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ABSTRACT 

Artificial selection experiments are designed to investigate phenotypic evolutio

of complex traits and its genetic basis. Here we focused on flowering time, a tra

of key importance for plant adaptation and life-cycle shifts. We undertoo

divergent selection experiments from two maize inbred lines. After 13 generation

of selection, we obtained a time-lag of roughly two weeks between Early- an

Late- populations. We used this material to characterize the genome-wid

transcriptomic response to selection in the shoot apical meristem before, durin

and after floral transition in field conditions during two consecutive years. W

validated the reliability of performing RNA-sequencing in uncontrolled conditions

We found that roughly half of maize genes were expressed in the shoot apica

meristem, 59.3% of which were differentially expressed. We detected a majorit

of genes with differential expression between inbreds and across meristem status

and retrieved a subset of 2,451 genes involved in the response to selection

Among these, we found a significant enrichment for genes with known function i

maize flowering time. Furthermore, they were more often shared betwee

inbreds than expected by chance, suggesting convergence of gene expression. W

discuss new insights into the expression pattern of key players of the underlyin

gene regulatory network including the Zea mays genes CENTRORADIALIS (ZCN8

RELATED TO AP2.7 (RAP2.7), MADS4 (ZMM4), KNOTTED1 (KN1), GIBBERELLIN2

OXIDASE1 (GA2ox1), as well as alternative scenarios for genetic convergence. 
 

Keywords: Floral Transition, Gene network, Flowering, Maize, Response to selection, Convergence, RNA-seq

  

This article has been peer-reviewed and recommended by: 

Peer Community in Evolutionary Biology (DOI: 10.24072/pci.evolbiol.100071) 

y – 

 

 

on 

it 

ok 

ns 

d 

de 

ng 

We 

s. 

al 

ty 

s, 

n. 

n 

en 

We 

ng 

8), 

2-

q 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 1, 2019. ; https://doi.org/10.1101/461947doi: bioRxiv preprint 

https://doi.org/10.1101/461947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

PEER COMMUNITY IN EVOLUTIONARY BIOLOGY | DOI: 10.1101/307322 2

Introduction 

 Artificial selection experiments are designed to investigate evolutionary 

responses of complex traits. These responses inform us about the limits to the 

evolution of ecologically relevant phenotypes as well as their genetic architecture, 

determined by interactions among a multitude of environmentally sensitive genes. 

Replication of such experiments across distinct genetic backgrounds provides a 

unique opportunity to test whether convergent evolution at the phenotypic level 

recruits similar molecular solutions. Because artificial selection experiments are 

extremely time costly, they have most often been conducted in model organisms 

with a short generation time, prokaryotes such as E. coli (Tenaillon, et al. 2012; Good, 

et al. 2017) or, eukaryotes such as yeast (Burke, et al. 2014), fruitfly (Burke, et al. 

2010; Graves, et al. 2017), domestic mouse (Chan, et al. 2012), C. elegans (McGrath, 

et al. 2011). These studies have collectively recovered genetic predictability at 

different levels, SNPs, genes and functional units. This predictability however 

depends on the origins of mutations that contribute to the response to selection. 

Hence, standing genetic variants shared between genetic backgrounds – inherited 

from a common ancestor – are more likely to generate convergence than unshared 

de novo mutations (Graves, et al. 2017). 

Long-lasting evolution experiments are much rarer in vascular plants (but see 

Goldringer, et al. (2006), Roels and Kelly (2011), Gervasi and Schiestl (2017)). Maize 

however stands as an exception: Cyril G. Hopkins started the historical heritage of 

selection experiments in this model species by launching the Illinois divergent 

selection for protein and oil content in 1896 (Dudley and Lambert 1992). Since then, 

six other experiments have been undertaken: two for increased prolificacy (Maita 

and Coors 1996) and grain yield (Lamkey 1992), two for divergent seed size (Moose, 

et al. 2004) and ear length (Lopez-Reynoso and Hallauer 1998), and two for divergent 

flowering time (Durand, et al. 2010) named thereafter the Saclay divergent selection 

experiments. One important observation from these experiments is that the 

response to selection is in general, continuous over generations (reviewed in Lorant, 

et al. (2018)). This is particularly intriguing for the two Saclay divergent selection 

experiments that were conducted independently in two genetic backgrounds (two 

inbred lines) with limited standing variation (<1.9% residual heterozygosity) and very 

small population size. In these experiments, by applying divergent selection over 16 

generations, we generated considerable phenotypic response with up to three-weeks 

difference between early and late flowering populations (Durand, et al. 2015), a 

range comparable to what is observed among the maize European Nested 

Association Mapping panel when evaluated across multiple environments 

(Lehermeier, et al. 2014). The dynamics of the response to selection in Saclay 
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divergent selection experiments is consistent with a continuous input of new 

mutations (Durand, et al. 2010). The use of markers also revealed the contribution of 

complete sweeps from standing genetic variation (Durand, et al. 2015). The 

contribution of both, new mutations and standing variants, to the response to 

selection to flowering time is consistent with the known complexity of this trait – its 

high mutation target, i.e. >100 loci (Buckler, et al. 2009). 

 In plants, flowering is initiated by the transition of the shoot apical meristem 

from a vegetative status where the shoot apical meristem produces leaves, to a 

reproductive status where the shoot apical meristem produces reproductive organs. 

Because floral transition induces irreversible developmental changes that ultimately 

determine flowering time and the completion of seed development in suitable 

conditions, it is of key adaptive value.  It is tuned by a gene regulatory network that 

integrates environmental and endogenous cues, and translates them to initiate 

flowering when the time is most favorable. This network is now well described in the 

model species Arabidopsis thaliana with few hundreds of described genes (Bouche, 

et al. 2016), but profound differences with maize have been pointed out. For 

instance in contrast to A. thaliana, maize does not exhibit vernalization response; 

and some of the major floral maize genes such as Zea mays MADS4 (ZMM4) and 

INDETERMINATE GROWTH1 (ID1) have no homologs in A. thaliana (Colasanti, et al. 

1998).  

In maize, the currently described gene regulatory network is still very limited. 

It encompasses 30 genes. Among them, Zea mays CENTRORADIALIS (ZCN8) encodes a 

florigen protein that migrates through the phloem from the leaf to the shoot apical 

meristem triggering via its accumulation, the reprogramming of the shoot apical 

meristem to floral transition (Meng, et al. 2011). ZCN8 interacts with the floral 

activator DELAYED FLOWERING1 (DLF1) (Muszynski, et al. 2006), and its expression is 

partially controlled by another activator, ID1 (Meng, et al. 2011). ZCN8 and DLF1 act 

upstream ZMM4, a floral meristem identity integrator, which when overexpressed in 

the shoot apical meristem leads to early-flowering (Danilevskaya, et al. 2008). The 

transcription factor RELATED TO AP2.7 (RAP2.7) encoded by a gene downstream of 

the cis-regulatory element VGT1, is a negative regulator of flowering time (Salvi, et al. 

2007) and putatively modulates the expression of ZMM4 (Dong, et al. 2012). Among 

other genes of the maize flowering pathway, Zea mays CO-LIKE TIMING OF CAB1 

PROTEIN DOMAIN (ZmCCT) is central to photoperiod response (Hung, et al. 2012). 

Endogenous signals are delivered by the GA signaling pathway, the autonomous 

pathway, and the aging pathway through the action of miR156/miR172 genes. 

Interestingly, sucrose levels in sources leaves as well as carbohydrates export to sink 

tissues, also appear to play a main role in floral induction. For instance, metabolic 

signatures in mature leaves associate with the expression of ID1, and may contribute 

to the control of florigens (Coneva, et al. 2012).  
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 Here we used early- and late- evolved genotypes from the two Saclay 

divergent selection experiments (Durand, et al. 2010), i.e. two different genetic 

backgrounds, to (i) characterize the genome-wide transcriptomic response to 

selection in the shoot apical meristem before, during and after floral transition; (ii) 

identify key players of the underlying gene regulatory; (iii) test for convergence of 

selection response at the gene level between the two backgrounds. We performed 

all our experiments on plants grown under agronomical field conditions. 

 

Results 

 

We created a unique genetic material by applying divergent selection for 

flowering time independently to two maize inbred lines (F252 and MBS847- 

thereafter MBS) (Durand, et al. 2015). This material is used to investigate 

evolutionary responses to selection of a complex trait and to dissect its genetic 

architecture. After 13 generations of selection, phenotypic responses revealed 

roughly two weeks difference between Early and VeryLate F252 populations, and 

between Early and Late MBS populations (data extracted from Durand, et al. (2015), 

Figure 1). Starting from nearly-fixed commercial inbreds, this difference is striking. It 

compares to what is observed across multiple European inbreds evaluated across 

contrasted environments (Lehermeier, et al. 2014). Our selection experiments 

therefore maximized the phenotypic differences between evolved lines in nearly-

identical genetic backgrounds.  

We chose five progenitors from the two divergent selection experiments 

after 13 generations of selection: one Early (FE), one Late (FL) and one VeryLate (FVL) 

from F252 populations, and one Early (ME) and one Late (ML) from MBS populations 

(Figure S1). We used offspring derived by selfing from these progenitors, first to 

evaluate the timing of floral transition using meristem observations and, second, to 

collect samples for expression analyzes. We next characterized the genome-wide 

transcriptomic patterns, placing a special emphasize on differentially expressed (DE) 

genes that have contributed to the response to divergent selection.  

 

Timing of floral transition 

We collected from 18 to 35 shoot apical meristems from progenies of each 

five progenitors at different developmental stages from plants grown in the field at 

Université Paris-Saclay during summer 2012 and 2013 (Table 1). Plant developmental 

stages were defined as the number of visible leaves. We defined the shoot apical 

meristem Status based on shape and length as Vegetative, Transitioning or 

Reproductive. We determined the timing of floral transition of each progenitor as the 

earliest stage at which the proportion of transitioning shoot apical meristems was the 
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highest (Figure S2, Table 1). We made three important observations from the tim

of floral transition (Table 1): (1) floral transition occurred later in MBS than in F2

consistently with the flowering time difference between these two inbreds 

value<2.2 10
-16

 and <2.35 10
-12 

in 2012 and 2013 respectively); (2)  floral transit

occurred at the same plant developmental stage in Early and Late genotypes in F2

(8 visible leaves), but occurred at an earlier plant developmental stage (9 visi

leaves) in Early than in Late MBS progenitors (10 visible leaves); (3) the VeryLate F2

progenitor displayed a delayed timing of floral transition similar to MBS genotyp

with a year effect – floral transition occurred at 9 and 10 visible leaves for Year 1 a

2 respectively. Overall, we therefore evidenced that the selection that was applied

flowering time indirectly affected floral transition, with later occurrence of flo

transition in VeryLate or Late genotypes as compared with Early.  

 

 
 

Figure 1. Response to selection in the Saclay divergent selection experiments during the first 13 generations. Do

lines represent the average flowering time of each family issued from a single ancestor at G0 (Figure S1) plo

against time in generation. Flowering time was measured every year (generation) by the number of days from sow

to flowering in the experimental fields, and was corrected for the average year effect. Vertical lines indicate stan

deviation within families.  Data are taken from Durand et al. (2015). Plain lines represent the average trend

response to selection for the Early, Late and VeryLate F252 populations and the Early and Late MBS populations.  

 

Genome-wide patterns of gene expression in the shoot apical meristem 

We pooled shoot apical meristems by developmental stage (number 

visible leaves) of plants of the same progenitor to generate 25 RNA-Seq librar

(Table 1). We obtained between 19,711,727 and 33,475,403 51 bp single-reads 

library (Table S1). After trimming, filtering and mapping steps, we recovered betwe

29.87% and 47.22% of the reads (Table S1) that were used to estimate ge

expression. Hence, less than half of the original reads were used which was prima

due to “contamination” of rRNAs − around 60% of the reads corresponded to rRN

− and to a lesser extent to sequencing quality − 10% of the reads were discard

(Table S1).  
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We computed expression of annotated genes in the maize reference genome 

v3 by relying on the corresponding number of raw counts obtained from the longest 

transcript of each of 39,066 genes (Table S2). After filtering and normalization, we 

recovered a subset of 21,488 genes (55%) for which there was at least one count per 

million reads in half of our libraries. This estimate compares closely to the number of 

transcripts expressed in the maize gene atlas at two vegetative stages for pooled 

samples of stem and shoot apical meristem (Stelpflug, et al. 2016). We verified that 

the libraries considered as Replicates (same Progenitor, same shoot apical meristem 

Status) did cluster together, and that differences among Progenitor/Status were 

higher than differences among replicates (data not shown). The distributions of the 

normalized counts indicated lowest and highest quartiles comprised between ~30 

and ~500, with a median depth around 200 (Figure S3). We computed pairwise 

correlations of normalized counts across all 25 libraries. Pearson’s correlation 

coefficients ranged between 0.83 and 0.99. These elevated values indicate that 

patterns of gene expression are overall well conserved across libraries.  

 

Table 1. Meristem Status
a
 and timing of floral transition by Progenitor, Year and developmental stage as 

determined from pooled samples (samples used for RNA-Seq are underlined).  

 

Progb Yearc Leaf6d Leaf7d Leaf8d Leaf9d Leaf10d Leaf11d Leaf12d 

 

FE 

 

1 

 

V30 

 

V31 

 

�T19 

 

R20 

   

FE 2 V30 V30 �T20 R21    

FL 1 V29 V31 �T24 R26    

FL 2 V30 V25 �T21 R18    

FVL 1   V34 �T35 T19 T24  

FVL 2   V30 V30 �T21 R21  

ME 1  V28 V32 �T18 T25   

ME 2  V30* V30* �T20 R20   

ML 1   V32 V32 �T21 T16  

ML 2   V30 V30 �T20 T20 R20 

 
a
: V=Vegetative, T=Transitioning, R=Reproductive

 

b
: Progenitors are defined by Line (F=F252, M=MBS) and genotype (E=Early, L=Late, VL=VeryLate) 

c
: Year1=2012, Year2=2013 

d
: Developmental stage (stage) defined as the number (n) of visible leaves (Leafn). Meristem status (V, T, R) was 

determined by the status of the majority of pooled meristems (number of pooled meristems is indicated in subscript). 

Floral transition indicated by an arrow is defined as the earliest stage for which the transition stage is reached. Note 

that we were unable to obtain RNA-Seq for the ML progenitor at the vegetative status (V), and that we were unable 

to sample the reproductive status for FVL, ME, ML in the first year of the experiment.  
*
: These samples were combined for RNA-Seq 
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DE genes and targets of selection 

We performed 27 contrasts to detect DE genes (Figure 2). In total, we 

detected 12,754 DE genes, 49% of which were significant in more than one contrast 

(Table S3). Out of the 12,754 DE genes, 3,713 displayed a Year effect, 8,228 a Line 

effect, and 6,568 displayed a Status effect (Figure 2). We detected 4,682 and 2,719 

DE genes with a Status effect in F252 and MBS, respectively (Figure 2). Note that we 

detected few DE genes (<4) in contrasts between transitioning and reproductive 

meristems in MBS and VeryLate F252 genotypes (Figure 2). This was likely due to our 

inability to obtain reproductive meristems in the first year (Figure S2) that limited our 

power to detect DE genes between two consecutive status. The 2,499 DE genes 

displaying differential expression between two shoot apical meristem status in one 

but not all progenitors from the same line were classified in the Status x Progenitor 

interactions category. Finally, the Selection category regrouped DE genes exhibiting 

differential expression between early (FE) and late (FL or FVL) progenitors for F252, 

or between early (ME) and late (ML) progenitors for the MBS. Within Status x 

Progenitor interactions category, we also considered as part of the Selection category 

the subset of genes differentially expressed among Status for FE but neither for FL 

nor for FVL and reciprocally − DE genes among status for FL or FVL but not for FE. 

Such distinction was not applicable to MBS, since we detected a single DE gene 

between Status within ML (Figure 2). For MBS, we found 446 DE genes within the 

Selection category. For F252, we found 2,120 in the Selection category, that 

comprised 748 DE genes between E, and L or VL F252 progenitors. Considering both 

F252 and MBS, there were 2,451 DE genes falling into the Selection category (Figure 

2 & Table S4). 

From the normalized counts, we determined for each DE gene its mean 

normalized expression per Progenitor per Status. We discarded from the rest of the 

analyses 1,481 DE genes that displayed a Year effect only, 3,262 that displayed a Line 

effect only as well as 641 DE genes displaying a combined Year and Line effect (Table 

S3 & S4). The majority (77%) of the 7,370 remaining DE genes were significant in 

more than one contrast. We performed a principal component analysis on the mean 

normalized expression of the set of 7,370 DE genes. It revealed a separation between 

lines and among shoot apical meristem status in F252 along axis 1, and among 

progenitors and status along axis 2 (Figure 3).  
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Figure 2. Number of Differentially Expressed (DE) genes in 27 independent contrasts. Contr

categories and total number of detected DE genes by category (calculated from the union (∪) o

contrasts for that category) are shown in shaded boxes. Within category, contrasted groups 

connected by lines, whose thickness is proportional to the corresponding number of DE genes (indica

above/below lines with dashed line corresponding to no DE genes detected). Because we lacked 

Vegetative Status for the Late Progenitor in M Line (ML), we performed a single type of contrast

[StatusProg ML]. Within the [StatusProg] category, we considered the DE genes that were different

expressed in comparisons among status for Progenitor FE but not for Progenitors FL or FVL 

reciprocally, as selected within F Line ([SelF]/[StatusProg]). 
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Figure 3. Principal component analysis on mean normalized gene expression of 7,370 differentially 

expressed genes, per Progenitor per Status. Values were corrected for Year effect. This subset of DE 

genes contains DE genes significant in at least one contrast, after discarding those displaying a Year or 

Line effect only, or both.  

 

We next attributed to each gene a principal component based on correlation 

coefficient values (Table S4). We plotted heat maps of the 4 first components which 

explained respectively, 38%, 27%, 9%, 7% of the variance in gene expression. The first 

component (3,850 DE genes) corresponded to DE genes that differentiated lines, and 

shoot apical meristem status in F252 (Figure 4A). The second component (2,388 DE 

genes) was enriched for DE genes associated with shoot apical meristem status in 

F252 and in ME (Figure 4B). The third component encompassed 522 DE genes whose 

expression was specific to FVL progenitor as opposed to FE and FL, and varied across 

status in FE, FL and ME (Figure 4C). The fourth component regrouped 278 DE genes 

whose expression was modified during floral transition (Figure 4D). Altogether the 

first four components regrouped >95% of the set of 7,370 DE genes which 

represented 55.2% of all DE genes. Functional categories enrichment and depletion 

analyzes revealed specific patterns for each of the four principal components (Table 

S6).  We found 2,451 DE genes in the Selection category. We investigated the 

relative contribution of genes differentially expressed between FE and FL, FE and FVL, 

ME and ML to the Selection category. As expected from the phenotypic response – 

larger between FE and FVL than between FE and FL (Figure 1) – a greater proportion 

of DE genes were found between FE and FVL (576) than between FE and FL (346). 
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Comparisons of ME and ML revealed 446 DE genes (Figure 2). For F252, we fou

that a majority of DE genes of the Selection category were detected within the Sta

x Progenitor interactions category (Figure 2).  

 

 

Figure 4. Heat maps of gene expression across Progenitors (FE, FL, FVL, ME, ML) and Status (V, T, R) fo

independent sets of DE genes as defined by their correlations to the 4 first Principal Components. Ge

are clustered by similarity of expression patterns represented here by colours (red upregulated, blue 

downregulated) and intensities. PC1 explained 38% of the variation (A), PC2 27% (B), PC3 9% (C) and 

7% (D).  

 

To test for evidence of convergence in the response to selection betwe

lines MBS and F252, we asked whether the count of shared DE genes belonging

the Selection category in F252 and MBS (Table S4) was significantly different from

null expectation. There were 115 shared DE genes when including Selection wit

Status x Progenitor interactions (for F252), and 64 shared DE genes when exclud

them (Figure S4). This was significantly more than expected as tested with a tw
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sided exact Poisson test (with 115: expected=74 and P-value= 9.1 10
-06

, with 64: 

expected=26 and P-value= 3.8 10
-10

).  

Altogether, our data revealed interesting features: (1) 59.3% of the 21,488 

expressed genes were differentially expressed; (2) DE genes were most abundant in 

the Line (8,228), followed by Status (6,568) and Year (3,713) categories; (3) 2,451 

genes fell in the Selection category, with MBS displaying less genes than F252; (4) 

There was an excess of shared DE genes in the Selection category between lines. 

 

Expression patterns at three genes of the gene regulatory network using 

qRT-PCR 

In order to validate our material and methodology, we employed all RNA 

samples including those used to build RNAseq libraries to investigate via qRT-PCR, 

the expression of three genes whose interactions and effects on floral transition has 

been established. Those three genes are the floral meristem identity integrator 

ZMM4, the florigen ZCN8 (Meng, et al. 2011) and the negative regulator of flowering 

RAP2.7, the two later modulating the expression of ZMM4 (Danilevskaya, et al. 2008) 

(Figure S5). In addition to the shoot apical meristem, we examined expression in 

three additional organs: the immature part, mature part and the sheath of the last 

visible leaf (Figure S6).  

We used Zea mays GLYCINE-RICH PROTEIN1 (ZmGRP1) as a reference gene to 

normalize cDNA quantities. Regarding ZmGRP1 expression in control samples (Table 

S6), after checking for variance and residues independence we found a significant 

Line (F= 242.8627, P-value= 1.249e-15) and Year effect (F= 18.3751, P-value= 

0.0001828) with significant interaction (F= 191.5834, P-value= 2.621e-14) but no 

Plate effect (F= 0.3955, P-value= 0.5343464). Because the Plate effect was 

confounded with Gene effect (each gene being amplified in a different plate), the 

latter indicated that comparisons among our three genes were accurate. Significant 

differences in ZmGRP1 expression between Lines, Years, Organs, Status:Organs (P-

values<0.0428944) indicated substantial variation in the amount of cDNA quantities 

across samples (Table S7). We therefore normalized expression using ZmGRP1 

(corresponding ratio values (R) are provided Table S7).   

Across genes, most effects (Replicate, Progenitor, Status, Organ) were 

significant, except for the Progenitor and the Status effects in ZNC8 (Table S8). 

Patterns of normalized gene expression among replicates can be summarized as 

follows. The expression of ZMM4 increased at the time of floral transition (with 

significant differences between vegetative and transition status) irrespective of the 

Organ, Progenitor and Line, and its expression was higher in the shoot apical 

meristem than in all other organs (Figure S7 A&D). The expression of ZCN8 exhibited 

a trend towards increased expression through time in all Organs and all Progenitors. 

This trend was more pronounced in the shoot apical meristem between the 
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transition and reproductive status in F252 and MBS (Figure S7 B&E). RAP2.7 

displayed a significant reduction in the shoot apical meristem at floral transition 

followed by a significant increase in expression at the reproductive stage. This 

pattern was observed in all Progenitors (Figure S7C&F) but RAP2.7 displayed an 

overall lower level of expression in FVL compared with FE and FL (Figure S7C). RAP2.7 

was also more expressed in mature leaves than in any other organs.  

In conclusion, qRT-PCR revealed patterns of expression consistent with 

ZMM4 and ZCN8 being floral inducers. Expression of RAP2.7 on the other hand was 

repressed during floral transition. Interestingly, we noticed differences in expression 

between Early and Late or VeryLate Progenitors in F252 for RAP2.7. Note that we 

found good agreement between qRT-PCR and RNAseq for ZMM4 and RAP2.7, with 

significant correlations between levels of expression determined by the two methods 

(Figure S8). But ZCN8 displayed no detectable expression in RNAseq consistently with 

previous results detecting no expression in the meristem (Stelpflug, et al. 2016). 

 

Functional relevance of DE genes 

In order to get more insights into the functions of detected DE genes, we 

undertook several approaches. First, we established from the literature a complete 

list of flowering time genes whose function has been at least partially validated at the 

molecular level (Table S9 and references herein). Note that 39 of them are already 

connected in the maize flowering gene regulatory network (Figure S5), and only one 

(GRMZM2G022489, CORNGRASS1) did not have raw counts information from our 

RNA-Seq dataset. We referred to this list of 70 genes as FT_candidates. Second, we 

relied on the results of the most recent GWA study on maize male and female 

flowering time to establish a list of 984 GWA_candidates (1001 genes were extracted 

from Navarro et al. (2017)), 984 of which presented raw counts information from our 

RNA-Seq dataset, Table S9). Third, we tested for enrichment/depletion of our DE 

genes in Mapman and Kegg functional categories (Table S5).  

Out of 70 and 984 of the FT_candidates and GWA_candidates, 54 

(representing 77.1%) and 294 (representing 29.9%) respectively displayed differential 

gene expression. Comparatively, FT_candidates therefore presented a greater 

enrichment of DE genes than GWA_candidates (P-value=7.5 10-7). Because the level 

of expression may affect our power to detect DE genes, we verified that 

FT_candidates were not expressed at a higher level than all transcripts taken 

together (P-value=0.615). After discarding the DE genes displaying either a significant 

Year or Line effect only, or a combination of both, there were 38 and 185 DE genes 

left for FT_candidates and GWA_candidates respectively. Nearly all of the 38 

FT_candidates displayed differences between Status in F252 (33) and to a lesser 

extent in MBS (18). Remarkably, 22 of them also belonged to the Selection category 

in F252 (Table S9) including 6 genes connected in the maize gene regulatory network 
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(Figure S5): KN1, ELF4 (EARLY FLOWERING 4 PROTEIN), DLF1, GIGZ1A (GIGANTEA 1), 

GIGZ1B (GIGANTEA B), PHYA1 (PHYTOCHROME A1). Likewise, for GWA-candidates, 

we found a majority of the remaining genes with differences between Status in F252 

(119), and to a lesser extent in MBS (58) and the Selection category included 77 

genes for F252, 10 genes for MBS, and two genes for both (Table S9). Comparatively, 

the proportion of genes falling into the Selection category among FT_candidates 

(22/70=31.4%) was therefore much higher than among GWA_candidates 

(79/984=8.0%).  

Discussion 

Saclay divergent selection experiments have revealed remarkable shifts at 

the phenotypic level, with the production, in only 13 generations of divergent 

selection, of populations that flower two weeks apart in the two genetic backgrounds 

F252 and MBS respectively (Figure 1). Here, we showed that by selecting for 

flowering time difference, we indirectly selected for the timing of floral transition, 

which occurred earlier in early progenitors as compared with late progenitors.  We 

used evolved lines at generation 13 to examine the transcriptomic response to 

divergent selection, refine our knowledge of the underlying gene regulatory network, 

and test whether the observed phenotypic convergence is sustained by convergence 

at the transcriptomic level. We generated RNA-seq from pooled samples of shoot 

apical meristem before/during/after floral transition. All samples were collected in 

the field during two consecutive years. We recovered expression for 55% of all 

annotated maize genes indicating that about half of them were expressed in the 

shoot apical meristem. We detected differential expression for roughly 59% of them. 

 

Expression varies primarily across developmental stages 

As expected, expression varied more between lines than among 

developmental stages, with a proportion of DE genes exhibiting a Line or a Status 

effect of 64% and 51% respectively (Figure 2) confirmed by analyzes of expression 

patterns (Figure 3 & 4).  That variation among Status concern a large proportion of 

genes conformed previous report (Swanson-Wagner, et al. 2012), and indicates that 

Status is a key component of gene expression rewiring, particularly for F252 (Figures 

2 & 3).  

Given the complexity of the underlying network and its regulation, we expect the 

expression of few genes to affect in turn the expression of a myriad of response 

genes. The timing of floral transition is regulated by a variety of transcriptional and 

post-translational regulatory mechanisms, including DNA methylation, chromatin 

modification, small and long noncoding RNA activity (Andres and Coupland 2012). For 

example, chromatin modifications in ID1 modulate the expression of ZCN8 in 
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temperate maize (Mascheretti, et al. 2015). Signaling from leaf to the shoot apical 

meristem includes transmission of florigens (such as ZCN8) produced in the leaf and 

transported through the phloem sieve elements, making interactions with protein 

membranes as well as protein-protein interactions important determinants of floral 

transition. Finally, upregulation of protein targeting, amino acid and DNA synthesis, 

as well as an increase ATP production has been observed during the floral transition 

stage in the shoot apical meristem (Takacs, et al. 2012). As expected, we found 

among DE genes significant enrichment in many functional categories including 

amino acid metabolism, ATP synthesis, DNA, RNA, signaling, interactions, transport 

(Table S5).  

 

Reliable results obtained across two years of field experiments 

While response to endogenous signals by means of the autonomous pathway 

(Figure S5) occupies a central role in floral transition in maize temperate lines 

(Colasanti and Coneva 2009), environmental signals are likely important too. We 

indeed found enrichment for the environmental adaptation functional category 

among our DE genes (Table S5). One of the main steps of maize temperate 

adaptation has been the rapid loss of photoperiod (Hung, et al. 2012; Teixeira, et al. 

2015). Besides photoperiod, thermoregulation of flowering through the 

accumulation of degree days and threshold effects is also well-recognized in 

temperate maize and generates inter-annual variation in flowering time (Teixeira, et 

al. 2015). In our data, such variation influenced the timing of floral transition in the 

VeryLate F252 (Table 1). Surprisingly, however, this inter-annual environmental 

variation impacted less patterns of gene expression (29% only of all DE genes 

exhibited a Year effect) than developmental stages or genetic backgrounds. This 

important observation first indicates that RNA-seq experiments can be reliably 

interpreted in field conditions. Interestingly in A. thaliana, shoots sampled in the field 

at 3-days intervals over a growing season in two accessions revealed that 

temperature and precipitation captured a small proportion of the transcriptional 

variance relative to flowering status (Richards, et al. 2012). Second, this is consistent 

with the idea that selection during the breeding process has favored stability of 

expression across environments to ensure a reliable developmental outcome 

independently of environmental variation. Such robustness to perturbation, also 

called phenotypic canalization, is likely to evolve when constant phenotypic optimum 

− inbred line phenotype − is selected for (Abley, et al. 2016). Hence, genomic regions 

selected during modern breeding in temperate inbreds exhibit reduced genotype x 

environment interactions for grain yield, thereby limiting their plastic response 

(Gage, et al. 2017).  
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Genes impacted by selection on flowering time are involved in floral transition 

transcriptional rewiring 

Given our material, we paid a special attention to DE genes involved in the 

response to divergent selection for flowering time. Altogether they represent 19% of 

all DE genes, and were enriched in genes exhibiting Status x Progenitor interactions 

(Figure 2). Overall, F252 displayed more DE genes within the Selection category than 

MBS (2120 vs 446). This is in line with overall higher level of residual heterozygosity 

detected in the former (Durand, et al. 2015). However, if we considered only the 

Early and Late progenitors of each Line discarding the VeryLate Progenitor of F252, 

we obtained the inverse trend with less DE genes for F252 (346) than for MBS (446) 

(Figure 2, Figure S4). This pattern was consistent with a lack of phenotypic response 

in the Late F252 population after seven generations of selection but a continuation in 

the Late MBS population until G13 (Durand, et al. 2015). Such lack may be explained 

by the strong selection operated in the VeryLate F252 population that in turn relaxed 

selection in the Late F252 population (Figure 1). 

Linkage disequilibrium is expected to be pervasive in our small populations, 

perpetuated by selfing. One could therefore argue that genes of the Selection 

category are mainly driven by fixation of large chromosomal regions during the first 

generations of selection generating blocks of alleles differentially expressed between 

Early and Late progenitors. We further tested the clustering of genes by fitting a 

generalized linear model where the counts of DE genes of the Selection category 

were determined by the number of maize genes in 1Mb non-overlapping windows 

and a quasiPoisson distributed error. We found an overall significant overdispersion 

(dispersion parameter=1.17, P-value=1.04 10-7), albeit with noticeable differences 

among chromosomes (P-value=0.0006). Chromosomes 1, 6 and 10 were significantly 

enriched for DE genes of the Selection category, while chromosomes 4, 7, 9 were 

significantly depleted.  

At a first glance, these results are consistent with random fixation of 

segregating alleles by genetic hitchhiking accompanying the sweep to fixation of a 

single beneficial mutation. However, several lines of arguments support that DE 

genes of the Selection category do contribute to the observed phenotypic response 

to selection. First, the majority of these genes (76.4%) were attributed to the 2 first 

principal components that differentiated Status changes (Figure 4) and therefore 

seem to be involved in the transcriptional rewiring that occurred during floral 

transition. Second, these genes were depleted for “unknown” function or “not 

assigned” to a function (Table S5); this is consistent with an enrichment for flowering 

time genes that are likely well annotated. More importantly, genes of the Selection 

category encompassed 22 out of 54 FT_candidates that were differentially expressed, 

a proportion of 40.7 % that far exceeded the proportion of genes of the Selection 

category among all DE genes (19.2%).  
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Selected DE genes from the flowering time network display patterns consistent 

with the literature 

Among FT_candidates involved in the response to selection (Table S9), six 

were already connected in the gene regulatory network (Figure S5). They belong to a 

variety of pathways: PHYA1 is a photoreceptor (Sheehan, et al. 2004), KN1 belongs to 

the GA pathway (Bolduc and Hake 2009), ELF4 is involved in the photoperiod 

pathway (Yang, et al. 2013), while GIGZ1A, GIGZ1B connect the latter to the circadian 

clock pathway (Miller, et al. 2008), and DLF1 is a floral activator (Muszynski, et al. 

2006). Flowering time is positively correlated with gibberellin accumulation in maize 

(Thornsberry, et al. 2001). Previous results suggest that KN1 displays a complex 

pattern of expression that differs among tissues, and that it contributes to decrease 

gibberellin accumulation through upregulation of GA2ox1 (Bolduc and Hake 2009). 

Here we found a pattern of upregulation of KN1 expression in all progenitors during 

and after floral transition (Figure 5). Moreover, the expression of GA2ox1 is 

downregulated during floral transition in all progenitors (Figure 5) mirroring the 

pattern observed in rice (Sakamoto, et al. 2001). Promotion of floral transition 

necessitates a critical level of DFL1 mRNA abundance, and its expression is 

subsequently downregulated after (Muszynski, et al. 2006). Interestingly we found a 

greater level of mRNA abundance before floral transition in VeryLate progenitor 

compared with the other progenitors, suggesting that the former has evolved a 

distinct threshold level above which floral transition is initiated.  
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Figure 5. Expression patterns of 5 maize flowering time genes and candidates as determined by RNA-

seq. Expression was determined by shoot apical meristem Status (V=Vegetative, T=Transitioning, 

R=Reproductive) and Progenitor in the two Divergent Selection Experiments (F252 and MBS in red and 

blue colors, respectively) for KN1, GA2ox1, DLF1, ZMM26, PIF3.1. Expression is measured by average 

counts across replicates (after correcting for the year effect) and vertical bars represent the standard 

deviation around the mean, obtained after dividing the residual variance estimated by DESeq2 for each 

gene by the number of replicates.  

 

 

The overall observed patterns were consistent with the roles of ZMM4 and 

ZCN8 in promoting floral transition in temperate maize, with upregulation of ZMM4 

in all organs at floral transition – including the shoot apical meristem – in both F252 

and MBS (Danilevskaya, et al. 2008) (Figure S7A&D), and increased expression of 

ZCN8 during floral transition (Meng, et al. 2011) in the shoot apical meristem also in 

both inbred lines (Figure S7B&E). In addition, we report here the first qRT-PCR survey 

of the expression of RAP2.7 in the shoot apical meristem during floral transition 

(Figure S7C&F). It displayed patterns consistent with its role as a negative regulator 

of flowering time (Salvi, et al. 2007). Interestingly, our qRT-PCR results suggested a 

potential role of RAP2.7 in the response to selection. We were unable to corroborate 

this result using RNAseq because the level of expression of RAP2.7 was very low 

(median of 3 counts across libraries Table S2, Figure S8). Consistently, a previous 

study detected very low/no expression (fragments per kilobase exon model per 

million mapped fragments [FPKM]<2) using RNAseq from meristem and leave tissues 

(Stelpflug, et al. 2016). Previous studies have shown that the presence of miniature 

transposon in a conserved non-coding sequence upstream RAP2.7 is associated with 

early-flowering (Salvi, et al. 2007; Ducrocq, et al. 2008). More recently a model has 

been proposed whereby methylation spreading from the transposon reduces the 

expression of the RAP2.7 in the leaves causing early flowering (Castelletti, et al. 

2014). In contrast, we found a lower expression level in VeryLate F252 than in Late 

F252 in all organs. Because the MITE insertion is present in F252 (Ducrocq, et al. 

2008) and unlikely polymorphic among our samples, differential expression among 

alleles may be caused by a complex regulation including the action of miR172 (Figure 

S5).  

Besides those FT_candidates already connected in the gene regulatory 

network, others merit attention. For instance, we detected the three RAMOSA genes 

(Table S9) that act together to determine inflorescence branching (Vollbrecht, et al. 

2005; Bortiri, et al. 2006), one of which, RA1, may be in part regulated by sugar 

signaling (Satoh-Nagasawa, et al. 2006). In addition, we confirmed the suspected role 

of ZMM26 (GRZM2G046885) in maize flowering time transition (Alter, et al. 2016) as 

it was found under selection in F252 (Table S9). The more pronounced 

downregulation of ZMM26 at the time of floral transition may be involved in delayed 

flowering in the VeryLate progenitor (Figure 5). Finally, PIF3.1, a member of a family 
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of phytochrome interacting factor in maize that mediates plant response to various 

environmental factors (Kumar, et al. 2016), was found under selection in F252. The 

trend towards increased expression in the shoot apical meristem at floral transition 

in the Early progenitors of both inbreds indicates a potential role in promoting early 

flowering (Figure 5).  

 

 

Evidence of genetic convergence between inbred lines 

We detected convergence of transcriptome response between lines 

submitted to the same selection pressure, which translated into an excess of shared 

DE genes of the Selection category between lines (115 genes). Such convergence of 

molecular phenotypes may result from distinct regulatory mechanisms of gene 

expression: selection of mutations in trans-acting factors that modulate expression of 

entire pathways (Li, et al. 2013); or selection of mutations in cis-acting factors. An 

example of the latter was recently illustrated by the selection of two independent cis-

regulatory variants at the flowering time gene ZCN8 during early domestication and 

later diffusion of maize (Guo, et al. 2018). Interestingly, these two variants pre-

existed before the onset of selection in teosinte populations.  

Likewise, in our Divergent Selection Experiments, we found an example of 

selection in a genomic region encompassing several genes among which EiF4A, which 

displayed residual heterozygosity in the initial F252 seed lot. This region 

subsequently underwent differential fixation of the two alleles in the Early and 

VeryLate F252 progenitors (Durand, et al. 2012), and we actually found evidence for 

differential gene expression of EiF4A between Early and Late/VeryLate progenitors 

(Table S5). Note that in maize, stretches of residual heterozygosity have been shown 

to be either unique or shared by very few lines (Brandenburg, et al. 2017). Therefore, 

except for shared streches between F252 and MBS, sorting of pre-existing alleles by 

differential selection between early and late populations should not translate into 

patterns of convergence between inbred lines.  

While convergence between inbred lines can happen from shared standing 

genetic variants, previous results have shown that de novo mutations have 

contributed to our observed response to selection. Convergence of gene expression 

between our populations may therefore also originate from such mutations acquired 

independently across lineages. Examples of such convergence exist in natura such as 

the well-known case of pelvic reduction in freshwater stickleback (Chan, et al. 2012). 

In experimental evolution systems such as yeast or bacteria, parallel de novo 

mutations have been often observed at the gene and even nucleotide level during 

adaptation to antibiotic dosage (Laehnemann, et al. 2014), to nutrient availability and 

growth conditions (Spor, et al. 2014; Turner, et al. 2018) , and during acclimation to 

high temperature (Tenaillon, et al. 2012). In this last example, first-step mutations in 
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the evolved lines have been observed in multiple replicates at a single gene: a trans-

acting factor modulating the expression of hundreds of downstream genes 

(Rodriguez-Verdugo, et al. 2016). Such pattern is consistent with our observations 

with convergence of expression at both few candidates and many response genes.  

The relative contribution of standing expression variants in ancestral 

genotypes versus de novo expression variants acquired independently during the 

course of the experiment, to patterns of convergence remains to be established. This 

could be achieved by investigating in the ancestor lines, allele specific expression of 

the subset of 115 DE genes that displayed convergence of expression between the 

two inbreds. In addition, allele specific expression in hybrids created from crosses 

between evolved genotypes would bring insights into cis- versus trans-regulation of 

gene expression (de Meaux, et al. 2005); and whole genome sequencing of ancestral 

and derived genotypes would allow identifying the origin of mutations and their fate 

through generations of selection. 

 

 

Conclusion 

 

 We used two divergent selection experiments with controlled genetic 

backgrounds and little residual heterozygosity to characterize the genome-wide 

transcriptomic response to selection for flowering time. Throughout this study, we 

have demonstrated the reliability of performing RNA-seq experiments in field 

conditions. We have shown that the meristem developmental status is the second 

main source of differential gene expression. We uncovered a subset of genes 

involved in the response to selection. This subset of genes likely encompasses a 

majority of response genes; but also displays a strong enrichment for flowering time 

genes with evidence of convergence of expression between lines sustaining 

phenotypic divergence. Modeling of the floral transition gene network would help 

dissociating causal from response genes.  

 

 

Material and Methods 

 

 

Plant Material 

 We have conducted two independent divergent selection experiments for 

flowering time from two commercial maize inbred lines, F252 and MBS847 (MBS). 

These experiments were held in the field at Université Paris-Saclay (Gif-sur-Yvette, 

France). Within each divergent selection experiments, plants selected as early- or 
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late-flowering were selfed at each generation, and offspring used for the next 

generation of selection. As a result, we derived from each divergent selection 

experiment, two populations of Early- and Late-flowering genotypes previously 

identified as Early F252, Late F252, Early MBS, Late MBS (Durand, et al. 2015), as well 

as a VeryLate F252 populations. Seeds from selected genotypes at all generations 

were stored in cold chamber. We traced back the F252 and MBS pedigrees from 

generation 13 (G13) to the start of the divergent selection experiments (Durand, et 

al. 2015, Figure S1).  

 In order to investigate genome-wide changes of gene expression before, 

during, after flowering transition and contrast those changes between Early and Late 

genotypes, we chose five progenitors selected at G13 from the two divergent 

selection experiments: one progenitor from the Early (FE), Late (FL) and Very Late 

(FVL) F252 populations, and from the Early (ME) and Late (ML) MBS populations 

(Figure S1).  

All 5 progenitors were selfed to produce seeds. The resulting progenies were sown 

and grown in the field at Université Paris-Saclay (Gif-sur-Yvette, France) during 

summer 2012 and 2013. The experimental design contained rows of 25 plants from 

the same progenitor. For each line, each of the progenitors was represented by nine 

rows that were randomized in three blocks. Precipitations over the growing period 

totalized 117 mm and 60.5 mm and the average daily temperature reached 16.51 °C 

and 18.41 °C for 2012 and 2013, respectively. The second year of experiment was 

therefore hotter and drier than the first year. We added as controls, plants from F252 

and MBS initial seed lots.  

We defined developmental stages as the number (n) of visible leaves — the 

cotyledon leaf being considered as the first one, and named them accordingly Leafn. 

Based on preliminary observations, we defined 4 to 5 developmental stages per 

progenitor from leaf6 to leaf12 that encompassed the flowering transition (Table 1). 

Between June 08
th

 and July 9
th

 for 2012 (Year 1) and June 14
th

 and July 19
th

 for 2013 

(Year 2), we collected plants from the different blocks on a daily basis early morning 

(between 8:00 and 9:00 am). We randomly chose plants at the same developmental 

stage for a given progenitor. We dissected four organs from the fresh material 

collected: the shoot apical meristem, the immature and mature part of the last 

visible leaf (IL, ML), the sheath at the basis of the last visible leaf (S). We recorded the 

developmental stage (number of visible leaves) as well as the shoot apical meristem 

status: Vegetative (V), Transitioning (T) or Reproductive (R). We established shoot 

apical meristem status based on its shape following (Irish and Nelson, 1991) and 

length. Typical range of lengths are V: 0.1-0.2 mm, T: 0.2-0.35 mm, R>0.35 mm.  

For a given organ, we pooled together from 18 to 35 plants from the same 

progenitor at the same developmental stage (Table 1). We used as controls, plants 

from the original seed lots for F252 and MBS. These controls were dissected only at 
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stage leaf9 and leaf11 respectively, and all four organs were pooled together within a 

tube. All collected organs were frozen in liquid nitrogen upon collection and stored at 

-80 °C. In total, we gathered five progenitors x 4 organs x 4 stages that are 80 

samples per year in addition to the F252 and MBS controls. In 2013, we included one 

more stage for the ML progenitor for a total of 86 samples including the two controls. 

We performed a single biological replicate in 2012 (Replicate 1) and two biological 

replicates in 2013 (Replicates 2 and 3) for all organs, except the shoot apical 

meristem for which a single biological replicate was done each year. Total RNAs of 

pooled samples were extracted using Qiagen RNeasy Plant kit for shoot apical 

meristems, and using TRIzol reagent (Invitrogen) and ethanol precipitation for other 

organs. Total RNA was treated with DNAse (Ambion) following the manufacturer’s 

instructions. We evaluated RNA yields using Nanodrop 2000 (Thermo Scientific).  

 

 

qRT-PCR assays and statistical procedure 

 For all samples, 4 µg or less (for samples with <4 µg) of total RNA was reverse 

transcribed using random hexamers (Thermo scientific), 200 units of Revertaid 

Reverse Transcriptase (Thermo Scientific), and 20 units of recombinant Rnasin RNase 

inhibitor (Promega) in a final volume of 20 µl. Simultaneously, all samples were 

subjected to the same reaction without the RT to verify that there was no genomic 

DNA contamination. We designed copy-specific primers to amplify the following 5 

genes: MADS-transcription factor 4 (ZMM4, GRMZM2G032339), 

phosphatidylethanolamine-binding protein8 (ZCN8, GRMZM2G179264), Apetala-2 

domain transcription factor (RAP2.7, GRMZM2G700665). Primer sequences are the 

following ZMM4 F : 5’GGAGAGGGAGAAGGCGGCG 3’, R : 5’ 

CTACTCAAGAAGGCGCACGA 3’; ZCN8 F : 5’ATGCGCCACAACTTCAACTG 3’, R : 

5’GAAGAGTAGAAACCATAGGCCACTGA; 3’RAP2.7 F : 5’CGCCGACATCAACTTCAACC 3’, 

R : 5’CTCCAGGTACAGAGGCGTCA 3’. We used Glycine-rich protein1 

(ZmGPR1=GRMZM2G080603) with the following primers F:5’-

CACAACGCCTTCAGCACCTA-3’, R:5’- AAGGTGACGAAGCCGAAGC-3’ as a reference 

gene with ubiquitous expression among stages and organs following (Virlouvet, et al. 

2011). ZmGRP1 has been shown to be the second most stably expressed genes 

among 60 distinct tissues representing different organs x stages (Sekhon, et al. 2011).  

 We used standard qRT-PCR protocols with the SYBR Green PCR Master Mix 

(Applied biosystems) and the 7500 Real Time PCR System (Applied Biosystems) to 

evaluate gene expression. We undertook calibration procedure to ensure equivalent 

PCR efficiency across genes using serial 7-fold dilutions of cDNAs. We verified the 

specificity of the amplification by dissociation curve analysis, gel electrophoresis and 

sequencing of PCR products. We used a single 96 deep-well plate per gene to PCR 

amplify samples of a given replicate, the F252 and MBS controls, one negative 
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control (without cDNA) to verify that there was no genomic DNA contamination. In 

addition, we amplified the F252 and MBS control with the ZmGRP1 reference gene in 

every plate.  

 We quantified gene expression by the amplification Cycle threshold (CT).  CT 

indicates the number of cycles at which Q0=QCT/(1+E)CT. We first used ZmGRP1 CT in 

F252 and MBS controls to evaluate the significance of the effects of the Line (F252, 

MBS), Year (1, 2) and their interaction, as well as the “deep-well plate effect” (Plate 

1-6) confounded with the Gene effect. Second, we used ZmGRP1 CT of all samples 

(except controls) to test significance of the Replicate, Progenitor, shoot apical 

meristem Status (V, T, R), Organ (shoot apical meristem, Immature Leaf, Mature Leaf 

and Sheath) effects and the interactions between Status:Organ. In order to account 

for differences in initial cDNA quantities across samples, we normalized CT across all 

samples by ZmGRP1 CT values. Resulting normalized values (Ratios=R) were used in all 

subsequent analyses.  

 For all three genes, we employed the following linear regression model that 

decomposed variations of R into 4 fixed effects, an interaction effect and a residual: 

  

Rijkl = Repi + Progj + Statusk + Organl + Statusk x Organl + eijkl 

 

with Repi =1,2,3; Progj = FE, FL, FVL, ME, ML; Statusk =V, T, R; Organl =M, IL, ML, S; 

and eijkl the residual. We calculated adjusted means after correcting for Rep effect, 

and 95% confidence intervals. Finally, we performed contrasts to compare adjusted 

means of all 60 pairwise combinations of Progenitor (5) x Status (3) x Organ (4). We 

retained as significant P-values<1/1000 which was just above the Bonferroni 

threshold.  

 

 

RNA sequencing, data filtering and mapping 

 We used a subset of the RNA samples used in the qRT-PCR to perform RNA-

Seq. This subset contained shoot apical meristem samples from 2012 and one of the 

2013 replicate. Because we were limited in the amount (after qRT-PCR reactions) and 

quality of total extracted RNAs, we were able to obtain sequencing data for a subset 

of 25 samples (25 libraries, Table 1). Note that we combined Leaf7 and Leaf8 for ME 

in 2013 in a single sample. In brief from 2.5 to 5 µg of total RNA, mRNA was isolated 

with two rounds of polyA purification, fragmented, converted to cDNA, and PCR 

amplified according to the Illumina RNA-Seq protocol (Illumina, Inc. San Diego, CA). 

Oriented cDNA libraries were constructed and 51 bp single-reads sequences were 

generated using the Illumina Genome Analyzer II (San Diego, CA) at the high 

throughput sequencing platform of IMAGIF (Gif-sur-Yvette). Illumina barcodes were 

used to multiplex the samples.  
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 From raw reads, we retrieved Illumina adapters using the software Cutadapt 

1.2.1 (Martin 2011) with the following parameters: count=5 ; minimum length=10 ; 

length overlap=3 . We trimmed low quality reads by imposing 3 consecutive bases at 

the 3’ end with a score of >20 and discarding reads with a sequence length after 

trimming <25 pb. We filtered reads with a perfect match against maize rRNAs. We 

mapped the resulting reads (trimmed, filtered and uniquely-mapped) against the 

maize reference genome v3 (http://ftp.maizesequence.org/) using Tophat (Trapnell, 

et al. 2009) that accounts for exons-introns junctions using end-to-end alignment 

with the following parameters adapted to shorts reads with a short seed (L15) and 

with very sensitive parameters (-i): --b2-D 25 --b2-R 3 --b2-N 0 --b2-L 15 --b2-i S,1,0.5 

--b2-n-ceil L,0,0.5. We provided transcript annotations during the reads mapping.  

From the resulting sam files we retrieved the uniquely mapped reads imposing a 

filter on read containing NH:i:1. We used coverageBed with the –split option where 

bed entries are treated as distinct intervals, and retained reads mapped to exons only 

(as described in Zea_mays.AGPv3.22.gtf, http://ftp.maizesequence.org/). We parsed 

the resulting file to determine the number of exons, the transcript length, the 

number of counts (raw counts) per transcript and their coverage (number of bases 

covered by at least one read). We used the raw counts of the longest transcript of 

each gene to perform the rest of the analyses.  

 

RNA-Seq filtering and normalization 

 We used the standard procedures proposed by DESeq2 v1.14.1 (Love, et al. 

2014) for filtering and normalization. We computed libraries size factors after data 

filtering to eliminate transcripts with less than one count per million reads in half of 

the libraries. We considered libraries of the same progenitor having the same shoot 

apical meristem status albeit different leaf stages as replicates irrespective of the 

year of experimentation. We applied the following graphical procedures to verify our 

pipeline: we examined boxplots of the libraries counts distributions to validate the 

normalization procedure;  we evaluated pairwise correlations between replicates 

both on normal and logarithmic scales; we performed multidimensional scaling 

(MDS) as suggested to compute pairwise distances between libraries based on the 

500 genes with the largest standard deviation among samples, and represented the 

libraries graphically in a two dimensional space.  

 

Detection of Differentially Expressed genes (DE genes) from RNA-Seq data  

 In order to identify Differential Expressed genes (thereafter, DE genes), we 

used the DESeq2 package (Love, et al. 2014) along with its internal filtering procedure 

that chooses the filtering threshold from the mean gene expression of DE genes. The 

overdispersion parameters were estimated from the whole data set. We next 

performed pairwise comparisons between libraries by computing contrasts 
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sequentially and determining the associated P-values for each transcript after 

correction for multiple testing (Benjamini and Hochberg 1995).  

In our experimental setting, a Progenitor represents an early or a late 

genotype (E, L, or VL) issued from one of the two Lines (F or M). In addition, we 

sampled three shoot apical meristem Status (V, T, R) and performed two Years of 

field experimentation. Altogether, we tested the following contrasts: (1) one 

comparison between Year effect averaged across all samples; (2) one comparison 

between Line effect averaged across all samples ; (3) three independent comparisons 

between early and late Progenitors of each Divergent Selection Experiment 

regardless of the shoot apical meristem Status (FE vs FL, FE vs FVL, ME vs ML); (3) 

three independent comparisons between Lines regardless of the shoot apical 

meristem Status considering either early and late Progenitors alternatively (FE vs ME, 

FL vs ML, FVL vs ML); (4) three independent comparisons of shoot apical meristem 

Status within each Divergent Selection Experiment regardless of Progenitors (V vs T, 

V vs R, T vs R); (5) three independent comparisons of shoot apical meristem Status by 

Progenitor (V vs T, V vs R, T vs R in FE, FL, FVL, ME, ML, respectively). Considering 25 

samples and missing combinations of Progenitor x Status x Year (Table 1), we 

performed a total of 27 independent contrasts. Note that the filtering procedure 

generated different sets of genes retained for each contrast.  

Altogether, our analysis corresponded to the following linear decomposition of the 

mean expression, Thetaylgs: 

 

Thetaylgs = Yeary + Linel + Line(Progenitor)lg + Status(Line)sl + Status(Line(Progenitor))slg  

 

 We determined the number of Differentially Expressed (DE) genes in each 

contrast. We next considered as DE genes the ones that were detected as 

differentially expressed in at least one contrast. From the normalized counts, we 

determined for each DE gene its mean expression per Progenitor per Status, 

corrected for the Year effect using a linear model. We further normalized mean gene 

expression by the overall mean, so that a negative value corresponds to under-

expression, and a positive value to over-expression. 

 

Gene clustering from differential expression patterns 

 We performed a Principal Component analysis (PCA) using mean normalized 

gene expression of DE genes, after discarding those displaying a Year or Line effect 

only, or both. Principal components were defined as linear combinations of genes 

and allowed projection of Progenitor x Status combinations. To reduce the 

complexity, we used an approach similar to the one proposed in the MixOmics 

package (Rohart, et al. 2017). We calculated the Pearson correlation coefficient of 

each gene to the first 13 Principal Components and, based on the absolute value of 
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the greatest correlation coefficient among 13, we attributed each gene to a single 

principal component axis. Correlation coefficients were preferred to PCA loadings 

because they accounted for both the variance of the PC axis and the trait variance. 

We retained 4 lists of DE genes corresponding to the 4 first principal components and 

built independent heat maps after ordering genes according to their correlation 

coefficient – from positive to negative correlations.  

 

 

Functional analysis of DE genes 

We conducted a functional annotation of DE genes using the MapMan 

(http://mapman.gabipd.org/web/guest/mapman) and Kegg Ontology level 1, 2 and 3 

(https://www.genome.jp/kegg/ko.html). We reduced the number of functional 

categories by reassigning each of the 226 Mapman categories to 36 Mapman 

categories, and each Kegg levels 2 and 3 to 24 Kegg pathways, corresponding to the 

following five high-level kegg categories (Kegg level 1): Metabolism, Genetic 

Information processing, Environmental Information processing, Cellular processes, 

Organismal systems (Table S10). We next used a bilateral exact Fisher to test for 

categories’ enrichment/depletion for DE genes belonging to the 4 first principal 

components, DE genes within the Selection category and genes differentially 

expressed between lines most of which were discarded from the PCA analysis. We 

computed the standardized residuals as a standardized measure of the difference 

between the observed and expected counts. 

 

Data accessibility 

 

RNA-seq data were deposited in the Gene Expression Omnibus database from 

the National Center for Biotechnology Information under SRA accession 

number: PRJNA531088. 

Supplementary material 

Supplementary tables and R script are available at: 

https://figshare.com/articles/Supplementary_Tables/7271399/4 

(DOI:10.6084/m9.figshare.7271399) 

 

Table S1. Sequencing and mapping statistics. 

Table S2. Raw counts for the longest transcript of 39,066 gene in all 25 

libraries. 

Table S3. Number of Differentially Expressed (DE) genes in 27 contrasts. 
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Table S4. List of Differentially Expressed genes (12,754) with average gene 

expression and standard deviation.  

Table S5. Enrichment tests of Mapman categories and Kegg pathways for DE 

genes. 

Table S6: Expression of the reference gene ZmGRP1 as CT in F252 and MBS 

controls. 

Table S7: Expression of the reference gene ZmGRP1 and 5 candidate genes as 

measured by CT in all samples, and normalized expression in candidates. 

Table S8: Significance of effects for each of the 5 candidate genes as 

determined by linear regression. 

Table S9. List of 71 flowering time genes in maize and overlap with 

Differentially Expressed genes. (continued) List of 2001 Female and/or Male 

Flowering Time candidates in maize and overlap with Differentially Expressed 

genes. 

Table S10. Functional annotations of maize transcripts based on Mapman and 

Kegg ontologies.  

 

Supplementary figures are available in the Supplemental material: 

 

Figure S1. Pedigree of the progenitors in the F252 and MBS divergent 

selection experiments.  

Figure S2. Proportion of Status among all dissected meristems (Table 1) in 

pooled samples for Year 1 and Year 2 by Progenitor FE (A), FL (B), FVL (C), ME 

(D), ML (E).  

Figure S3. Distribution of normalized counts with median values (dots), 25 and 

75 quantiles (vertical lines), for the 25 RNA-seq libraries.  

Figure S4. Venn Diagram of DE genes included in the Selection category.  

Figure S5. Schematic representation of maize flowering time pathway.  

Figure S6. Organs used for the qRT-PCR in addition to the shoot apical 

meristem.  

Figure S7. Adjusted means of log(Expression) across Replicates and 95% CI 

determined by qRT-PCR for 3 genes ZMM4, ZCN8, RAP2.7 in F252 (A-C) and 

MBS (D-F).  

Figure S8. Correlations between levels of expression determined by qRT-PCR 

and RNA-seq for two candidate genes.  
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