
 1 

Running Head: Feeding rate consistency in space and time  1 

 2 

Food web interaction strength distributions are conserved by greater variation between 3 

than within predator-prey pairs 4 

 5 

Daniel L. Preston1*, Landon P. Falke1, Jeremy S. Henderson2, Mark Novak3 6 

 7 

1Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison,  8 

Wisconsin 53706 9 

2Oregon Department of Fish and Wildlife, 305 N Canyon Blvd, Canyon City, Oregon 10 

3Department of Integrative Biology, Oregon State University, Corvallis, Oregon 97330 11 

*Corresponding author: daniel.preston@wisc.edu; 503-784-7105 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461921doi: bioRxiv preprint 

https://doi.org/10.1101/461921


 2 

Abstract 24 

Species interactions in food webs are usually recognized as dynamic, varying across species, 25 

space and time due to biotic and abiotic drivers. Yet food webs also show emergent properties 26 

that appear consistent, such as a skewed frequency distribution of interaction strengths (many 27 

weak, few strong). Reconciling these two properties requires an understanding of the variation in 28 

pairwise interaction strengths and its underlying mechanisms. We estimated stream sculpin 29 

feeding rates in three seasons at nine sites in Oregon to examine variation in trophic interaction 30 

strengths both across and within predator-prey pairs. We considered predator and prey densities, 31 

prey body mass, and abiotic factors as putative drivers of within-pair variation over space and 32 

time. We hypothesized that consistently skewed interaction strength distributions could result if 33 

individual interaction strengths show relatively little variation, or alternatively, if interaction 34 

strengths vary but shift in ways that conserve their overall frequency distribution. We show that 35 

feeding rate distributions remained consistently and positively skewed across all sites and 36 

seasons. The mean coefficient of variation in feeding rates within each of 25 focal species pairs 37 

across surveys was less than half the mean coefficient of variation seen across species pairs 38 

within a given survey. The rank order of feeding rates also remained relatively conserved across 39 

streams, seasons and individual surveys. On average, feeding rates on each prey taxon 40 

nonetheless varied by a hundredfold across surveys, with some feeding rates showing more 41 

variation in space and others in time. For most species pairs, feeding rates increased with prey 42 

density and decreased with high stream flows and low water temperatures. For nearly half of all 43 

species pairs, factors other than prey density explained the most variation, indicating that the 44 

strength of density dependence in feeding rates can vary greatly among a generalist predator’s 45 

prey species. Our findings show that although individual interaction strengths exhibit 46 
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considerable variation in space and time, they can nonetheless remain relatively consistent, and 47 

thus predictable, compared to the even larger variation that occurs across species pairs. These 48 

insights help reconcile how the skewed nature of interaction strength distributions can persist in 49 

highly dynamic food webs. 50 

Keywords: predator-prey, trophic interaction, food web stability, feeding rate, functional 51 

response, community dynamics, stream, fish, macroinvertebrate 52 

Introduction 53 

Most attributes of food webs – including species composition and abundances, network 54 

topology, and interaction strengths – vary in space and time (Menge et al. 1994, Polis et al. 55 

1996). Deterministic drivers of food web variation include both biotic factors such as species 56 

introductions or extirpations, population cycles, and organism life history traits (e.g., Boutin et 57 

al. 1995, Vander Zanden et al. 1999, de Roos et al. 2003), and abiotic factors such as 58 

temperature, nutrients, hydrology, light, and substrate (e.g., Menge 2000, Power et al. 2008, 59 

Byers et al. 2017). For example, migrations of anadromous fish can drive predictable seasonal 60 

changes in web topology and energy flow (Naiman et al. 2002); tropical storms can rapidly alter 61 

interaction strengths on islands (Spiller and Schoener 2007); and climate change is leading to 62 

wholesale food web alterations on global scales (Woodward et al. 2010). While increasingly 63 

recognized, spatial and temporal food web variation present challenges to predicting and 64 

managing community dynamics, particularly in species-rich communities where the relevant 65 

intrinsic and extrinsic drivers are poorly resolved (Tylianakis et al. 2008). 66 

Although a large body of research shows that food webs are inherently variable, some 67 

empirical food web patterns appear to be relatively consistent in space and time (Mora et al. 68 

2018). Among these is the skewed frequency distribution of interaction strengths (few strong and 69 
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many weak) that has been documented in nearly all studies with field-based quantitative 70 

interaction strength measures (e.g., Paine 1992, Fagan and Hurd 1994, de Ruiter et al. 1995, 71 

Raffaelli and Hall 1996, Wootton 1997, Woodward et al. 2005, Schleuning et al. 2011, Cross et 72 

al. 2013, Bellmore et al. 2015). This pattern appears insensitive to ecosystem type, network 73 

complexity, the measure of interaction strength used, and even the type of interaction under 74 

study (Wootton and Emmerson 2005, Vázquez et al. 2012). The persistence of the skewed 75 

distribution of interaction strengths suggests that either: 1) despite being variable, the strength of 76 

each pairwise species interaction shows consistency relative to the variation seen across co-77 

occurring interactions, or 2) the relative position of each pairwise interaction along the 78 

distribution is dynamic, but with a distribution-conserving fraction of interactions shifting from 79 

strong to weak and vice versa. The latter might occur, for example, if predators are limited by a 80 

maximum total feeding rate across all of their prey. Most quantitative measures of species 81 

interaction strength lack the spatial or temporal replication to test these ideas for multiple co-82 

occurring interactions in nature. 83 

Estimates of predator feeding rates are useful for addressing the extent to which species 84 

interaction strengths and their frequency distributions are dynamic or consistent over space and 85 

time. Moreover, there is a rich literature that seeks to mechanistically describe the factors driving 86 

variation in feeding rates (Jeschke et al. 2002). For example, functional response models 87 

generally predict that feeding rates should increase (often nonlinearly) with prey density (Holling 88 

1959), such that fluctuations in prey should be a primary factor determining variation. Predator 89 

density, predator and prey traits (e.g., body size), and environmental conditions are also linked to 90 

variation in feeding rates (e.g., Skalski and Gilliam 2001, Rall et al. 2012, Kalinoski and DeLong 91 
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2016), with changes in each having the potential to alter interaction strengths and their frequency 92 

distribution in space and time.  93 

In the present study we address two related questions using replicated in situ feeding rate 94 

estimates of a focal generalist predator, the reticulate sculpin (Cottus perplexus). First, we ask 95 

how dynamic are prey-specific sculpin feeding rates in space and time? To address this question, 96 

we use the variation seen in sculpin feeding rates across their diverse prey community as a 97 

relative measure to compare against the variation seen within species pairs over space and time. 98 

Variation within species pairs across space and time that is consistently less than variation across 99 

species pairs at a given point in space and time would suggest that pairwise species interaction 100 

strengths show consistency, which could underlie the consistency of community-wide interaction 101 

strength frequency distributions. A conserved rank order of prey-specific feeding rates would 102 

also support this idea. Second, we ask what factors are driving within species-pair variation in 103 

feeding rates over space and time?  To address this question we quantify variation in space and 104 

time for each interaction individually and determine the extent to which changes in prey density, 105 

conspecific predator density, prey body mass, or abiotic factors can explain this variation. Our 106 

results show that, despite considerable within-pair variation in feeding rates, ‘strong’ interactions 107 

tend to remain ‘strong’ while ‘weak’ interactions tend to remain ‘weak’. As a result, interaction 108 

strengths distributions show consistency in space and time. Our results also show that while prey 109 

density is a primary factor driving within-pair variation in feeding rates for many prey taxa, 110 

factors including prey body mass, water temperature, and stream discharge frequently exhibit 111 

even greater effects for other taxa. 112 

Methods 113 
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Study sites – We estimated feeding rates of reticulate sculpin (Cottus perplexus) on its 114 

macroinvertebrate prey at nine stream sites within Oregon State University's McDonald-Dunn 115 

Research Forest northwest of Corvallis, Oregon. The nine sites were each ~45 m in length and 116 

were nested within three streams (Berry, Oak, and Soap Creeks, see Preston et al. 2018). The 117 

three study streams were > 4km apart from one another, and the sites within each stream were on 118 

average 336 m apart (min = 87 m, max = 950 m). The ecology of streams in the McDonald-Dunn 119 

Research Forest has been well studied, including extensive work on the diverse (>325 species) 120 

macroinvertebrate community (e.g., Anderson and Lehmkuhl 1968, Kerst and Anderson 1975, 121 

Grafius and Anderson 1979), community interactions (e.g., Davis and Warren 1965, Hawkins 122 

and Furnish 1987), and ecosystem functioning (e.g. Warren et al. 1964). In addition to reticulate 123 

sculpin, other resident aquatic vertebrates at our sites include cutthroat trout (Oncorhyncus 124 

clarkii), Pacific giant salamanders (Dicamptodon tenebrosus), and brook lamprey (Lampetra 125 

richardsoni).  126 

Estimating feeding rates – We estimated feeding rates in an in situ manner by combining 127 

gut contents data from field surveys with information on the time period over which prey items 128 

remain identifiable in a sculpin’s stomach (hereafter the ‘prey identification time’). Prey-specific 129 

sculpin feeding rates were estimated for each survey as 130 

,                 [1] 131 

where  is the average sculpin’s feeding rate (prey consumed predator-1 time-1), ni is the number 132 

of prey items of species i found in a sample of p predator stomachs, and di is prey i’s estimated 133 

identification time (see also Novak and Wootton 2008, Novak et al. 2017, Wolf et al. 2017 and 134 

Preston et al. 2018). This approach explicitly accounts for differences in the amount of time that 135 

prey items persist in stomach contents, which when unaccounted for, will bias inferences about 136 

f̂i =
ni
p
1
di

f̂i
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trophic interactions made from diet data (Hyslop 1980, Fairweather and Underwood 1983, 137 

Novak 2010, Preston et al. 2017). 138 

Field surveys – To collect sculpin diet information (ni and p in eqn. 1), we surveyed each 139 

of the nine stream sites in summer (June/July 2015), fall (September 2015), and spring (April 140 

2016) (27 total site-by-season replicates). Sculpin were surveyed systematically throughout the 141 

whole area of the reach by a crew of four researchers using a backpack electroshocker (Smith-142 

Root LR20B), a block net (1.0 x 1.0 m) and two dip nets (0.30 x 0.25 m). Block nets at each end 143 

prevented movement in and out of the reach during surveys. We anesthetized, weighed, 144 

measured, and nonlethally lavaged each sculpin with a 60 cc syringe and blunt 18-gauge needle 145 

to obtain gut contents. Sculpin were then held in aerated stream water and released after recovery 146 

from anesthesia. We preserved stomach contents in 70% ethanol and in the laboratory identified 147 

and measured prey for total body length. To estimate dry mass, we used a conversion factor 148 

based on wet mass for sculpin (Lantry and O’Gorman 2007) and length-to-mass regressions for 149 

invertebrates (Table S1). At each site, we also estimated prey densities by collecting 150 

macroinvertebrates with ten Surber samples (0.093 m2 in area) evenly spaced along the length of 151 

each reach. Surber samples were preserved in 70% ethanol and invertebrates were measured for 152 

body length and identified using Merritt et al. 2008. We quantified abiotic variables at each site, 153 

including stream discharge, canopy openness, substrate size, water temperature, and stream 154 

width (Supplemental Materials). Lastly, we estimated sculpin densities by correcting our 155 

electroshock sculpin counts using catch efficiency estimates from habitat-specific (pool or riffle) 156 

mark-recapture surveys conducted at each stream (Supplemental Materials). 157 

Prey identification times – Our estimates of prey identification times (di in eqn. 1) were 158 

based on functions from laboratory trials during which individual sculpin were fed invertebrate 159 
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prey and then lavaged over time to determine the rate at which prey became unidentifiable as a 160 

function of covariates. Our approach for estimating prey identification times is provided in detail 161 

in Preston et al. (2017) and is summarized in Preston et al. (2018). Here we provide an overview. 162 

We estimated the prey-specific identification times for common prey types observed in 163 

sculpin diets, including mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies 164 

(Trichoptera), flies (Diptera), beetles (Coleoptera), worms (Annelida), and snails (Juga plicifera) 165 

(Table S2). Our approach therefore incorporated differences in prey traits across taxonomic 166 

groups that affect rates of digestion by sculpin. In the laboratory trials, we varied water 167 

temperature (10°C to 20°C), prey size for each taxon (Table S2), and predator size (32 mm to 86 168 

mm sculpin) in a continuous and randomized manner, and then fit Weibull survival curves to the 169 

observed prey status (identifiable or not) as a function of the covariates (Klein and Moeschberger 170 

2005). The time periods over which sculpin were lavaged after feeding ranged from 10 min to 171 

100 hrs depending on the prey type. The estimated laboratory coefficients from the Weibull 172 

survival functions were used with observed covariate information from our field surveys (i.e., 173 

predator and prey sizes and water temperatures) to estimate prey identification times for each 174 

prey item recovered from a sculpin’s stomach. For each prey item, the identification time was 175 

estimated as the mean of the probability density function that corresponded to the Weibull 176 

survival function under the observed covariate values (Preston et al. 2017). We then used the 177 

average prey-specific detection times within each survey to calculate the prey-specific sculpin 178 

feeding rates using eqn. 1. For prey types other than the aforementioned seven taxa, we used 179 

survival function coefficients from morphologically similar prey types (Table S3).  180 

Analyses – We first assessed changes in the overall distribution of all feeding rates in 181 

each survey by examining the distribution parameters including the mean, standard deviation, 182 
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skewness and kurtosis. We then quantified the within-pair variation in feeding rates seen across 183 

space and time and compared it to the variation in feeding rates seen across species pairs at a 184 

given site and time. Within-pair variation was quantified as the coefficient of variation for each 185 

species pair using the mean and standard deviation of the prey-specific feeding rates across 186 

surveys. Not all prey taxa were observed in sculpin diets from all surveys, hence these 187 

calculations included up to 9 sites x 3 seasons = 27 feeding rate estimates for each species pair 188 

(Table S3). Across-pair variation was quantified for each survey as the coefficient of variation 189 

calculated using the mean and standard deviation of the survey’s prey-specific feeding rates. To 190 

quantify variation within and across species pairs we focused on the 25 prey taxa (i.e., pairwise 191 

interactions with sculpin) for which we had at least two feeding rate estimates per season and at 192 

least 10 estimates total across all site-season combinations (mean = 20.7 estimates; Table S3). 193 

Together, these taxa represented 88% of the individual prey items that we recovered (see 194 

Results). 195 

Next we evaluated the consistency in the rank order of prey-specific feeding rates 196 

using Spearman’s correlation coefficients. We did this by ordering the 25 focal feeding rates by 197 

their overall means across all surveys and assessing deviations from this ordering in each of the 198 

individual surveys (n = 27 surveys). We also assessed deviations in the rank order across seasons 199 

(n = 3 seasons) and streams (n = 3 streams) using their respective mean values.   200 

We examined the relative roles of space and time in contributing to the variation seen 201 

within each species pair (n=25) using a generalized linear mixed model (GLMM) with log-202 

transformed feeding rates as the response (Zuur et al. 2009). Our model included the fixed 203 

effects of reach identity (i.e. ‘space’) and of season (i.e. ‘time’), and random intercept terms for 204 

stream (three reaches per stream) and prey taxonomic identity (up to 27 feeding rates per prey 205 
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taxon). Diagnostic plots and comparisons to a model without random intercept terms indicated 206 

that inclusion of the random effects was justified (Supplemental Materials). To assess the 207 

contributions of ‘space’ and ‘time’ fixed effects, we compared the full model to 1) a model with 208 

season only, 2) a model with reach identity only, and 3) an intercept-only null model. We 209 

compared model performance using small sample size adjusted Akaike Information Criterion 210 

scores (AICc) (Burnham and Anderson 2002) and evaluated model fit using marginal and 211 

conditional R-squared values (Nakagawa and Schielzeth, 2013); marginal R-squared represents 212 

variance explained by fixed effects and conditional R-squared represents variance explained by 213 

fixed and random effects. To further examine feeding rate variation in space and time, we also 214 

calculated coefficients of variation for feeding rates on each of the 25 focal taxa across the nine 215 

sites (using mean feeding rates per site) and across the three seasons (using mean feeding rates 216 

per season).  217 

 Our next goal was to assess the capacity of prey density, predator density, prey body 218 

mass, and abiotic factors to explain the variation in prey-specific feeding rates we observed over 219 

space and time. These analyses focused on 20 of the 25 previously-considered prey taxa as 5 taxa 220 

(Dixidae, Ceratopogonidae, Copepoda, Ostracoda, Polycentropodidae) were sometimes not 221 

detected in surber samples, precluding estimates of their density. The analyses entailed using 222 

general linear models for each focal taxon, including a full model (all four hypothesized drivers 223 

included), models with each of the four predictors alone, and an intercept-only null model (six 224 

total models per prey taxon). While many other biologically reasonable models (i.e., variable 225 

combinations) are plausible, our primary goal was to determine the univariate explanatory power 226 

of the four variables rather than develop a predictive mechanistic model. Exploratory models 227 

also included a random intercept term for reach identity nested within stream, but these 228 
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decreased relative model performance (based on AICc scores) and were thus not included in the 229 

final analysis (Supplemental Materials). Abiotic factors were incorporated as the first principal 230 

component from a PCA analysis of stream discharge, canopy openness, substrate size, water 231 

temperature, and stream width, using mean values per survey. Prey masses were from the Surber 232 

data and not the sculpin diet data. When a prey taxon was not detected in the Surber samples of a 233 

given survey, the corresponding feeding rate was omitted from the analysis. Feeding rates and all 234 

predictor variables other than the PC scores were log-transformed to improve conformance to 235 

model assumptions. For each prey taxon, we used AICc and R2 values to compare the six 236 

models. Lastly, we examined the overall univariate explanatory power of each of the four 237 

predictor variables across all taxa combined by summing the AICc scores of each variable’s 238 

prey-specific models. Plots showing covariate correlations and model residuals are shown in the 239 

Supplemental Materials (Figs. S1, S2).  240 

Results 241 

 Feeding rate variation – The frequency distributions of feeding rates were positively 242 

skewed in all seasons and at all sites, exhibiting a consistent pattern of a few strong and many 243 

weak interactions (Fig. 1 and Fig. S3). Estimates of distribution skewness ranged from 1.4 to 5.4 244 

(mean = 3.7) across surveys. These and the other distribution moments we measured did not 245 

differ consistently across streams or reaches, but did show seasonal differences in that all were 246 

generally highest in the summer (Table S4). 247 

In total, we collected 15,471 identifiable prey items from 2,068 sampled sculpin. The 25 248 

focal prey taxa accounted for 13,564 prey items (88% of the total). The majority of these focal 249 

prey items belonged to the orders Ephemeroptera (45%), Diptera (37%), Trichoptera (9%), and 250 

Plecoptera (5%). Mean prey-specific feeding rates across the focal taxa varied by over three 251 
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orders of magnitude, with the highest mean feeding rates being on Baetidae mayflies and 252 

Chironomidae midges, and the lowest being on Juga snails (Fig. 2).  253 

Overall, the variation in feeding rates across species pairs within a survey was greater 254 

than the variation across surveys within a species pair (Fig. 2 inset). The mean coefficient of 255 

variation was 2.31 across species pairs (min = 1.27, max = 3.53, median = 2.38; n=27 surveys), 256 

versus 1.05 for variation within species pairs (min = 0.71, max = 1.63, median = 1.01; n = 25 257 

prey taxa). The within-pair difference from the lowest to highest feeding rates across all surveys 258 

in space and time averaged a 102-fold increase, ranging from 14-fold (Psychodidae flies) to 259 

1093-fold (Annelid worms).  260 

The rank order of prey-specific feeding rates remained relatively consistent across 261 

seasons, streams, and individual surveys (Fig. 2 and Fig. S4). The ordering of mean feeding rates 262 

across the three seasons (r = 0.92 in summer; 0.84 in fall; 0.80 in spring) and the three streams 263 

(r = 0.86 at Berry Creek; 0.91 at Oak Creek; 0.86 at Soap Creek) did not differ greatly from the 264 

ordering of the overall means (Fig. S4). Across surveys the mean Spearman’s correlation 265 

coefficient was 0.71 (range = 0.45 to 0.93), with deviations from the order of the mean feeding 266 

rates driven primarily by variation in the lowest feeding rates. 267 

Effects of space and time on within-pair variation – Many prey-specific feeding rates 268 

showed strong seasonal variation. Summer corresponded to the highest feeding rates for 17 of 269 

the 25 prey taxa, followed by spring (7 taxa), and fall (1 taxon) (Fig. 3). Feeding rates on flies 270 

(Figs 3a to 3g) and worms (Fig. 3t) showed relatively little seasonal change, while mayflies 271 

(Figs. 3h to 3j), stoneflies (Figs. 3k to 3m), and caddisflies (Figs. 3n to 3r) showed larger 272 

seasonal differences. Among the largest seasonal changes in mean feeding rates were those 273 

observed on mayflies, including Baetidae (a 4-fold decrease in mean feeding rates from summer 274 
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to fall; Fig. 3h) and Heptageniidae (a 10-fold increase in mean feeding rates from fall to spring; 275 

Fig. 3i). General linear models fit to all 25 prey-specific feeding rates combined supported the 276 

idea that feeding rate variation was more strongly associated with season than reach identity 277 

(Table S5). The top-performing model included season alone. Nevertheless, even in the top-278 

performing model, the fixed effect of season explained relatively little variation in feeding rates 279 

(marginal R2 = 0.04) compared to the random effect of prey taxon (conditional R2 = 0.63). 280 

The coefficients of variation for feeding rates in space versus time reflected the different 281 

effects of season on each prey taxon. The CVs were higher across sites than across seasons for 7 282 

of 8 fly and worm taxa (Fig. S5). In contrast, for mayflies, stoneflies, and caddisflies, the CVs 283 

were higher across seasons than across sites for 8 of 11 taxa (Fig. S5). In general, the taxa with 284 

high variation across seasons showed consistent differences in mean seasonal feeding rates (Fig. 285 

3), whereas taxa showing higher variation in space were not necessarily associated with 286 

consistent differences in mean reach- or stream-level feeding rates.  287 

Drivers of within-pair variation – The four hypothesized explanatory variables for 288 

within-pair variation in feeding rates (i.e., prey density, prey body mass, predator density, and 289 

abiotic factors) varied more across seasons than across sites for most prey taxa. The densities for 290 

9 of the 20 taxa considered in these prey-specific analyses were highest in summer, while 291 

another 9 were highest in fall and two were highest in spring (Fig. S6). Nine of the 20 taxa had 292 

the largest mean body size in spring (Fig. S7). Of the abiotic variables measured, water 293 

temperature and stream discharge showed the largest variation, with low flows (mean = 0.01 294 

m3s1) and warm temperature (mean =15°C) in summer, followed by lower temperatures (mean 295 

=10°C) and higher flows (mean = 0.09 m3s-1) in spring (Fig. S8). The first principal component 296 

from the PCA analysis, which was associated with 41% of the variation in the abiotic data, was 297 
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positively associated with lower water temperatures and higher discharge (Fig. S9). Sculpin 298 

densities were highest in summer (mean = 2.8 m-2) and decreased slightly in fall and spring 299 

(mean = 2.1 m-2 for both) (Fig. S10). 300 

 Variation in prey density and abiotic factors showed relatively consistent directional 301 

associations with within-pair variation in feeding rates. Feeding rates increased with prey density 302 

for 18 of the 20 prey taxa (Fig. 4, Table S6); the two exceptions being Empididae flies and 303 

Hydracharina mites which showed negative relationships. The first principal component of our 304 

PCA analysis of abiotic variables was negatively associated with feeding rates for 14 of the 20 305 

taxa (Fig. 6, Table S6), indicating that feeding rates decreased at lower temperatures and higher 306 

flows. 307 

The directional nature of the relationships between feeding rates and variation in prey 308 

mass and sculpin density differed widely across the 20 taxa. Prey body mass was positively 309 

associated with feeding rates for 13 taxa and negatively associated for 7 taxa, without a clear 310 

taxonomic divide in either the sign or magnitudes of correlations (Fig. 5, Table S6). Sculpin 311 

densities were positively associated with feeding rates for half of the taxa and negatively 312 

associated with feeding rates for the other half (Fig. 7, Table S6). 313 

The ability of prey density, prey body mass, predator density, and abiotic factors to 314 

explain variation in feeding rates differed widely across the 20 prey taxa (Table S7). For 3 taxa 315 

(Baetidae, Hetpageniidae, Semisculcospiridae), the top-performing model was the full model 316 

with all four covariates. For 2 taxa (Psychodidae and Chloroperlidae), the intercept-only model 317 

outperformed all other models. Of the other 15 taxa, the top model included only prey density for 318 

7 taxa (Elmidae adults, Chironomidae, Tipulidae, Leptophlebidae, Nemouridae, Perlidae, 319 

Lepidostomatidae), abiotic factors for 5 taxa (Empididae, Annelida, Glossosomatidae, 320 
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Hydropsychidae, Rhyacophilidae), and prey mass for 3 taxa (Hydracharina, Elmidae larvae, 321 

Simulidae). The variation explained by the top models averaged 37% (R2 range: 0.14 to 0.81) 322 

after excluding the two taxa for which the intercept-only model performed best (Table S7). 323 

Summing the AICc scores across the 20 taxa resulted in the model including only abiotic factors 324 

having the best relative performance, followed by models including only prey density (DAICc = 325 

6.1), prey mass (DAICc = 47.1), the intercept-only model (DAICc = 66.7), the full model (DAICc 326 

= 90.2), and only predator density (DAICc = 98.9). 327 

Discussion 328 

 Ecologists are increasingly grappling with the dynamic nature of species interactions and 329 

the consequences of food web variation for the structure and functioning of communities (Poisot 330 

et al. 2015, Lopez et al. 2017, Tylianakis and Morris 2017). Alongside this growing appreciation 331 

for variation, there remains the now longstanding realization that many properties of 332 

communities are conserved. This includes the recurrently observed skewed distribution of 333 

interaction strengths (many weak, few strong), which has often been linked to the stability of 334 

species-rich communities (McCann et al. 1998, Borrvall et al. 2000, Wootton and Emmerson 335 

2005, Gellner and McCann 2016). This leads to an interesting inconsistency: if interactions in 336 

food webs are highly dynamic, why is the skewed distribution of interaction strengths apparently 337 

conserved? Our results help to reconcile the seemingly contradictory nature of these two food 338 

web properties by showing how the ecological scale of inference shapes conclusions about 339 

whether species interactions are dynamic or consistent. We show that, from the perspective of 340 

community-wide variation in interaction strength, the pairwise interactions in our study system 341 

are relatively consistent in space and time; ‘strong’ interactions remain ‘strong’ and ‘weak’ 342 

interactions remain ‘weak’. Although within-pair variation averaged a 100-fold difference from 343 
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the lowest to highest observed feeding rate, it was much smaller than the variation seen across 344 

pairs, leading to a consistent rank order and overall frequency distribution of species interaction 345 

strengths. Our results therefore emphasize how food webs encompassing dynamic interactions 346 

can yield properties that are nonetheless conserved in space and time.  347 

The consistency of the pairwise interactions relative to community-wide variation has 348 

several implications. Among these is that it suggests the existence of fundamental characteristics 349 

that drive interaction strengths within versus between interacting species pairs. That is, while 350 

within-pair variation was explained by distinct prey-specific factors (especially abiotic variables 351 

and prey density), the variation seen across species pairs suggests a more fundamental role of 352 

prey identity in driving variation (Preston et al. 2018). Clearly, species identity is associated with 353 

a wide range of attributes of relevance to foraging predators (e.g., life history traits) that will 354 

have shown consistent differences across prey taxa over the spatiotemporal scale of our surveys. 355 

The relative consistency of the pairwise interactions also provides mechanistic insight into 356 

processes underlying other conserved food web properties beyond the skewed distribution of 357 

interaction strengths. For instance, the persistence of common structural characteristics in food 358 

webs, such as motif frequencies and “backbone” interactions (Mora et al. 2018), may be 359 

explained by the relative consistency of species interaction strengths at the community scale. 360 

Thus, while our findings should be interpreted within the spatial, temporal, and ecological (i.e., 361 

focal prey community) scale of our surveys, they collectively suggest that from a community-362 

wide perspective, interaction strengths may be more predictable than commonly assumed.  363 

 The relative consistency of the pairwise interactions seen in our study is nonetheless 364 

striking given that we focused on a generalist predator in species-rich streams that typically show 365 

large variation in biotic and abiotic factors (Fisher et al. 1982, Power et al. 2008, Death 2010). 366 
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Pairwise interaction strengths in streams are expected to be dynamic because interaction-strength 367 

altering abiotic drivers themselves vary greatly over time (Power et al. 1988, Peckarsky et al. 368 

1990, Wootton et al. 1996, Tonkin et al. 2017). Spatial heterogeneity in stream habitat can also 369 

shape community structure over small spatial scales (Palmer and Poff 1997), and the life-370 

histories of many stream organisms result in fluctuating population abundances and size 371 

structures across seasons (Huryn and Wallace 2000). The observed variation in prey-specific 372 

feeding rates in our study is usefully interpreted in the context of these factors.  373 

When considered in a univariate fashion, abiotic factors explained the most variation in 374 

feeding rates for five prey taxa, suggesting that knowledge traditionally seen as vital to the nature 375 

of predator functional responses was of little utility for these species. The importance of abiotic 376 

conditions was further underscored by the result that the prey-specific models including only 377 

abiotic factors had the lowest total score when their AICc scores were summed across the 20 taxa 378 

that this analysis included. This role of abiotic factors in driving feeding rate variation was less 379 

apparent in our previous single-season study (Preston et al. 2018), which emphasizes the 380 

importance of spatiotemporal replication and scale-dependence in considering interaction 381 

strength variation and its drivers. Here, we observed a 33% decrease in water temperature and a 382 

9-fold increase in stream flows from summer to the following spring, which far exceeded the 383 

abiotic variation in our previous study. Prey-specific sculpin feeding rates correlated negatively 384 

with stream flow and positively with water temperatures, consistent with expected effects of 385 

these variables on energetic demands, activity levels, and possibly foraging conditions for fishes 386 

(e.g., ability to locate and consume prey under high flow and low water clarity) (Elwood and 387 

Waters 1969, Kishi et al. 2005). These relationships with abiotic variables were particularly 388 

strong for feeding rates on caddisflies. More broadly, the observed role of abiotic factors in our 389 
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study supports the idea that predation should be stronger (and more consistent) in low stress 390 

environments and weaker in high stress environments (Peckarsky 1983, Menge and Sutherland 391 

1987, Peckarsky 1990).  392 

We found that univariate prey-density models had the second best performance behind 393 

models with abiotic variables in explaining within-pair feeding rate variation. For most prey (18 394 

of 20 taxa), prey-specific feeding rates increased as prey-specific density increased, suggesting 395 

that sculpin are opportunistically consuming prey that they encounter, especially at low prey 396 

densities. The relative role of prey density across pairwise interactions was associated with the 397 

life histories of the prey taxa, such as voltinism and length of the nymphal period. These factors 398 

also contributed to differences in variation associated with space versus time. In general, the 399 

seasonal patterns in feeding rates on mayflies, stoneflies, and caddisflies were likely driven by 400 

their mostly univoltine lifecycles, where densities and size distributions change markedly over 401 

the season and often peak in spring and summer (Anderson and Wold 1972, Kerst and Anderson 402 

1974). For instance, the large seasonal changes in feeding rates on Baetid mayflies (highest in 403 

summer) and Heptageniid mayflies (highest in spring) corresponds with peak emergence periods, 404 

after which decreases in nymphal densities due to emergence result in lower feeding rates 405 

(Lehmkuhl 1968, 1969). Feeding rates on prey taxa that showed less seasonal variation may in 406 

turn be related to longer larval periods or multiple generations per year that result in less 407 

temporal fluctuation in prey density and size (e.g., many dipterans; Dudley and Anderson 1987).  408 

The slopes of the within-pair relationships between feeding rates and the densities of each 409 

prey taxon are informative because they allow comparisons with predictions from predator 410 

functional response models. These slopes were less than one on the log-log scale for all but one 411 

prey taxon (for which the slope was approximately one)(Table S6) reflecting decelerating 412 
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positive (i.e., saturating) relationships on the natural scale (Menge et al. 2018). This finding is 413 

consistent with nearly all parametric models of predator functional responses (Jeschke et al. 414 

2002). The mechanisms underlying the saturation of prey-specific feeding rates, however, are not 415 

necessarily clear in that an accelerating (non-saturating) slope between feeding rates and prey 416 

densities was observed when considering the relationship across all prey species combined 417 

(Preston et al. 2018 and Fig. S2). In other words, feeding rates increased with within-species 418 

differences in prey density in a decelerating (saturating) form but increased with between-species 419 

differences in prey density in an accelerating (non-saturating) fashion. Further lines of evidence 420 

also suggest that the overall feeding rates of sculpin are not limited by either handling or 421 

digestion times, which are the typically invoked rate-limited steps for generating saturating 422 

functional responses. For instance, the mean number of prey observed per sculpin was less than 423 

30-times the maximum observed, suggesting that most sculpin are able to consume far more prey 424 

than is observed in their stomachs (a widespread characteristic of fishes; Armstrong and 425 

Schindler 2011). It is also noteworthy that for most taxa (13 of 20) the top-performing model did 426 

not include prey density, and that for 8 taxa prey body mass or abiotic factors explained more of 427 

the univariate variation in within-pair feeding rates. Together, these findings suggest that 428 

functional response models that focus only on within-prey variation in density may poorly 429 

predict feeding rates in the field, and that current functional response models (developed on the 430 

basis of within-prey variation) may not be as easily scaled-up to predicting total or between-prey 431 

variation in feeding rates as currently assumed. Future work is needed to develop and test 432 

functional response models for species-rich contexts that can better characterize and assess the 433 

interdependencies between the prey-specific feeding rates of generalist predators (Abrams 2001, 434 

Novak et al. 2017). 435 
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Prey mass was most closely associated with feeding rate variation for relatively few prey 436 

taxa (3 of 20), suggesting that efforts to infer interaction strengths based on pairwise predator-437 

prey size relationships should be applied to food webs containing generalist predators with 438 

caution. Across the entire feeding rates dataset, there appears to be an ‘optimal’ prey mass 439 

associated with the highest feeding rates (Preston et al. 2018 and Fig. S2). In general, predators 440 

are thought to select for prey of intermediate predator-prey body size ratios, thereby increasing 441 

energetic gains from prey while avoiding large prey that are less efficiently consumed (Brose 442 

2010, Kalinkat et al. 2013). This could result in either monotonic positive or negative 443 

relationships between feeding rates and prey size within a given prey taxon depending on where 444 

a prey type lies relative the optimum. We observed both positive and negative correlations 445 

between prey mass and prey-specific feeding rates in our analysis, but the direction of the 446 

relationships were not consistent with a single optimal prey mass across all prey taxa. Some prey 447 

likely showed negative relationships between mass and feeding rates because large prey 448 

individuals present challenges for consuming and digesting prey. For instance, limitations on 449 

sculpin gape width and digestibility likely play a role in the low feeding rates on large Juga 450 

snails (Semisulcospiridae) (Preston et al. 2017). For other feeding rates that showed strong 451 

relationships with prey size (e.g., Elmidae beetle larvae), feeding rates were highest when prey 452 

were largest. While for some taxa the specific mechanisms underlying this pattern are not clear, 453 

it is possible that prey size is correlated with other traits (e.g., anti-predator behaviors, propensity 454 

to drift) that could contribute to the different direction of correlations between size and feeding 455 

rates across taxa. Recent research also indicates that differences in the mean and the standard 456 

deviation of predator-prey size relationships across food webs are likely linked to changes in 457 

overall prey availability (Costa-Pereira et al. 2018). While we did not examine interactions 458 
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between explanatory variable (e.g., prey density and prey mass), this provides an interesting area 459 

for future work.  460 

 Predator (i.e., sculpin) density was not a primary factor underlying variation in prey-461 

specific feeding rates in our dataset. The presence and relative importance of predator 462 

dependence has been a debated topic in the literature (Abrams and Ginzburg 2000, Baraquand 463 

2014), with relatively few studies having assessed predator dependence in field settings (Novak 464 

et al. 2017). The lack of a relationship for most prey taxa is interesting given that 1) we observed 465 

a negative correlation between sculpin density and feeding rates in the dataset across all 466 

combined prey taxa from summer (Preston et al. 2018), and 2) sculpin in streams are known to 467 

be territorial such that increases in density are expected to increase intraspecific interactions and 468 

decrease time spent feeding (Grossman et al. 2006). It is possible that wider variation in predator 469 

densities, beyond what was observed naturally at our sites would be more effective at revealing 470 

whether or not predator interference occurs in this system. That said, our results suggest that over 471 

the observed range of species densities predator dependence is unlikely to strongly shape sculpin 472 

feeding rates relative to other factors.  473 

 Several aspects of our study are of relevance in evaluating the generality of our results 474 

and the degree to which they can be extrapolated to other food webs. We focused on a single 475 

predator species and, for most analyses, only a subset of its prey taxa. While sculpins are 476 

generalists, as are most predators, focusing on other predators in our system could have altered 477 

some conclusions. For instance, our own preliminary evidence suggests that cutthroat trout in our 478 

streams show less consistency in their prey-specific feeding rates across seasons due to highly 479 

variable terrestrial prey availability (Falke et al. in prep). Similarly, although our focus on a 480 

subset of the sculpin prey taxa was necessitated by the lack of replicated feeding rate estimates 481 
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for many prey taxa, consideration of the entire prey community would likely increase both 482 

within and across-pair variation in feeding rates. Furthermore, while streams in general are 483 

highly dynamic, our sites typically do not dry completely in late summer unlike some 484 

Mediterranean climate streams and they no longer support anadromous fishes, both of which can 485 

drive wholesale food web alternations (Gasith and Resh 1999, Naiman et al. 2002). Nonetheless, 486 

we do not expect any of these study system choices to have strongly affected our main 487 

conclusions.  488 

 Overall our results indicate that, while the complexity and dynamics of food webs can 489 

appear intractable (Polis 1991), at least some interaction attributes are more consistent than often 490 

recognized. As a result, the dynamics of trophic interactions may be predictable over space and 491 

time based on characteristics of the interacting species and their environment. Species 492 

interactions can thus be highly dynamic while still generating empirical patterns that prove 493 

ubiquitous across unique food webs (Wootton and Emmerson 2005). Promising next steps in 494 

efforts to understand and predict species interactions will require developing and testing 495 

mechanistic models that incorporate species densities, species traits beyond body size, and 496 

environmental covariates in shaping the strength and functional form of species interactions in 497 

species-rich communities. Achieving this aim will benefit from future empirical work that 498 

bridges across scales of interactions in space and time, ranging from species pairs to whole food 499 

webs.  500 
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 702 

Figure 1. Log-transformed sculpin feeding rate distributions across three streams (top) and three 703 

seasons (bottom). Each distribution includes feeding rates from nine replicate surveys and all 704 

observed prey.  705 
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 717 

Figure 2. Feeding rates of reticulate sculpin on 25 taxa of invertebrate prey. In the main panel, 718 

the red points indicate the mean feeding rates across all surveys within a prey taxon and the 719 

black points represent individual surveys. Note the log-scale on the y-axis and that the prey-720 

specific feeding rates are ordered by their means. The inset panel shows the replicate coefficients 721 

of variation for sculpin feeding rates within a species pair across surveys in space and time (n = 722 

25 taxa shown in blue) and across species pairs within a survey at a specific site (n = 27 surveys 723 

shown in green). The mean CV within species pairs is 1.1 and the mean CV across species pairs 724 

is 2.3. In the larger panel, within pair variation corresponds to variation in the vertical direction 725 

for each prey taxon, while across pair variation corresponds to variation in the horizontal 726 

direction across prey taxa in a survey. 727 
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 731 

Figure 3. Spatial and temporal variation in reticulate sculpin feeding rates on 25 invertebrate 732 

prey taxa. The black lines show the seasonal mean feeding rates and the grey lines connect the 733 

same sites over time. Note the differences in the y-axis scale across panels.  734 
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 742 

Figure 4. Partial residual plots for models predicting reticulate sculpin feeding rates on 20 prey 743 

taxa. The regression lines show partial fits from the prey-specific full models (Table S6) which 744 

included prey density, prey body mass, predator density, and abiotic factors. The points show the 745 

full model residuals + biXi, where bi is the regression coefficient for prey density from the full 746 

model and Xi is the observed prey density shown on the x-axis. Note the varying scales for log 747 

prey density across panels. 748 
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 749 

Figure 5. Partial residual plots for models predicting reticulate sculpin feeding rates on 20 prey 750 

taxa. The regression lines show partial fits from the prey-specific full models (Table S6) which 751 

included prey density, prey body mass, predator density, and abiotic factors. The points show the 752 

full model residuals + biXi, where bi is the regression coefficient for prey mass from the full 753 

model and Xi is the observed prey mass shown on the x-axis. Note the varying scales for log prey 754 

mass across panels. 755 
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756 

Figure 6. Partial residual plots for models predicting reticulate sculpin feeding rates on 20 prey 757 

taxa. The regression lines show partial fits from the prey-specific full models (Table S6) which 758 

included prey density, prey body mass, predator density, and abiotic factors. The points show the 759 

full model residuals + biXi, where bi is the regression coefficient for the abiotic factors from the 760 

full model and Xi is the first principal component from a PCA analysis of the abiotic factors.  761 
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762 

Figure 7. Partial residual plots for models predicting reticulate sculpin feeding rates on 20 prey 763 

taxa. The regression lines show partial fits from the prey-specific full models (Table S6) which 764 

included prey density, prey body mass, predator density, and abiotic factors. The points show the 765 

full model residuals + biXi, where bi is the regression coefficient for predator (sculpin) density 766 

from the full model and Xi is the observed predator density shown on the x-axis.   767 
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