA folding (55). This small but 

significant energetic discrepancy resulting from the differential binding lowers the free energy 

of the Aptamer_TS in the presence of SAM (assuming a strand migration pathway), which 

likely accelerates its rate of folding (see below). The latter set of conformers possess a partially 

or fully unfolded AT loop. 

The magnitude of the maximum specific binding energy difference obtained from the 

Scatchard plots was on the order of −4.76 kcal/mol, which is significantly larger than its 

corresponding value from single point equilibrium dialysis and comparable to the favourable 

energy gained by the propagation of multiple base pairs. Roughly speaking, such magnitude is 

comparable to ~ 1/9 of the total folding free energy of the molecule. It should be noted that 

binding energies from single titration point and Scatchard plots presented here were measured 

and calculated at room temperature, rather than 37˚ C. The temperature may be one of the 

factors contributing to the variations in values obtained by different measurements reported in 

the literature (38) using different techniques. 

4.3 Reducing the energy of the aptamer transition state (Aptamer_TS) suggests a 

catalytic role of the ligand  

The impact of SAM on the SAM-I riboswitch population is illustrated in the schematic diagram 

shown in Figure 6. Our results predict that even at the studied transcription lengths the 
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unfolding of the AT loop is initiated by only a small but significant fraction (~ 2.53 - 3.63%, 

and may reach ~ 27.3%, as shown by the Scatchard plots binding data). A marked reduction in 

the probability of the Aptamer_TS is observed at transcription length 150 or longer, 

corresponding to higher energy and hence lower stability of the unfolded AT loop at these 

lengths. This fraction in the presence of SAM, however, is much larger than the fraction 

predicted in the absence of SAM (~ 0.078 - 1.49%). The latter is at least ~ 2.5 – 47 fold increase 

in the fraction of the population having an unfolded AT. This increase represents a reduction 

in the energy barrier (activation energy) required for the aptamer to cross, in order to unfold 

the AT loop and thereby facilitate the formation of the termination loop downstream. The 

reduction of the activation energy leads to the prediction that the rate of AT loop unfolding is 

accelerated in the presence of SAM, which can be thought of as a catalyst. Despite its 

significance, the percent of the functional aptamer formed is still small at this length. 

Figure S2 illustrates examples of conformers representing the intermediates 8P1_5AT and 

4P1_9AT, (panels A and B, respectively). Further, examples of binding-incompetent 

conformers with fully base paired AT loop are also illustrated in the same figure (Figure S2, 

panels D - F). The dominance of the stable intermediate 8P1_5AT can be understood as arising 

from two factors: 8P1_5AT dominates over the Aptamer_TS state since the latter contains fewer 

total base pairs for this length of transcript. On the other hand, the preference for 8P1_5AT over 

other intermediates (e.g. 6P1_7AT or 4P1_9AT, ... etc.) that contain a similar total number of 

base pairs, may reflect the formation of a conformer containing an AT loop with five 

continuous base pairs, including a GU pair (Figure S2A). Conformers with longer AT helices 

must necessarily form an unpaired base. Moreover, this intermediate has a slightly stronger 

binding free energy than other intermediates containing an equivalent number of base pairs but 

with only a partial P1 helix. This result is therefore expected to be sensitive to sequence 

variations among SAM-I riboswitches, providing a mechanism for fine tuning of riboswitch 

response (58). 

Based on these results, we can hypothesize a transition pathway for the conversion of the 

predominant 8P1_5AT conformation in the “decision window” to the terminator-containing 

structure. In this pathway, the Aptamer_TS can be considered the “transition state”. Further 

studies are underway to investigate how this prediction is affected when alternative parameters 

are invoked for treatment of dangling ends and coaxial stacking. Moreover, in the transcription 

complex, unlike constructs that have been used for some in vitro studies, the mRNA does not 

initiate at the 5’ end of the P1 helix, hence the impact of the free 5’ terminal on the stability 

should also be a subject of investigation. 

Recently, Manz et al. (59,60) reported a study on the full-length SAM-I riboswitch using single 

molecule FRET. The study observed the coexistence of multiple conformers. Limited 

population changes were observed as a function of Mg+2 and SAM concentrations. In 

particular, conformers thought to contain the full P1 helix and the terminator helix were 

favoured in the presence of SAM, relative to conformers which were tentatively assigned to 

structures similar to those in Figure 1. Though these findings cannot be directly compared with 

our calculations for shorter transcripts, the conclusions agree with our calculations in that SAM 

binding increases the proportion of Aptamer_TS conformation, allowing the termination loop 

to be formed more readily than without SAM. It was also intriguing that the authors observed 
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acceleration of folding of the SAM-bound transcription-off conformation. Although our 

calculations assumed thermodynamic equilibrium, accelerated formation of the same 

conformation is predicted if one assumes strand migration as the primary folding pathway. 

Thus, the hypothesized transition pathway, combined with calculations that indicate lowering 

of the transition state free energy barrier by ligand binding, offer a simple explanation for this 

experimentally observed result. 

4.4 The role of strand migration in the absence and presence of the ligand 

If SAM is absent, the P1 helix will be replaced with a fully folded AT loop, most likely through 

a strand migration process. In this way transcription proceeds. Previous calculations indicated 

that the P1 helix and terminator compete out the AT stem-loop at equilibrium for longer 

transcript lengths (e.g. the full length riboswitch) (37), which is not observed during 

transcription (45-47). It is therefore possible that the outcome is kinetically limited by RNA 

folding in the absence of SAM. If SAM is present, the P1 helix becomes fully base paired 

replacing the competing strand segment from the AT loop. The latter transition is also likely to 

take place through a stand migration process. Further, it was shown that adding SAM increases 

the (still small) probability of the unfolded AT (since we considered the Aptamer_TS as a 

mimic of this structure), paving the way for the formation of the termination loop when 

transcribed. Since the AT and termination loop are competing, the unfolding of the AT loop 

will enhance the rapid formation of the termination loop, again, through a strand migration 

process (10,30). Hence, strand migration is expected to play an important role in three distinct 

structural transitions that take place in both the absence and the presence of SAM. Since 

transcriptional riboswitches are thought to be kinetically controlled, strand migration is an 

important mechanism to accelerate folding. 

4.5 Implications for experimental study of riboswitches and polymorphic RNA 

molecules 

While the yitJ SAM-I riboswitch, to our knowledge, represents the only riboswitch system for 

which putative 𝐾𝑑 measurements are available for strand migration intermediates, gathering 

similar data for other riboswitches is not experimentally difficult. In fact, the measurements in 

reference (38) were performed on transcription products derived directly from PCR-amplified 

oligonucleotides, without any cloning. Thus, the methods here can be used to experimentally 

validate, in a rigorous and quantitative way, the hypothesis of ligand-induced conformational 

change via perturbation of the FEL for any riboswitch or other RNA systems. A handful of 

such studies will establish how widely the proposed mechanism can explain the function of 

riboswitches. Depending on the variation observed in ligand binding to intermediate 

conformers in riboswitch systems, it may be possible to extrapolate approximate values across, 

for example, SAM-I riboswitches. That would raise the possibility of predicting sequence-

dependent variations across riboswitch classes, facilitating the design of a synthetic riboswitch 

with a specific, desired set of response characteristics. 

4.6 Limitation of this study and future directions 

Previous studies proposed the role of kinetic control for a number of transcriptional 

riboswitches (33,34). The proposed mechanisms suggested that the transcription rate, as well 
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as transcriptional pausing, contribute to how the riboswitches function (61). One limitation of 

the method used in this study, is that kinetic control and the role of transcription rate is ignored. 

The assumption here is that the binding and folding rates are fast compared to transcription. 

With this assumption, equilibrium is reached at every nucleotide added during transcription. 

Local folding rates have been reported to occur on the microsecond range (although the 

nucleation of the P1 helix from distal strand segments may take longer) (62), whereas the 

polymerase transcription speed (40-90 nucleotides/s) (63) and transcriptional pausing occur on 

much longer time scales (seconds) (61), hence allowing the RNA-SAM complex to reach 

equilibrium. It has been reported that the conversion between Terminator (T) and Anti-

terminator (AT) states is on the order of seconds in the presence of SAM, supporting the 

hypothesis that binding equilibrium may be reached (59). Moreover, calculations in this study 

apply only to the portion of the overall population of RNA molecules that are bound by SAM. 

Hence a determination of the overall conformer distribution, and therefore the proportion of 

terminated transcripts, must incorporate this distribution together with the distribution of 

unbound conformers in the correct ratios. Extensions of the method to predict titration curves 

are in preparation. Moreover, the statistical mechanical approach can be used within kinetic 

simulations, at least for specific folding pathways.  

Another limitation is that the underlying folding prediction does not specifically incorporate 

the role of tertiary interactions such as base stacking and pseudoknot formation (43,64-67). On 

the other hand, the binding free energy is based upon measurements which implicitly 

incorporate the range of three-dimensional structures corresponding to a given secondary 

structure. Thus, the energetics of the binding and the “hidden” effects on the RNA tertiary 

folding are treated in a “black box” as in a classical thermodynamics approach, combining them 

under the name “binding energy”. A fourth limitation is computational demand, particularly as 

the energy range for suboptimal structure calculations increases and as the length of the 

sequence increases. Here we have truncated the set of conformers included in the analysis such 

that the contribution from those that have free energies > 8 kcal/mol above the MFE are not 

included in the partition function. Although we have found that in this case adding 

contributions from additional high energy conformers does not significantly alter the result, 

access to high performance computing will be advantageous in wider use of the method. 

The method qualitatively simulates the effect of mutants in the P1 helix and could be applied 

to mutants in regions that do not contact the ligand or engage in crucial tertiary interactions. In 

the latter cases, experimental measurement of binding to the mutant of the substructure analog, 

or possibly computational prediction of binding affinity, would be required. 

4.7 Conclusions 

Previously we suggested that apparently paradoxical aspects of riboswitch function, such as 

discrepancies between binding affinities and threshold ligand concentrations for transcription 

termination, could be explained by a switching mechanism involving strand migration 

(10,30,37).  Our previous findings that SAM can bind, with reduced affinity, to proposed strand 

migration intermediate structures for the SAM-I riboswitch (38) raised the possibility that the 

ligand can accelerate switching by lowering the activation barrier. In this study, we applied a 

simple but rigorous statistical mechanical formalism that can form the basis for quantitative 

predictions and comparisons with measured populations and transition rates. For the SAM-I 

riboswitch, the calculations predict the observed trend of effect of the ligand on the free energy 
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landscape, conformer population distribution and kinetics of conformational transitions.  In 

short, they identify the stages of the transition pathway at which the ligand exerts its most 

important effects. 

  

With this method, we can predict quantitatively, based on empirically based parameters for 

ligand binding and secondary structure free energies, how the SAM-I riboswitch ligand plays 

a chaperone-like role in facilitating RNA folding (10,37) and thus controlling gene 

expression. The strand migration process can thus be tested experimentally. The same approach 

is directly applicable to other riboswitches, and other RNA molecules that undergo secondary 

structure changes under the influence of ligand binding. 

 

In conclusion, the simulation method used in the study yields testable predictions and, 

combined with hypothetical folding pathways, can be used to yield insights into kinetics. 

Describing ligand-induced folding of riboswitches and other RNAs using this method opens 

new strategies for drug design, and for the design of engineered riboswitches (30). 

5 SUPPLEMENTARY DATA 

Supplementary Data are available online. 
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8 FIGURE LEGENDS 

 

 

 

 

Figure 1. Secondary structures and skeleton representations of the proposed strand 

migration intermediates. 

The figure illustrates examples of secondary structures and skeleton representations of 

constructs/truncated intermediates as well as the aptamer transition state (Aptamer_TS) along 

with their specific binding energies (∆𝐺0) at standard conditions, in the units of kcal/mol. The 

dotted lines in the Aptamer_TS represent examples of possible base pairing. The convention 

for naming the conformers is XP1_YAT, where X is the number of base pairs formed in the P1 

helix, an important component of the SAM-binding aptamer (containing a bulged four-way 

junction). Y is the number of anti-terminator (“AT”) base pairs formed. The AT helix is 

considered a competitor with the P1 helix. Thus, where X 0, Y 0, we have a binding-

competent strand migration intermediate. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 5, 2018. ; https://doi.org/10.1101/461749doi: bioRxiv preprint 

https://doi.org/10.1101/461749


 

27 

 

 

 

Figure 2. Dissociation constants and specific binding free energies of the truncated strand 

migration intermediates.  

The figure shows a plot of dissociation constants (𝐾𝑑), depicted in blue, and their corresponding 

specific binding free energies, depicted in red, for constructs used in this study. The constructs 

were designed to represent strand migration intermediates. The dissociation constants shown 

here were calculated from single titration point equilibrium dialysis data, measured by Boyapati 

et al (38). The free energies were calculated from the dissociation constants and after 

subtracting the non-specific binding energies from the total binding energies. The resulting 

specific binding free energies can therefore be correlated with the presence and stability of the 

P1 helix. The uncertainty in ∆ 𝐺𝐵𝑖𝑛𝑑𝑖𝑛𝑔
0  (due to reported random error in the primary data) 

ranges from 0.011 to 0.064 kcal/mol, except for 3P1_10AT for which the uncertainty in 

∆ 𝐺𝐵𝑖𝑛𝑑𝑖𝑛𝑔
0  is equal to 0.24 kcal/mol, (see Supplementary Note 1 for a discussion on the 

uncertainties in those measurements). 
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Figure 3. The predicted cumulative probability of all binding-competent conformers 

before and after binding with SAM at various transcription lengths. 

The plots show the summed probabilities of all binding-competent conformers before binding 

with SAM (i.e. in the absence of SAM, blue) and after binding with SAM (i.e. in the presence 

of SAM, red). The inset plot of the total probability of binding-competent conformers after 

binding illustrates that a decline in the total probability is predicted at longer transcription 

lengths. The total probabilities were obtained by summing the probabilities of intermediates 

and Aptamer_TS in each of the two conditions at a given transcription length. 
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Figure 4. The predicted probability of the strand migration intermediates and the 

Aptamer_TS before and after binding with SAM, at transcription lengths of 149, and using 

the Scatchard plot binding data. 

The plot shows the probability of strand migration intermediates as well as the Aptamer_TS 

calculated in the presence (blue) and absence (red) of SAM, calculated using the Scatchard 

plot binding data, at transcription length 149 bases. The plot illustrates a significant increase in 

the 8P1_5AT and Aptamer_TS after binding. Both substructures contain a fully base paired P1 

helix. The Aptamer_TS also contains a fully or partially unfolded AT loop, paving the way for 

the formation of the termination loop through an accelerated strand migration process. Similar 

plots for other transcript lengths are shown in Figure S10. 
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Figure 5. Probabilities of macrostates at transcription lengths 149-152 bases using 

different binding datasets. 

The table of color maps shows probabilities of macrostates at transcription lengths 149-152 

bases (rows) and for various binding datasets used (columns). Each macrostate is represented 

by the sum of probabilities of conformers with a specific number of base pairs in the P1 helix 

and a specific number of base pairs in the AT loop (including those within the loop itself). 

Probabilities before binding are shown in the first column, and probabilities after binding with 

SAM (AB) are shown in the second - fifth for single point titration, Scatchard, HL100x and 

HL1000x binding datasets, respectively. 
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Figure 6. A schematic summary of the impact of SAM on the RNA population. 

The schematic diagrams in panels A and B illustrate the impact of the ligand (SAM) on the 

SAM-I riboswitch population for transcription length ranges 145-149 and 150-152, 

respectively. In both cases, the presence of SAM leads to conformational shifts in the 

population. In the absence of SAM, conformers containing the folded P1 helix either dominate 

or are significantly populated within the population, depending on the transcription length. 

Specifically, conformers containing a full length or partial P1 helix dominate the population 

for short transcript (panel A) while conformers having a base paired AT loop dominate the 

population for transcription length 150-152 (panel B). In the presence of SAM, the population 

shifts towards a fully folded P1 helix, which becomes dominant at all transcription lengths. 

Within this set of conformers containing the full P1 helix, the addition of SAM leads to an 

increase in the probability of the Aptamer_TS. The latter implies partial unfolding of the AT 

loop, thus paving the way for the terminator loop to be formed. In the presence of SAM, the 

AT loop is still significantly present in a minority population after binding. These findings 

suggest a strand migration mechanism. Further, these variations seen at different transcription 

lengths suggest that the impact of SAM is reduced at transcription length ≥ 150. 
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