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Abstract 19 

The rapidly emerging diversity of single cell RNAseq datasets allows us to characterize the transcriptional 20 

behavior of cell types across a wide variety of biological and clinical conditions. With this comprehensive 21 

breadth comes a major analytical challenge. The same cell type across tissues, from different donors, or in 22 

different disease states, may appear to express different genes. A joint analysis of multiple datasets requires 23 

the integration of cells across diverse conditions. This is particularly challenging when datasets are assayed 24 

with different technologies in which real biological differences are interspersed with technical differences. We 25 

present Harmony, an algorithm that projects cells into a shared embedding in which cells group by cell type 26 

rather than dataset-specific conditions. Unlike available single-cell integration methods, Harmony can 27 

simultaneously account for multiple experimental and biological factors. We develop objective metrics to 28 

evaluate the quality of data integration. In four separate analyses, we demonstrate the superior performance 29 

of Harmony to four single-cell-specific integration algorithms. Moreover, we show that Harmony requires 30 

dramatically fewer computational resources. It is the only available algorithm that makes the integration of 31 

~106 cells feasible on a personal computer. We demonstrate that Harmony identifies both broad populations 32 

and fine-grained subpopulations of PBMCs from datasets with large experimental differences. In a meta-33 

analysis of 14,746 cells from 5 studies of human pancreatic islet cells, Harmony accounts for variation among 34 

technologies and donors to successfully align several rare subpopulations. In the resulting integrated 35 

embedding, we identify a previously unidentified population of potentially dysfunctional alpha islet cells, 36 

enriched for genes active in the Endoplasmic Reticulum (ER) stress response. The abundance of these alpha 37 

cells correlates across donors with the proportion of dysfunctional beta cells also enriched in ER stress 38 

response genes. Harmony is a fast and flexible general purpose integration algorithm that enables the 39 

identification of shared fine-grained subpopulations across a variety of experimental and biological conditions. 40 

 41 

Introduction 42 

Recent technological advances1 have enabled unbiased single cell transcriptional profiling of thousands of 43 

cells in a single experiment. Projects such as the Human Cell Atlas2 (HCA) and Accelerating Medicines 44 

Partnership3,4 exemplify the growing body of reference datasets of primary human tissues. While individual 45 
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experiments contribute incrementally to our understanding of cell types, a comprehensive catalogue of 46 

healthy and diseased cells will require the integration of multiple datasets across donors, studies, and 47 

technological platforms. Moreover, in translational research, joint analyses across tissues and clinical 48 

conditions will be essential to identify disease expanded populations. Without effective strategies, single cell 49 

RNA-seq from different studies appear to be hopelessly confounded by data source5. Recognizing this key 50 

issue, investigators have developed unsupervised multi-dataset integration algorithms, such as Seurat 51 

MultiCCA6, MNN Correct7, Scanorama8, and BBKNN9 to enable joint analysis. These methods embed cells 52 

from diverse experimental conditions and biological contexts into a common reduced dimensional embedding 53 

to enable shared cell type identification.  54 

We introduce Harmony for multi-dataset integration, to meet three key challenges of unsupervised 55 

scRNAseq joint embedding. First, cell types with regulatory or pathogenic roles are often rare, with subtle 56 

transcriptomic signatures. Integration must be able to identify such rare cell types, particularly those whose 57 

subtle signatures are initially obscured by other technical or biological confounders. To be sensitive to 58 

subpopulations with subtle signatures, Harmony uses a two-step iterative strategy that removes the effect of 59 

such confounding factors at each round. This makes it easier to identify shared cell types whose expression 60 

signatures were obscured in the original data. Second, the number of cells in experiments is quickly 61 

expanding, exceeding 100,000 cells in atlas-like datasets. Integration algorithms must scale computationally, 62 

both in terms of runtime and required memory resources. To scale to big data, Harmony uses linear methods 63 

and avoids costly cell-to-cell comparisons. Third, more complex experimental design of single cell analysis 64 

compares cells from different donors, tissues, and technological platforms. In order for the joint embedding to 65 

be free of the influence of each, integration must simultaneously account for multiple sources of variation. 66 

The Harmony clustering objective function is formulated to account for any number of discrete covariates. 67 

Harmony is available as an R package on github (https://github.com/immunogenomics/harmony), with 68 

functions for standalone and Seurat6 pipeline analyses.  69 

Here, we demonstrate how Harmony address the three unmet needs outlined above. First, we give an 70 

overview of the Harmony algorithm. Then, we then integrate cell line datasets and introduce a metric to 71 

quantify the cell-type accuracy and degree of dataset-mixing before and after integration. All measures of 72 

cell-type accuracy are based on annotation within datasets separately. As Harmony does not use cell-type 73 
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information to integrate cells, these labels provide an unbiased quantification of accuracy. We then 74 

demonstrate that Harmony scales more effectively than any of the other available algorithms across a range 75 

of dataset sizes, from 25,000 to 500,000 total cells. We then use Harmony to identify shared cell  in three 76 

PBMC datasets with large technical differences. Finally, in a pancreatic islet cell meta-analysis, we 77 

demonstrate the power of Harmony to simultaneously integrate donor- and technology-specific effects by 78 

identifying a putative novel pancreatic islet cell subtype.  79 

Results  80 

Harmony Iteratively Learns a Cell-Specific Linear Correction Function 81 

Starting with a PCA embedding, Harmony first groups cells into multi-dataset clusters (Figure 1A). We use 82 

soft clustering, assigning cells to potentially multiple clusters, to account for smooth transitions between cell 83 

states. In our thinking, these clusters serve as surrogate variables, rather than actually defining discrete cell-84 

types.  We developed a novel variant of soft k-means clustering to favor clusters with representation across 85 

multiple datasets (Online Methods). Clusters containing cells that are disproportionately represented by a 86 

small subset of datasets are penalized by an information theoretic metric. Harmony can employ multiple 87 

cluster penalties if there are multiple technical or biological factors, such as different batches and different 88 

technology platforms. Soft clustering preserves discrete and continuous topologies while avoiding local 89 

minima that might result from too quickly maximizing representation across multiple datasets, and preserves 90 

uncertainty. After clustering, each dataset has a cluster-specific centroid (Figure 1B) that is used to compute 91 

cluster-specific linear correction terms (Figure 1C). Under favorable conditions, the surrogate variables, 92 

defined by cluster membership, correspond to cell types and cell states. Thus, the cluster-specific correction 93 

factors that Harmony computes correspond to individual cell-type and cell-state specific correction factors. In 94 

this way, Harmony learns a simple linear adjustment function that is sensitive to intrinsic cellular phenotypes. 95 

Finally, each cell is assigned a cluster-weighted average of these terms and corrected by its cell-specific 96 

linear factor (Figure 1D). As a result, each cell has a potentially unique correction factor, depending on its 97 

soft clustering distribution. Harmony iterates these four steps until convergence. At convergence, additional 98 

iterations would assign cells to the same clusters and compute the same linear correction factors.  99 
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 100 

Figure 1. Overview of Harmony algorithm. We represent datasets represented by colors, and different cell types by shapes. First, 101 

Harmony applies principal components analysis to embed transcriptome wide expression profiles into reduced dimensional space. 102 

Then we apply an iterative process to remove the data set specific effects. (A) Harmony assigns cells probabilistically to clusters, 103 

maximizing the diversity of datasets within each cluster. (B) Harmony calculates a global centroid across all datasets for each cluster, 104 

as well as dataset-specific centroids. (C) Within each cluster, Harmony calculates a correction factor for each dataset based on the 105 

centroids. (D) Finally, Harmony corrects each cell with a cell-specific factor based on C. Since Harmony uses soft clustering, each 106 

individual cell may be corrected by a linear combination of multiple factors proportion to its soft cluster assignments made in A. 107 

Harmony repeats steps A to D until convergence. The dependence between cluster assignment and dataset diminishes with each 108 

round. 109 

Quantification of Error and Accuracy in Cell Line Integration 110 

We first assessed Harmony using well-annotated datasets, in order to evaluate performance on both 111 

integration (mixing of datasets) and accuracy (no mixing of cell types). Both metrics are important. Perfect 112 

integration can be achieved by simply mixing all cells, regardless of cellular identity. Similarly, high accuracy 113 

can be achieved by partitioning cell types into broad clusters without mixing datasets in small neighborhoods. 114 

In this situation, broad cellular states are defined, but fine-grained cellular substates and subtypes are 115 

confounded by the originating dataset. In order to quantify integration and accuracy of this embedding we felt 116 

that it was important that we have an objective metric. To this end, we compute the Local Inverse Simpson’s 117 

Index (LISI, Online Methods) in the local neighborhood of each cell. To assess integration, we employ 118 

integration LISI (iLISI, Figure 2A), denotes the effective number of datasets in a neighborhood. 119 

Neighborhoods represented by only a single dataset get an iLISI of 1, while neighborhoods with an equal 120 

number of cells from 2 datasets get an iLISI of 2. Note that even under ideal mixing, if the datasets have 121 
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different numbers of cells, iLISI would be less than 2. To assess accuracy, we use cell-type LISI (cLISI, 122 

Figure 2B), the same mathematical measure, but applied to cell-type instead of dataset labels. Accurate 123 

integration should maintain a cLISI of 1, reflecting a separation of unique cell types throughout the 124 

embedding. An erroneous embedding would include neighborhoods with a cLISI of 2, reflecting the grouping 125 

of different cell types. 126 

  We begin with three datasets from two cells lines: (1) pure Jurkat, (2) pure 293T and (3) a 50:50 127 

mix10. These datasets are particularly ideal for illustration and for assessment, as each cell can be 128 

unambiguously labeled Jurkat or 293T (Figure S1). A thorough integration would mix the 1799 Jurkat cells 129 

from the mixture dataset with 3255 cells from the pure Jurkat dataset and the 1565 293T cells from the 130 

mixture dataset with the 2859 from the pure 293T dataset. Thus, we expect the average iLISI to range from 1, 131 

reflecting no integration, to 1.8 for Jurkat cells and 1.5 for 293T cells1, reflecting maximal accurate integration. 132 

Application of a standard PCA pipeline followed by UMAP embedding demonstrates that the cells group 133 

broadly by dataset and cell type. This is both visually apparent (Figure 2C,D) and quantified (Figure 2E,F) 134 

with high accuracy reflected by a low cLISI (median iLISI 1.00, 95% [1.00, 1.00]). However the iLISI (median 135 

iLISI 1.01, 95% [1.00, 1.61]) is also low, reflecting imperfect integration, and ample structure within each cell-136 

type reflecting the data set of origin. After Harmony, cells from the 50:50 dataset are mixed into the pure 137 

datasets (Figure 2E), which is appropriate in this case since these cell-lines have no additional biological 138 

structure. The increased iLISI (Figure 2D, median iLISI 1.59, 95% [1.27, 1.97]) reflects the mixing of 139 

datasets, while the low cLISI (median iLISI 1.00, 95% [1.00, 1.02]) reflects the accurate separation of Jurkat 140 

from 293T cells. iLISI and cLISI provide a quantitative way to assess the integration and accuracy of multiple 141 

algorithms. We repeated the integration and LISI analyses with MNN Correct, BBKNN, MultiCCA, and 142 

Scanorama (Figure 2G). While Harmony had the highest iLISI, Scanorama MNN Correct, and BBKNN 143 

provided lower levels of integration, evidence by lower iLISI. MultiCCA actually separated previously mixed 144 

datasets, yielding a lower iLISI (median 1.00, 95% [1.00, 1.28]) than before integration. Except for MultiCCA 145 

(median cLISI 1.00, 95% [1.00, 1.23]), the other algorithms maintained high accuracy (Table S1, median 146 

cLISI 1.00, 95% [1.00, 1.00]). 147 

                                                
11.5 = 1 / [(1565 / (1565 + 2859))2 + (2859/ (1565 + 2859))2], 1.8 = 1 / [(1799 / (1799 + 2859))2 + (3255 / (1799 + 3255))2] 
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 148 

Figure 2. Quantitative assessment of dataset mixing and cell-type accuracy with cell line datasets. (A) iLISI measures the degree of 149 

mixing among datasets in an embedding, ranging from 1 in an unmixed space to B in a well mixed space. B is the number of datasets 150 

in the analysis. (B) cLISI measures integration accuracy using the same formulation but computed on cell-type labels instead. An 151 

accurate embedding has a cLISI close to 1 for every neighborhood, reflecting separation of different cell types. Jurkat and HEK293T 152 

cells from pure (purple and yellow) and mixed (green) cell-line datasets were analyzed together. Before Harmony integration, cells 153 
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grouped by dataset (C) and known cell-type (D). iLISI and cLISI (E) were computed for every cell’s neighborhood and summarized 154 

with quantiles (5, 25, 50, 75, 95). After Harmony integration, cells from the mixture dataset are mixed into the other datasets (F), 155 

achieved by mixing Jurkat with Jurkat cells and HEK293T with HEK293T cells (G).  iLISI and cLISI (H) were re-computed in the 156 

Harmony embedding. (I) This analysis was repeated for other algorithms and compared against no integration and Harmony 157 

integration using iLISI and cLISI quantiles.  158 

Harmony Scales to Enable Analysis of Large Data 159 

As an integral part of the scRNAseq analysis pipeline, the integration algorithm must run in a reasonable 160 

amount of time and within the memory constraints of standard computers. To this end, we evaluated the 161 

computational performance of Harmony, measuring both the total runtime and maximal memory usage. To 162 

demonstrate the scalability of Harmony versus other methods, we downsampled 528,688 cells from 16 163 

donors in the HCA data11 to create 5 benchmark datasets with 500,000, 250,000, 125,000, 60,000, and 164 

30,000 cells. We reported the runtime (Table S2) and memory (Table S3) for all benchmarks. Harmony 165 

runtime scaled well for all datasets (Figure 3A), ranging from 4 minutes on 30,000 cells to 68 minutes on 166 

500,000 cells. It was 30 to 200 times faster than MultiCCA and MNN Correct. The runtimes for Harmony, 167 

BBKNN, and Scanorama were comparable for datasets with up to 125,000 cells. Harmony required very little 168 

memory (Figure 3B) compared to other algorithms, only 0.9GB on 30,000 cells and 7.2GB on 500,000 cells. 169 

At 125,000 cells, Harmony required 30 to 50 times less memory than Scanorama, MNN Correct and Seurat 170 

MultiCCA; these other methods could not scale to 500,000 cells. Notably, BBKNN was the only other 171 

algorithm able to finish on the 500,000 cell dataset, taking 44 minutes and 45GB of RAM. However, the 172 

BBKNN embedding barely integrated tissues (Figure 3C, median iLISI 1.00, 95% [1.00, 1.10]) or donors 173 

(Figure 3D, median iLISI 1.60, 95% [1.00, 4.11]) above PCA alone (tissue median iLISI 1.00, 95% [1.00, 174 

1.03], donor median iLISI 1.38, 95% [1.00, 3.14]). 175 

Importantly, in addition to better computational performance of other algorithms Harmony returned a 176 

substantially more integrated space that other competing algorithms, allowing for the identification of shared 177 

cell types across tissues (Table S4, median iLISI 1.40, 95% [1.04, 1.97] compared to medians of 1.00 to 178 

1.12) and donors (median iLISI 3.93, 95% [2.46, 4.95] compared to medians of 1.07 to 2.82). This evidence 179 

of high computational efficiency and effective integration, suggests that Harmony could analyze very large 180 
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datasets (105 – 106 cells) on personal computers, without the need for specialized machines. Alternative 181 

methods may require extensive parallelization to run modestly sized datasets. 182 

 183 

Figure 3. Computational efficiency benchmarks. We ran Harmony, BBKNN, Scanorama, MNN Correct, and MultiCCA on 5 184 

downsampled HCA datasets of increasing sizes, from 25,000 to 500,000 cells. We recorded the (A) total runtime and (B) maximum 185 

memory required to analyze each dataset. Scanorama, MultiCCA, and MNN Correct were terminated for excessive memory requests 186 

on the 250,000 and 500,000 cell datasets. For Scanorama and Harmony, we quantified the extent of integration in the 500,000 cell 187 

benchmark for (C) the two tissues (cord blood and bone marrow) and (D) the 16 donors. For reference, (C) and (D) report the iLISI 188 

scores prior to integration.  189 

Deep Integration Enables Identification of Broad and Fine-Grained PBMCs 190 

Subpopulations  191 

To assess how effective Harmony might be under more challenging scenarios, we gathered three datasets of 192 

human PBMCs, each assayed on the Chromium 10X platform but prepared with different protocols: 3-prime 193 

end v1 (3pV1), 3-prime end v2 (3pV2), and 5-prime (5p) end chemistries. Pooling all the cells together, we 194 

performed a joint analysis. Before integration, cells group primarily by dataset (Figure 4A, median iLISI 1.00, 195 

95% [1.00, 1.00]). Harmony integrates the three datasets (Figure 4B, median iLISI 1.96, 95% [1.36, 2.56]), 196 

considerably more than do other methods (Figure 4C). To assess accuracy, within each dataset, we 197 
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separately annotated (online methods) broad cell clusters with canonical markers of major expected 198 

populations (Figure S2): monocytes (CD14+ or CD16+), dendritic cells (FCER1A+), B cells (CD20+), T cells 199 

(CD3+), Megakaryocytes (PPBP+), and NK cells (CD3-/GNLY+) before clustering. We observed that 200 

Harmony retained differences among cell types (Figure 4D median cLISI 1.00, 95% [1.00, 1.02]). The greater 201 

dataset integration, compared to other algorithms, affords a unique opportunity to identify fine-grained cell 202 

subtypes. Using canonical markers (Figure 4E), we identified shared subpopulations of cells (Figure 4F) 203 

including naive CD4 T (CD4+/CCR7+), effector memory CD4 T (CD4+/CCR7-), [SR2] Treg (CD4+/FOXP3+), 204 

memory CD8 (CD8+/GZMK-), effector CD8 T (CD8+/GZMK+), naive B (CD20+/CD27-), and memory B cells 205 

(CD20+/CD27+). In the embeddings produced by other algorithms, the median iLISI did not exceed 1.1 206 

(Table S5). Accordingly, the subtypes identified with Harmony reside in dataset-specific, rather than dataset-207 

mixed clusters (Figure S3). In practice, Harmony provides a uniquely fine-grained embedding for the 208 

unbiased discovery of both broad cell types and fine-grained subpopulations.  209 

 210 

Figure 4. Fine-grained subpopulation identification in PBMCs across technologies. Three PBMC datasets were assayed with 10X, 211 

using different library construction protocols: 5-prime (orange), 3-prime V1 (purple), and 3-prime V2 (green). Before integration (A), 212 

cells group by dataset. After Harmony integration (B), datasets are mixed together. (C) Harmony achieves the most thorough 213 

integration among datasets, while preserving (D) cell type differences. Using canonical markers (E), we identified (F) 5 shared 214 

subtypes of T cells and 2 shared subtypes of B cells. (G) Other integration algorithms fail to group these cells by subtype.  215 
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Simultaneous Integration Across Donors and Technologies Identifies Rare Pancreas 216 

Islet Subtypes 217 

We considered a more complex experimental design, in which integration must be performed simultaneously 218 

over more than one variable. We gathered human pancreatic islet cells from independent five studies12–16 , 219 

each of which were generated with a different technological platform. Integration across platforms is already 220 

challenging. However, within two of the datasets12,14, the authors also reported significant donor-specific 221 

effects. In this scenario, a successful integration of these studies must account for the effects of both 222 

technologies and donors, which may both affect different cell types in different ways. Harmony is the only 223 

single cell integration algorithm that is able to integrate over more than one variable, hence we omit a 224 

comparison against other methods.  225 

As before, we assess cell type accuracy cLISI with canonical cell types identified separately within 226 

each dataset (Figure S4): alpha (GCG+), beta (MAFA+), gamma (PPY+), delta (SST+), acinar (PRSS1+), 227 

ductal (KRT19+), endothelial (CDH5+), stellate (COL1A2+), and immune (PTPRC+). Since there are two 228 

integration variables, we asses both donor iLISI and technology iLISI. Prior to integration, cells are separated 229 

by technology (Figure 5A,E, median iLISI 1.00 95% [1.00, 1.06]), donor (Figure 5B,E, median iLISI 1.42 230 

95% [1.00, 5.50]), and cell type (Figure 5E, median cLISI 1.00 95% [1.00, 1.48]). The wide range of donor-231 

iLISI reflects that in the CEL-seq, CEL-seq2, and Fluidigm C1 datasets, many donors were well mixed prior to 232 

integration. Harmony integration mixes cells by both technology (Figure 5C,E, median iLISI 2.27 95% [1.31, 233 

3.27]) and donor (Figure 5D,E, median iLISI 4.71 95% [1.81, 6.36]). 234 

Harmony was able to discern rare cell subtypes (Figure 5F) across the 5 datasets (Figure 5G). We 235 

labeled previously described subtypes using canonical markers: activated stellate cells (PDGFRA+), 236 

quiescent stellate cells (RGS5+), mast cells (BTK+), macrophages (C1QC+), and beta cells under 237 

endoplasmic reticulum (ER) stress (Figure 5H). Beta ER stress cells may represent a dysfunctional 238 

population. This cluster has significantly lower expression of genes key to beta cell identify17 and function18: 239 

PDX1, MAFA, INSM1, NEUROD1 (Figure 5I). Further, Sachdeva et al19 suggest that PDX1 deficiency makes 240 

beta cells less functional and exposes them to ER stress induced apoptosis. 241 

Intriguingly, we also observed an alpha cell subset that to our knowledge was not previously 242 

described. This cluster was also enriched with genes involved in ER stress (Figure 5J, DDIT3, ATF3, ATF4, 243 
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and HSPA5). Similar to the beta ER stress population, these alpha cells also expressed significantly lower 244 

levels of genes necessary for proper function20,21: GCG, ISL1, ARX, and MAFB (Figure 5K). A recent study 245 

reported ER stress in alpha cells in mice and linked the stress to dysfunctional glucagon secretion22. 246 

Moreover, we found that the proportions of alpha and beta ER stress cells are significantly correlated 247 

(spearman r=0.46, p=0.004, Figure 5L) across donors in all datasets. These results suggest a basis for alpha 248 

cell injury that might parallel beta cell dysfunction in humans during diabetes23.  249 

 250 

Figure 5. Integration of pancreatic islet cells by both donor and technology. Human pancreatic islet cells from 36 donors were 251 

assayed on 5 different technologies. Cells initially group by (A) technology, denoted by different colors, and (B) donor, denoted by 252 

shades of colors. Harmony integrates cells simultaneously across (C) technology and (D) donor. Integration across both variables 253 

was quantified with iLISI (E) and error was computed with cLISI (E). Clustering in the Harmony embedding identified common and 254 

rare cell types, including a previously undescribed alpha population. Except for activated stellate cells, all rare cell types were found 255 

across the 5 technology datasets (G). The new alpha cluster was enriched for ER stress genes (I), just like the previously identified 256 

beta ER stress cluster (J). The abundances of the two ER stress populations were correlated across donors (H). Key genes 257 
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necessary for endocrine function were downregulated in the alpha (K) and beta (L) ES stress clusters.  258 

 259 

Discussion 260 

We showed that Harmony address the three key challenges we laid out for single cell integration analyses: 261 

scaling to large datasets, identification of both broad populations and fine-grained subpopulations, and 262 

flexibility to accommodate complex experimental design. We evaluated the degree of mixing among datasets 263 

using a quantitative metric, the iLISI. Apart from its use benchmarking, iLISI was particularly important in 264 

analyses with more than 3 datasets. Here, we observed that the commonly utilized approach of assessing 265 

integration visually was subjective and insensitive, particularly when the number of samples, batches or cell 266 

types was large. iLISI provided a quantitative and interpretable metric to help guide analysis. In the 267 

computational efficiency benchmarks, we found that 3 of the 5 algorithms were not able to scale beyond 268 

125,000 cells because they exceeded the memory resources of our 128GB servers. We were struck by the 269 

fact many researchers routinely analyze data on personal computers, which often do not exceed 8 or 16GB. 270 

Harmony, which only required 7.2GB to integrate 500,000 cells, is the only algorithm that would enable the 271 

integration of large datasets on personal computers. With the pancreatic islet meta-analysis, we 272 

demonstrated that Harmony is able to account simultaneously for donor and technology specific effects. One 273 

solution to this multi-level problem stepwise is to first globally regress out one variable from the gene 274 

expression values and then performing single cell integration on the resulting expression matrix. Harmony 275 

allows for cell-type aware integration of both variables, simultaneously avoiding global correction terms that 276 

treat all cell uniformly. However, the global regression strategy is flexible enough to account for continuous 277 

variables, such as read depth or cell quality. In the future, Harmony should also be able to account for such 278 

non-discrete sources of variation. 279 

 We noticed that it is not an uncommon practice to apply a batch-sensitive gene scaling step step 280 

before using a single-cell integration algorithm. Specifically, many investigators scale gene expression values 281 

within datasets separately, before pooling cells into a single matrix. We show (Supplementary Results) that 282 

this strategy may make it easier to integrate datasets (Figure S5A,B) in the rare situation in which the all cell 283 

populations and subpopulations are present across all analyzed datasets. However, when the datasets 284 
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consist of overlapping but not identical populations, this scaling strategy is less effective (Figure S5C) and 285 

may indeed even increase error (Figure S5D). For this reason, we do not use this scaling strategy in this 286 

manuscript. As part of a universal pipeline, Harmony finds highly integrated embeddings without the need for 287 

within-dataset scaling.  288 

Harmony allows the user to define a hyperparameter for each covariate that guides how aggressively 289 

to integrate out each source of variation. When the penalty is 0, Harmony performs minimal integration. 290 

Curiously, we noticed that for small inter-datasets differences, cells from multiple datasets cluster together 291 

without the penalty. In this case, Harmony still integrates the cells during the linear correction phase. On the 292 

other hand, one could imagine that with an infinitely large penalty hyperparameter, Harmony would overmix 293 

datasets during clustering and hence overcorrect the data. We evaluated the effect of the diversity penalty in 294 

the PBMCs example (see Supplementary Results), and observed that the Harmony embedding is robust to 295 

a wide range of penalties (Figure S6). Nonetheless, as with any integration algorithm, we urge the user to 296 

understand the effects of hyperparameters and experiment with several values.  297 

Harmony is designed to input PCA cell coordinates and covariate labels as input and then output 298 

integrated cell coordinates. As such, Harmony should be used as an upstream step in a full analysis pipeline. 299 

Downstream analyses, such as clustering, trajectory analysis, and visualization, can use the integrated 300 

Harmony embeddings as they usually would PCA coordinates. As a corollary, Harmony does not currently 301 

alter the expression values of individual genes to account for dataset-specific differences. We recommend 302 

using a batch-aware approach, such as a linear model with covariates, for differential expression analysis.  303 

In our meta-analysis of pancreatic islet cells, we identified a previously undescribed rare 304 

subpopulation of alpha ER stress cells (Figure 5F,J). Similar to beta ER stress cells, they appear to have 305 

reduced endocrine function (Figure 5K). Because Harmony integrated over both donors and technology 306 

(Figure 5C,D,E), we were able to identify the significant association between the proportion of alpha to beta 307 

ER stress populations across donors (Figure L). Based on this correlation and similar stress response 308 

patterns, it is possible that these two populations are involved in a coordinated response to an environmental 309 

stress. Beta cell dysfunction is key to the pathogenesis of diabetes23. Experimental follow up on this alpha 310 

subtype and its relation to beta ER stress cells may yield insight into disease. This analysis demonstrates the 311 
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power of Harmony’s multilevel integration to mix diverse datasets and uncover potentially novel rare cell 312 

types.  313 
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