- 1 Camilo A. Calderón-Acevedo
- 2 camilo.calderon@umsl.edu
- 3
- 4 Taxonomy of large Anoura
- 5 Large Anoura (Chiroptera: Glossophaginae) taxonomy, taxonomic status of Anoura
- 6 carishina, and implications for the distribution of Anoura latidens in Colombia.
- 7 Camilo A. Calderón-Acevedo*, Miguel E. Rodríguez-Posada and Nathan Muchhala
- 8 Department of Biology, University of Missouri St. Louis, One University Blvd St. Louis,
- 9 Missouri 63121. USA. (CAC and NM)

10 La Palmita Natural Reserve Foundation, Research Center, Territorial studies for the use

11 and conservation of biodiversity research group, Carrera 4 No 58–59, Bogotá,

12 Colombia. (MRP)

13

14 The Anoura geoffroyi species complex is composed of 3 large species: A. geoffroyi, A.

15 *peruana*, and *A. carishina*. Several inconsistencies arise from the description of *A*.

16 *carishina*, and given the lack of a comparison with the dentition and external characters

17 of A. latidens, here we compare the taxonomic characters of these species. To understand

18 the position of A. carishina in the morphospace occupied by large Anoura, we conducted

19 a Principal Component Analysis on 12 craniodental and 11 external variables. We

20 complement our results with further analysis of traits thought to be diagnostic for these

21 species, including 1) an elliptical Fourier transformation analysis of the shape of the third

22 upper premolar (P4), 2) a comparison of the area of the second (P3) and third (P4) upper

23 premolars, and 3) a comparison of maxillary toothrow angles. We find that A. carishina

24 is morphologically indistinguishable from A. latidens, and that there is broad overlap in

25	morphology between A. latidens and A. geoffroyi. However several characters found in A.
26	latidens are lacking in A. geoffroyi, including a triangular shape to the P4 caused by a
27	medial-internal cusp enclosed by the base of the tooth, a lack of development of the
28	anterobasal cusp in the P3, a smaller braincase, and a shorter rostrum. We reassess the
29	distribution of Anoura latidens in Colombia, adding new records and correcting
30	previously-published records that were misidentified. Overall, our results suggest that a
31	stable taxonomy for the group should consider A. carishina as a junior synonym of A.
32	latidens, and that, although A. latidens is distinguishable from A. geoffroyi, further
33	genetic and taxonomic work is needed in to clarify species limits within the A. geoffroyi
34	species complex.
35	
36	El complejo de especies Anoura geoffroyi se compone de 3 especies, A. geoffroyi, A.
37	peruana, y A. carishina. La descripción de Anoura carishina posee varias
38	inconsistencias, y dado que no se realizó una comparación con A. latidens, realizamos
39	una comparación de los caracteres taxonómicos de ambas especies. Para entender la
40	posición de A. carishina en el morfoespacio ocupado por los Anoura grandes realizamos
41	un Análisis de Componentes Principales usando 12 variables cráneo-dentales y 11
42	variables externas. Complementamos nuestros resultados con 1) un análisis de
43	transformación elíptica de Fourier de la forma del tercer premolar superior (P4) 2) una
44	comparación del área del segundo (P3) y tercer (P4) premolares superiores y 3) una
45	comparación de los ángulos de las hileras dentales maxilares. Encontramos que A.
46	carishina es morfológicamente indistinguible de A. latidens y que existe una amplio
47	superposición en la morfología de A. latidens y A. geoffroyi. Sin embargo, la forma del

48	P4, una cúspide anterobasal no desarrollada en el P3, y caracteres relacionados con una
49	caja craneana menos inflada y un rostro corto son útiles en distinguir A. latidens de A.
50	geoffroyi. Reevaluamos la distribución de Anoura latidens en Colombia, al agregar
51	nuevos registros y corrigiendo registros previamente publicados que se encontraban mal
52	identificados. En general, nuestros resultados sugieren que una taxonomía estable para el
53	grupo debería considerar a A. carishina como un sinónimo junior de A. latidens, que A.
54	latidens es distinguible de A. geoffroyi utilizando medidas cráneo-dentales y resalta la
55	necesidad de estudios genéticos para esclarecer las relaciones filogenéticas entre A.
56	latidens y el complejo de especies A. geoffroyi.
57	
58	Key words: Chiroptera, Colombia, distribution, elliptical Fourier transformation,
59	morphometry, nectarivorous bat, shape analysis
60	*Correspondent: camilo.calderon@umsl.edu
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	

71	Anoura is one of the most species-rich genera in the subfamily Glossophaginae. It is
72	currently comprised of 10 species, although not all are widely accepted species (Handley
73	1984, Mantilla-Meluk & Baker 2006, Griffiths & Gardner 2007 [2008], Jarrín-V & Kunz
74	2008, Mantilla-Meluk & Baker 2010, Pacheco et al. 2018). The genus is subdivided into
75	two groups based on dental morphology and size (Allen 1898, Griffiths & Gardner 2007
76	[2008]), with five small species (A. caudifer, A. aequatoris, A. cadenai, A. fistulata and
77	A. luismanueli) and five large species (A. carishina, A. cultrata, A. geoffroyi, A. peruana
78	and A. latidens). Mantilla-Meluk and Baker (2010) designated three of these large species
79	(along with their subspecies) as the A. geoffroyi species complex, including A. carishina,
80	A. geoffroyi geoffroyi, A. geoffroyi lasiopyga and A. peruana, and also elevated A.
81	peruana to a separate species rather than a subspecies of A. geoffroyi.
82	Anoura carishina Mantilla-Meluk and Baker 2010 is only known to date from the
83	5 specimens of the type series deposited at the Mammal Collection Alberto Cadena
84	García at Instituto de Ciencias Naturales (Universidad Nacional, Bogotá, Colombia). Its
85	distribution is limited to 3 localities in the western slopes of the southern Colombian
86	Andes and the Sierra Nevada de Santa Marta, a mountain system isolated from the Andes
87	in the north of Colombia. The type ICN-14530 and paratype ICN-14531 are from
88	Taminango, Nariño department (1.67°, -77.32°). The two other localities are San Pedro de
89	La Sierra, Sierra Nevada de Santa Marta, department of Magdalena (10.90°, -74.04°) for
90	paratypes ICN-5224, 5225 and Cali, Pance, department of Valle del Cauca (3.32°, -
91	76.63°) for paratype ICN-5938. Anoura carishina was described as a large Anoura with
92	the following diagnostic characters: greatest length of skull less than 24.5 mm, small
93	canines, P4 teeth with a wide triangular base, and complete zygomatic arches (although

94	they are broken in several of the type series collections; (Mantilla-Meluk & Baker 2010)).
95	However, in the description it was only explicitly compared to the subspecies of Anoura
96	geoffroyi (A. g. geoffroyi, A. g. lasiopyga) and A. peruana - it was not compared to A.
97	latidens, a species to which it bears resemblance in dental morphology, size, and
98	coloration.
99	Anoura latidens Handley 1984 is described as a large species of Anoura,
100	distinguishable from A. geoffroyi by a relatively short rostrum, an inflated braincase,
101	nearly parallel maxillary toothrows, and smaller and more robust premolars which have a
102	quadrangular appearance when viewed from above. More specifically, Handley (1984)
103	states that the third upper premolar (P4) has a medial-internal cusp enclosed in the
104	triangular base of the tooth (rather than an abruptly protruding cusp as in A. geoffroyi)
105	and that the second upper premolar (P3) possesses a reduced anterobasal cusp. The
106	holotype is from Pico Ávila, Caracas, Venezuela, and the species has been reported for at
107	least 14 localities in Venezuela (Handley 1976, 1984, Linares 1986, 1998), where it
108	occupies a variety of ecosystems with an altitudinal range from 50 to 2600 meters above
109	sea level. Outside of Venezuela A. latidens has only been registered in a handful of
110	localities in Colombia, Guyana, and Peru (Handley 1984, Linares 1998, Solari et al.
111	1999, Lim & Engstrom 2001), suggesting a wide yet discontinuous distribution.
112	In Colombia, Anoura latidens is distributed in the Andean region (eastern, central,
113	and western mountain ranges) and the inter-Andean valleys (Alberico et al. 2000, Solari
114	et al. 2013). The first record for the country was mentioned in the species description
115	(Handley 1984) as collected by Nicéforo María in 1923 in San Juan de Rioseco,
116	department of Cundinamarca, on the western slope of the Cordillera Oriental (eastern

117	mountain range) above the inter-Andean valley of the Magdalena river at a height of
118	1000 meters above sea level. Later Muñoz (2001) attributed the first record to Wilson &
119	Reeder (1993) and added a new locality in the Cordillera Oriental (eastern mountain
120	range) in the municipality of Gramalote, Norte de Santander department, however they
121	did not give a catalog number for this collection supposedly located in the Museo de
122	Ciencias Naturales de La Salle. Two other localities are reported by Rivas-Pava et al.
123	(2007) based on three specimens deposited at Museo de Historia Natural de la
124	Universidad del Cauca (MHNUC) from the municipalities of Acevedo (Huila
125	department) and Argelia (Cauca department). The most recent recorded locality is
126	Reserva Forestal Bosque de Yotoco (Valle del Cauca department) in the southwestern
127	Andes, with one specimen deposited in the Instituto de Ciencias Naturales (ICN)
128	mammal collection (Mora-Beltrán & López-Arévalo 2018). With only 5 localities, the
129	knowledge of A. latidens in Colombia is scarce, which impacts the understanding of its
130	conservation threats.
131	In this study we use morphometric approaches to reevaluate the taxonomy of the
132	A. geoffroyi species complex. We focus particularly on the extent to which A. carishina
133	and A. latidens are distinguishable from each other and other species in the complex. We
134	also examine all known Colombian records of A. latidens to evaluate its distribution
135	within the country.
136	
137	MATERIALS AND METHODS
138	We measured 260 individuals from the A. geoffroyi species complex, including 5
400	

139 A. carishina, 48 A. peruana, 59 A. latidens, and 148 A. geoffroyi (106 A. g. geoffroyi and

140	42 A. g. lasiopyga) (See Supplementary Data SD1 for specimens reviewed and
141	measured). We measured 12 cranial and 11 postcranial variables to the nearest 0.01 mm.
142	Craniodental characters included: greatest length of skull (GLS, distance from the most
143	posterior point of the skull to the most anterior point of the premaxilla not including
144	incisors), condylobasal length (CBL, distance from the most posterior point of the
145	condyles to the most anterior point of the premaxilla not including incisors), postorbital
146	breadth (PB, minimum interorbital distance measured across the frontals), braincase
147	breadth (BCB, greatest breadth of the braincase, not including the mastoid and
148	paraoccipital processes), height of braincase (HBC, distance from the ventral border of
149	the foramen magnum to the parietal), mastoid breadth (MB, greatest width at the mastoid
150	processes), maxillary tooth-row length (MTRL, distance from the most posterior point of
151	the third upper premolar to the most anterior point of the upper canine), palatal length
152	(PL), breadth across third upper molars (M3-M3), breadth across upper canines (C-C),
153	mandibular length (MANL, distance from the condyles to the anterior face of the
154	mandible) and mandibular tooth-row length (MANTRL, distance from canine to the third
155	mandibular molar). Postcranial measurements included: forearm (FA, measured from the
156	olecranon to the articulation of the wrist), length of 3^{rd} (D3MC), 4^{th} (D4MC) and 5^{th}
157	(D5MC) metacarpals, length of the 1 st and 2 nd phalanxes of 3 rd (D3P1, D3P2), 4th (D4P1,
158	D4P2) and 5 th (D5P1, D5P2) digit, and length of the tibia (Tibia). Measurements were
159	selected based on their frequent use in bat taxonomy (Handley 1960, Nagorsen & Tamsitt
160	1981, Handley 1984, Velazco 2005, Mantilla-Meluk & Baker 2006, Velazco & Patterson
161	2008, Mantilla-Meluk & Baker 2010, Velazco & Simmons 2011). Note that our
162	measurement of the greatest length of the skull differs from that in the description of

163	Anoura carishina (Mantilla-Meluk & Baker 2010) in that we measure from the posterior-
164	most point of the occipital to the anterior-most point in the premaxilla (excluding
165	incisors), the same measurement used in all other Anoura descriptions (Handley 1960,
166	1984, Molinari 1994, Muchhala et al. 2005), while in its description A. carishina and the
167	specimens to which it was compared were measured from the posterior-most point of the
168	occipital to the anterior-most point of the nasal bones. To analyze the morphospace of
169	Anoura and explore the morphometric variation of our traits, we performed a Principal
170	Component Analysis (PCA) for 2 data sets. One dataset ($n = 202$) includes only the 12
171	craniodental measurements; the second dataset ($n = 125$) includes all 23 craniodental and
172	postcranial measurements. Both datasets include representatives of all species of Anoura.
173	To test the reliability of dental characters distinguishing A. latidens and A.
174	carishina from A. geoffroyi, we traced the contour of the premolars from digital
175	photographs of the ventral view of the skull of 70 A. latidens, 36 A. geoffroyi, 7 A.
176	peruana and 5 A. carishina. We took each photograph next to a band of millimeter paper
177	in order to standardize measurements. We selected the contour of the P3 and P4 using
178	ImageJ (Schneider et al. 2012), and obtained the area of this contour using the "Measure"
179	function. To quantify the shape of the P4 (irrespective of size) we transformed every
180	contour image of the P4 to a binary image in Image J (Schneider et al. 2012) and then
181	employed an elliptical Fourier transformation on these images. Using SHAPE v1.3 (Iwata
182	& Ukai 2002) this contour was transformed into chain code, assigning a string of code
183	that represents the perimeter of every image of the third upper premolar, which was then
184	used to create a harmonic or elliptical Fourier descriptor (EFDs) series. This approach

allowed us to quantify the shape using 20 harmonics, which were used as input for aPCA.

187	Aside from tooth morphology, another character cited by Handley (1984) as
188	important in distinguishing A. latidens from A. geoffroyi is that the former have nearly
189	parallel maxillary toothrows. To quantify this, we used ImageJ to overlay lines over
190	images of the occlusal view of the maxillae for 5 A. latidens, 34 A. geoffroyi, 4 A.
191	peruana and 66 A. carishina. Specifically, these lines connected the metastyle of the third
192	upper molar (M3) to the most anterior point of the canines for each toothrow (See
193	Supplementary Data SD 3, Fig. 3). We then measured the angle between these lines.
194	We tested for significant differences between A. geoffroyi, A. latidens, A. peruana
195	and A. carishina in 1) craniodental measurements (including those related to rostrum
196	length and an inflated braincase) 2) P4 and P3 size (e.g. total surface area), 3) the shape
197	of P4 (EFD principal components) and 4) the toothrow angle using a Multivariate
198	Analysis of Variance (MANOVA) followed by Bonferroni-corrected posthoc tests for
199	each variable.
200	To assess the geographical distribution of A. latidens we reviewed the published
201	records and examined the skulls of specimens labeled as A. geoffroyi and A. caudifer in
202	the following collections: Colección de Mamíferos Alberto Cadena García at Instituto de
203	Ciencias Naturales de la Universidad Nacional de Colombia (ICN), Instituto de
204	Investigación en Recursos Biológicos Alexander von Humboldt (IAvH), Museo
205	Universidad Distrital Francisco José de Caldas (MUD), Museo de Historia Natural de la
206	Universidad del Cauca (MHNUC), Colección Teriológica Universidad de Antioquia
0.07	

207 (CTUA), National Museum of Natural History (USNM), Muséum d'Histoire Naturelle de

208 la Ville de Genève (MHNG), American Museum of Natural History (AMNH), and Field
209 Museum of Natural History (FMNH).

- 210
- 211

RESULTS

212 Morphological revision. —. The type specimen of A. carishina (ICN 14530) evidences

213 the dental characters provided in the description of *A. latidens* (Handley 1984). It has

broad molars and premolars with the anterobasal cusp of the second upper premolar (P3)

reduced and the medial-internal cusp of the third upper premolar (P4) enclosed in a

triangular base. When comparing the type of A. latidens to the type series of A. carishina

we find that specimens ICN 14530,14531, 5224 and 5225 possess both characteristics,

218 while specimen ICN 5838 possesses neither and is instead diagnosable as A. geoffroyi

219 (Fig.1). In our review of the type material, we also discovered that the specimen labeled

as the holotype in Figure 4 of Mantilla-Meluk and Baker (2010) is in fact ICN-5225,

while the specimen labeled as ICN-5225 is actually the type (ICN-5225 is a female

222 paratype that possesses both auditory bullae, while ICN 14530 is a male specimen lacks

the right auditory bulla; see Supplementary Data SD 3, Supplementary Fig. 1).

In our review of previously-published records of *Anoura latidens* in Colombia, we

find that only 2 are valid, including specimen AMNH-69187 used in the species

description (Handley 1984) and ICN 22807 from Reserva Forestal Bosque de Yotoco,

227 municipality of Yotoco, department of Valle del Cauca (Mora-Beltrán & López-Arévalo

228 2018). The A. latidens specimens reported by Rivas-Pava et al. (2007) from the

229 municipalities of Acevedo (department of Huila; MHNUC-M0722, 0723) and Argelia

230 (department of Cauca; MHNUC-M1552) actually correspond to individuals of A.

231 geoffrovi, while there is no record of the A. latidens specimen reported by Muñoz (2001) 232 in the mammal collection of Colegio San Jose de la Salle. The two putative records of A. 233 *latidens* that we did find in this collection were both captured in Gramalote (Norte de 234 Santander, Colombia) and are diagnosable as Glossophaga soricina. 235 On the other hand, among all of the collections we reviewed we found a total of 3 236 Anoura latidens specimens that were misidentified as other Anoura species. Specimens 237 ICN 4398, ICN 11195, and MUD 587 coincide with the dental characters of A. latidens 238 proposed by Handley (1984). ICN 4398 is an adult male, preserved as a skin and 239 extracted skull. This record is located in the inter-Andean valley of the Cauca River, 240 between the Cordillera Central and Cordillera Occidental (central and western mountain 241 ranges). ICN 11195 is an adult male, preserved as a skin and extracted skull. It was 242 collected in Parque Regional Natural Ucumarí, Vereda la Suiza, city of Pereira, 243 department of Risaralda. This locality is situated in the protected area Santuario de Fauna 244 y Flora Otún Quimbaya and resides in the western slope of the Cordillera Central (central 245 mountain range) at an elevation of 1900 meters. MUD 587 is an adult male, preserved as 246 a skin and extracted skull. It was collected in Vereda La Huerta, municipality of La Vega, 247 department of Cundinamarca on the western slope of the Cordillera Oriental (eastern 248 Andes) at an elevation of 980 meters (see Supplementary Data SD1). 249 Morphometric analyses. — The type series of A. carishina overlaps with both A. latidens 250 and the A. geoffroyi species complex (A. g. geoffroyi, A. g. lasiopyga and A. peruana) in 251 most of its measurements (Supplementary Data SD2). For the dataset with all 252 measurements (Fig 2. A), our principal component analysis shows that less than 50% of 253 the variation is explained by the first two principal components of the PCA (PC1 33.2%,

254	PC2 10.7%). We recover similar results when only craniodental measurements (Fig 2. B)
255	are taken into account (PC1 40 %, PC2 17.2%). Most of the morphospace of A. latidens
256	and the A. geoffroyi species complex is shared in both datasets (Fig. 2, see Supplementary
257	Data 3, supplementary Fig. 1 for the distribution of A. g. geoffroyi, A. g. lasiopyga and A.
258	peruana in the morphospace).
259	P4 shape (PCA on 20 EFDs) resulted in over 80% of the variation in the shape of
260	the P4 (Fig. 3) being explained by the first two principal components (PC1 71.83% and
261	PC2 13.07 %). We see that the type specimen of Anoura carishina (ICN 14530) is in the
262	center of the morphospace occupied by A. latidens, with the position of the A carishina
263	paratype diagnosable as A. g. geoffroyi (ICN 5938) closer to the morphospace of A. g.
264	geoffroyi. Despite evidencing different morphological clusters corresponding to A. g.
265	geoffroyi (with A. peruana immersed in its morphospace) and A. latidens, the
266	morphospace of the shape of P4 does not show a clear separation between them, with
267	some specimens of A. g. geoffroyi, A. peruana and A. latidens occupying the space
268	between clusters (Fig. 3).
269	The Multivariate analysis of variance (MANOVA) of morphometric
270	measurements showed overall significant differences for each measurement (Pillai's
271	Trace and Wilks' Lamda <i>P</i> <0.001) with the exception of postorbital breadth (PB;
272	$F_{3,121}$ =1.023, P =0.385) and forearm length (FA; $F_{3,121}$ =0.223, P =0.881) (Table 2).
273	Bonferroni corrected <i>P</i> values show significant differences between <i>A</i> . <i>latidens</i> and <i>A</i> .
274	carishina only in height of braincase (HBC; P=0.030), while A. g. geoffroyi and A.
275	latidens have significant differences in the means of all except postorbital breadth (PB;
276	P=1.0), height of braincase (HBC; $P=0.166$), and forearm length (FA; $P=1.0$). Of

277 particular note are significant differences in measurements related to the overall shorter 278 rostrum and less inflated braincase of *A. latidens*, as these features were highlighted by 279 Handley (1984) in the description of this species. Specifically, A. latidens has a shorter 280 greatest length of skull (GLS), palate length (PL), maxillary toothrow length (MTRL), 281 braincase breadth (BCB) and mastoid breadth (MB) in comparison to A. geoffroyi and A. 282 *peruana* (see Table 2, SD2). Between these latter two species, Anoura peruana only 283 showed significant differences with A. geoffroyi in height of braincase (HBC; P=0.043). 284 Our MANOVA on premolar shape and toothrow angle (Table 3) showed significant differences between species in the area of P4 ($F_{3,105}$ = 14.878, P<0.001), PC1 285 286 of P4 shape (EFDs; $F_{3,105}$ =103.508, P<0.001) and toothrow angles (TRA, $F_{3,105}$ =3.157, 287 P=0.028). Bonferroni-corrected posthoc tests show that A. latidens has a larger P4 area 288 $(X = 0.69 \text{ mm}^2)$ than A. carishina (X = 0.61 mm², P=0.049), A. g. geoffrovi (X = 0.61) mm^2 P<0.001), and A. peruana (X = 0.56 mm², P=0.002). The first principal 289 290 component of the P4 shape showed significant differences between A. g. geoffroyi and 291 both A. carishina and A. latidens, and between A. peruana and A. latidens (P<0.001), 292 while A. peruana was not different from A. g. geoffroyi (P=0.112) or A. carishina 293 (P=0.079). Notably, A. carishina is not significantly different from A. latidens for any of 294 these traits except P4 area, and the four specimens of A. carishina diagnosable as A. 295 *latidens* fall completely within the range of A. *latidens* variation in P4 area (Fig. 3). 296 Toothrow angle was significantly different overall between species, however none of the 297 Tukey nor Bonferroni corrected posthoc tests were significant between specific pairs of 298 species (Table 3).

 third upper premolar P4 of the type specimen of <i>A. carishina</i> (ICN 14530) is indistinguishable from <i>A. latidens</i>, as demonstrated by our analyses of tooth shape (Fig. 3), as are those of three of the paratypes. Second, we find all four of these specimens also lack a developed anterobasal cusp in the second upper premolar (P3). And finally, none of the 18 morphological measurements differ between <i>A. latidens</i> and the <i>A. carishina</i> specimens (Table 2 and 3) with the exception of the height of the brain case (HBC; 	300	DISCUSSION
 <i>A. latidens</i> and one to <i>A. g. geoffroyi</i>. Our analyses of craniodental measurements and premolar shape of individuals of all species and subspecies in the <i>Anoura geoffroyi</i> complex (<i>A. geoffroyi</i>, <i>A. latidens</i>, <i>A. carishina</i>, and <i>A. peruana</i>) find no support for considering <i>Anoura carishina</i> as an entity morphologically distinct from <i>A. latidens</i>. Our results also clarify the characters that distinguish <i>A. latidens</i> from <i>A. geoffroyi</i>, expand the known distribution of <i>A. latidens</i> in Colombia, and raise issues regarding the conservation of this species in the country. <i>Taxonomic identity of</i> A. carishina— Our different lines of evidence lead us to formally treat <i>Anoura carishina</i> as a junior synonym of <i>A. latidens</i>. First, the triangular base of the third upper premolar P4 of the type specimen of <i>A. carishina</i> (ICN 14530) is indistinguishable from <i>A. latidens</i>, as demonstrated by our analyses of tooth shape (Fig. 3), as are those of three of the paratypes. Second, we find all four of these specimens also lack a developed anterobasal cusp in the second upper premolar (P3). And finally, none of the 18 morphological measurements differ between <i>A. latidens</i> and the <i>A. carishina</i> specimens (Table 2 and 3) with the exception of the height of the brain case (HBC; <i>P=</i>0.030) and P4 area (<i>P=</i>0.049), and in both of these cases there is still extensive overlag in the range of measurements (HBC: 7.14-8.07 mm for <i>A. latidens</i> vs. 0.50-0.70 mm² for <i>A. carishina</i>). 	301	Upon revision of the type material of Anoura carishina and A. latidens we find
 premolar shape of individuals of all species and subspecies in the <i>Anoura geoffroyi</i> complex (<i>A. geoffroyi</i>, <i>A. latidens</i>, <i>A. carishina</i>, and <i>A. peruana</i>) find no support for considering <i>Anoura carishina</i> as an entity morphologically distinct from <i>A. latidens</i>. Our results also clarify the characters that distinguish <i>A. latidens</i> from <i>A. geoffroyi</i>, expand the known distribution of <i>A. latidens</i> in Colombia, and raise issues regarding the conservation of this species in the country. <i>Taxonomic identity of</i> A. carishina— Our different lines of evidence lead us to formally treat <i>Anoura carishina</i> as a junior synonym of <i>A. latidens</i>. First, the triangular base of the third upper premolar P4 of the type specimen of <i>A. carishina</i> (ICN 14530) is indistinguishable from <i>A. latidens</i>, as demonstrated by our analyses of tooth shape (Fig. 3), as are those of three of the paratypes. Second, we find all four of these specimens also lack a developed anterobasal cusp in the second upper premolar (P3). And finally, none of the 18 morphological measurements differ between <i>A. latidens</i> and the <i>A. carishina</i> specimens (Table 2 and 3) with the exception of the height of the brain case (HBC; <i>P=</i>0.030) and P4 area (<i>P=</i>0.049), and in both of these cases there is still extensive overlap in the range of measurements (HBC: 7.14-8.07 mm for <i>A. latidens</i> vs. 7.72-8.30 mm for <i>A. carishina</i>; P4 area: 0.56-0.86 mm² for <i>A. latidens</i> vs. 0.50-0.70 mm² for <i>A. carishina</i>. 	302	that the type series of A. carishina is a mixed series of four individuals corresponding to
 complex (<i>A. geoffroyi, A. latidens, A. carishina</i>, and <i>A. peruana</i>) find no support for considering <i>Anoura carishina</i> as an entity morphologically distinct from <i>A. latidens</i>. Our results also clarify the characters that distinguish <i>A. latidens</i> from <i>A. geoffroyi</i>, expand the known distribution of <i>A. latidens</i> in Colombia, and raise issues regarding the conservation of this species in the country. <i>Taxonomic identity of</i> A. carishina— Our different lines of evidence lead us to formally treat <i>Anoura carishina</i> as a junior synonym of <i>A. latidens</i>. First, the triangular base of the third upper premolar P4 of the type specimen of <i>A. carishina</i> (ICN 14530) is indistinguishable from <i>A. latidens</i>, as demonstrated by our analyses of tooth shape (Fig. 3), as are those of three of the paratypes. Second, we find all four of these specimens also lack a developed anterobasal cusp in the second upper premolar (P3). And finally, none of the 18 morphological measurements differ between <i>A. latidens</i> and the <i>A. carishina</i> specimens (Table 2 and 3) with the exception of the height of the brain case (HBC; <i>P</i>=0.030) and P4 area (<i>P</i>=0.049), and in both of these cases there is still extensive overlap in the range of measurements (HBC: 7.14-8.07 mm for <i>A. latidens</i> vs. 7.72-8.30 mm for <i>A. carishina</i>; P4 area: 0.56-0.86 mm² for <i>A. latidens</i> vs. 0.50-0.70 mm² for <i>A. carishina</i>). 	303	A. latidens and one to A. g. geoffroyi. Our analyses of craniodental measurements and
 considering <i>Anoura carishina</i> as an entity morphologically distinct from <i>A. latidens</i>. Our results also clarify the characters that distinguish <i>A. latidens</i> from <i>A. geoffroyi</i>, expand the known distribution of <i>A. latidens</i> in Colombia, and raise issues regarding the conservation of this species in the country. <i>Taxonomic identity of</i> A. carishina— Our different lines of evidence lead us to formally treat <i>Anoura carishina</i> as a junior synonym of <i>A. latidens</i>. First, the triangular base of the third upper premolar P4 of the type specimen of <i>A. carishina</i> (ICN 14530) is indistinguishable from <i>A. latidens</i>, as demonstrated by our analyses of tooth shape (Fig. 3), as are those of three of the paratypes. Second, we find all four of these specimens also lack a developed anterobasal cusp in the second upper premolar (P3). And finally, none of the 18 morphological measurements differ between <i>A. latidens</i> and the <i>A. carishina</i> specimens (Table 2 and 3) with the exception of the height of the brain case (HBC; <i>P</i>=0.030) and P4 area (<i>P</i>=0.049), and in both of these cases there is still extensive overlap in the range of measurements (HBC: 7.14-8.07 mm for <i>A. latidens</i> vs. 7.72-8.30 mm for <i>A. carishina</i>; P4 area: 0.56-0.86 mm² for <i>A. latidens</i> vs. 0.50-0.70 mm² for <i>A. carishina</i>). 	304	premolar shape of individuals of all species and subspecies in the Anoura geoffroyi
 results also clarify the characters that distinguish <i>A. latidens</i> from <i>A. geoffroyi</i>, expand the known distribution of <i>A. latidens</i> in Colombia, and raise issues regarding the conservation of this species in the country. <i>Taxonomic identity of</i> A. carishina— Our different lines of evidence lead us to formally treat <i>Anoura carishina</i> as a junior synonym of <i>A. latidens</i>. First, the triangular base of the third upper premolar P4 of the type specimen of <i>A. carishina</i> (ICN 14530) is indistinguishable from <i>A. latidens</i>, as demonstrated by our analyses of tooth shape (Fig. 3), as are those of three of the paratypes. Second, we find all four of these specimens also lack a developed anterobasal cusp in the second upper premolar (P3). And finally, none of the 18 morphological measurements differ between <i>A. latidens</i> and the <i>A. carishina</i> specimens (Table 2 and 3) with the exception of the height of the brain case (HBC; <i>P</i>=0.030) and P4 area (<i>P</i>=0.049), and in both of these cases there is still extensive overlap in the range of measurements (HBC: 7.14-8.07 mm for <i>A. latidens</i> vs. 7.72-8.30 mm for <i>A. carishina</i>; P4 area: 0.56-0.86 mm² for <i>A. latidens</i> vs. 0.50-0.70 mm² for <i>A. carishina</i>). 	305	complex (A. geoffroyi, A. latidens, A. carishina, and A. peruana) find no support for
 the known distribution of <i>A. latidens</i> in Colombia, and raise issues regarding the conservation of this species in the country. <i>Taxonomic identity of</i> A. carishina— Our different lines of evidence lead us to formally treat <i>Anoura carishina</i> as a junior synonym of <i>A. latidens</i>. First, the triangular base of the third upper premolar P4 of the type specimen of <i>A. carishina</i> (ICN 14530) is indistinguishable from <i>A. latidens</i>, as demonstrated by our analyses of tooth shape (Fig. 3), as are those of three of the paratypes. Second, we find all four of these specimens also lack a developed anterobasal cusp in the second upper premolar (P3). And finally, none of the 18 morphological measurements differ between <i>A. latidens</i> and the <i>A. carishina</i> specimens (Table 2 and 3) with the exception of the height of the brain case (HBC; <i>P</i>=0.030) and P4 area (<i>P</i>=0.049), and in both of these cases there is still extensive overlap in the range of measurements (HBC: 7.14-8.07 mm for <i>A. latidens</i> vs. 7.72-8.30 mm for <i>A. carishina</i>; P4 area: 0.56-0.86 mm² for <i>A. latidens</i> vs. 0.50-0.70 mm² for <i>A. carishina</i>). 	306	considering Anoura carishina as an entity morphologically distinct from A. latidens. Our
309conservation of this species in the country.31031131231231331431531531631731831931931131131131131231231331431531531631731831931131131231331431531531631731831931131131231331431431531531631731831931131131231331431431531531631731831931931131131231331431431531531631731831931931131131231331431431531531631731831831931932032132132	307	results also clarify the characters that distinguish A. latidens from A. geoffroyi, expand
310311 <i>Taxonomic identity of</i> A. carishina— Our different lines of evidence lead us to formally312treat <i>Anoura carishina</i> as a junior synonym of <i>A. latidens</i> . First, the triangular base of the313third upper premolar P4 of the type specimen of <i>A. carishina</i> (ICN 14530) is314indistinguishable from <i>A. latidens</i> , as demonstrated by our analyses of tooth shape (Fig.3153), as are those of three of the paratypes. Second, we find all four of these specimens also316lack a developed anterobasal cusp in the second upper premolar (P3). And finally, none317of the 18 morphological measurements differ between <i>A. latidens</i> and the <i>A. carishina</i> 318specimens (Table 2 and 3) with the exception of the height of the brain case (HBC;319 $P=0.030$) and P4 area ($P=0.049$), and in both of these cases there is still extensive overlap320in the range of measurements (HBC: 7.14-8.07 mm for <i>A. latidens</i> vs. 7.72-8.30 mm for321 <i>A. carishina</i> ; P4 area: 0.56-0.86 mm ² for <i>A. latidens</i> vs. 0.50-0.70 mm ² for <i>A. carishina</i>).	308	the known distribution of A. latidens in Colombia, and raise issues regarding the
311 <i>Taxonomic identity of</i> A. carishina— Our different lines of evidence lead us to formally312treat <i>Anoura carishina</i> as a junior synonym of <i>A. latidens</i> . First, the triangular base of the313third upper premolar P4 of the type specimen of <i>A. carishina</i> (ICN 14530) is314indistinguishable from <i>A. latidens</i> , as demonstrated by our analyses of tooth shape (Fig.3153), as are those of three of the paratypes. Second, we find all four of these specimens also316lack a developed anterobasal cusp in the second upper premolar (P3). And finally, none317of the 18 morphological measurements differ between <i>A. latidens</i> and the <i>A. carishina</i> 318specimens (Table 2 and 3) with the exception of the height of the brain case (HBC;319 $P=0.030$) and P4 area ($P=0.049$), and in both of these cases there is still extensive overlap320in the range of measurements (HBC: 7.14-8.07 mm for <i>A. latidens</i> vs. 7.72-8.30 mm for321 <i>A. carishina</i> ; P4 area: 0.56-0.86 mm ² for <i>A. latidens</i> vs. 0.50-0.70 mm ² for <i>A. carishina</i>).	309	conservation of this species in the country.
treat <i>Anoura carishina</i> as a junior synonym of <i>A. latidens</i> . First, the triangular base of the third upper premolar P4 of the type specimen of <i>A. carishina</i> (ICN 14530) is indistinguishable from <i>A. latidens</i> , as demonstrated by our analyses of tooth shape (Fig. 3), as are those of three of the paratypes. Second, we find all four of these specimens also lack a developed anterobasal cusp in the second upper premolar (P3). And finally, none of the 18 morphological measurements differ between <i>A. latidens</i> and the <i>A. carishina</i> specimens (Table 2 and 3) with the exception of the height of the brain case (HBC; P=0.030) and P4 area ($P=0.049$), and in both of these cases there is still extensive overlap in the range of measurements (HBC: 7.14-8.07 mm for <i>A. latidens</i> vs. 7.72-8.30 mm for <i>A. carishina</i> ; P4 area: 0.56-0.86 mm ² for <i>A. latidens</i> vs. 0.50-0.70 mm ² for <i>A. carishina</i>).	310	
third upper premolar P4 of the type specimen of <i>A. carishina</i> (ICN 14530) is indistinguishable from <i>A. latidens</i> , as demonstrated by our analyses of tooth shape (Fig. 3), as are those of three of the paratypes. Second, we find all four of these specimens also lack a developed anterobasal cusp in the second upper premolar (P3). And finally, none of the 18 morphological measurements differ between <i>A. latidens</i> and the <i>A. carishina</i> specimens (Table 2 and 3) with the exception of the height of the brain case (HBC; P=0.030) and P4 area ($P=0.049$), and in both of these cases there is still extensive overlap in the range of measurements (HBC: 7.14-8.07 mm for <i>A. latidens</i> vs. 7.72-8.30 mm for <i>A. carishina</i> ; P4 area: 0.56-0.86 mm ² for <i>A. latidens</i> vs. 0.50-0.70 mm ² for <i>A. carishina</i>).	311	Taxonomic identity of A. carishina— Our different lines of evidence lead us to formally
indistinguishable from <i>A. latidens</i> , as demonstrated by our analyses of tooth shape (Fig. 3), as are those of three of the paratypes. Second, we find all four of these specimens also lack a developed anterobasal cusp in the second upper premolar (P3). And finally, none of the 18 morphological measurements differ between <i>A. latidens</i> and the <i>A. carishina</i> specimens (Table 2 and 3) with the exception of the height of the brain case (HBC; P=0.030) and P4 area ($P=0.049$), and in both of these cases there is still extensive overlap in the range of measurements (HBC: 7.14-8.07 mm for <i>A. latidens</i> vs. 7.72-8.30 mm for <i>A. carishina</i> ; P4 area: 0.56-0.86 mm ² for <i>A. latidens</i> vs. 0.50-0.70 mm ² for <i>A. carishina</i>).	312	treat Anoura carishina as a junior synonym of A. latidens. First, the triangular base of the
3), as are those of three of the paratypes. Second, we find all four of these specimens also lack a developed anterobasal cusp in the second upper premolar (P3). And finally, none of the 18 morphological measurements differ between <i>A. latidens</i> and the <i>A. carishina</i> specimens (Table 2 and 3) with the exception of the height of the brain case (HBC; P=0.030) and P4 area ($P=0.049$), and in both of these cases there is still extensive overlap in the range of measurements (HBC: 7.14-8.07 mm for <i>A. latidens</i> vs. 7.72-8.30 mm for <i>A. carishina</i> ; P4 area: 0.56-0.86 mm ² for <i>A. latidens</i> vs. 0.50-0.70 mm ² for <i>A. carishina</i>).	313	third upper premolar P4 of the type specimen of A. carishina (ICN 14530) is
316lack a developed anterobasal cusp in the second upper premolar (P3). And finally, none317of the 18 morphological measurements differ between <i>A. latidens</i> and the <i>A. carishina</i> 318specimens (Table 2 and 3) with the exception of the height of the brain case (HBC;319 $P=0.030$) and P4 area ($P=0.049$), and in both of these cases there is still extensive overlap320in the range of measurements (HBC: 7.14-8.07 mm for <i>A. latidens</i> vs. 7.72-8.30 mm for321 <i>A. carishina</i> ; P4 area: 0.56-0.86 mm² for <i>A. latidens</i> vs. 0.50-0.70 mm² for <i>A. carishina</i>).	314	indistinguishable from A. latidens, as demonstrated by our analyses of tooth shape (Fig.
of the 18 morphological measurements differ between <i>A. latidens</i> and the <i>A. carishina</i> specimens (Table 2 and 3) with the exception of the height of the brain case (HBC; P=0.030) and P4 area ($P=0.049$), and in both of these cases there is still extensive overlap in the range of measurements (HBC: 7.14-8.07 mm for <i>A. latidens</i> vs. 7.72-8.30 mm for <i>A. carishina</i> ; P4 area: 0.56-0.86 mm ² for <i>A. latidens</i> vs. 0.50-0.70 mm ² for <i>A. carishina</i>).	315	3), as are those of three of the paratypes. Second, we find all four of these specimens also
specimens (Table 2 and 3) with the exception of the height of the brain case (HBC; P=0.030) and P4 area ($P=0.049$), and in both of these cases there is still extensive overlap in the range of measurements (HBC: 7.14-8.07 mm for <i>A. latidens</i> vs. 7.72-8.30 mm for <i>A. carishina</i> ; P4 area: 0.56-0.86 mm ² for <i>A. latidens</i> vs. 0.50-0.70 mm ² for <i>A. carishina</i>).	316	lack a developed anterobasal cusp in the second upper premolar (P3). And finally, none
 P=0.030) and P4 area (P=0.049), and in both of these cases there is still extensive overlap in the range of measurements (HBC: 7.14-8.07 mm for <i>A. latidens</i> vs. 7.72-8.30 mm for <i>A. carishina</i>; P4 area: 0.56-0.86 mm² for <i>A. latidens</i> vs. 0.50-0.70 mm² for <i>A. carishina</i>). 	317	of the 18 morphological measurements differ between A. latidens and the A. carishina
 in the range of measurements (HBC: 7.14-8.07 mm for <i>A. latidens</i> vs. 7.72-8.30 mm for <i>A. carishina</i>; P4 area: 0.56-0.86 mm² for <i>A. latidens</i> vs. 0.50-0.70 mm² for <i>A. carishina</i>). 	318	specimens (Table 2 and 3) with the exception of the height of the brain case (HBC;
321 <i>A. carishina</i> ; P4 area: 0.56-0.86 mm ² for <i>A. latidens</i> vs. 0.50-0.70 mm ² for <i>A. carishina</i>).	319	P=0.030) and P4 area ($P=0.049$), and in both of these cases there is still extensive overlap
	320	in the range of measurements (HBC: 7.14-8.07 mm for A. latidens vs. 7.72-8.30 mm for
322 Given the above evidence, the holotype and three of the paratypes are diagnosable as	321	A. carishina; P4 area: 0.56-0.86 mm ² for A. latidens vs. 0.50-0.70 mm ² for A. carishina).
	322	Given the above evidence, the holotype and three of the paratypes are diagnosable as

323	individuals	of A	latidens	The fourth	naratype	(ICN 5938)) falls	within	the mori	phospace
525	marviadais	01 7 1.	ianachs.	The fourth	paracype	(1011 3) 30	/ rans	vv I tI IIII	une mor	mospace

- 324 of A. g. geoffroyi and presents a developed anterobasal cusp in the second upper
- 325 premolar, supporting its identification as A. geoffroyi.
- 326 Diagnosis of A. latidens and A. geoffroyi— Our morphometric analysis of craniodental
- 327 measurements shows that A. latidens shares morphospace with A. g. geoffroyi and A.
- 328 *peruana*. Of the traits mentioned by Handley (1984) to diagnose A. *latidens* from A.
- 329 *geoffroyi*, we found several to still be reliable in our larger dataset in separating A.
- 330 latidens from the A. geoffroyi species complex, including a more robust and more
- triangular third upper premolar (P4; see Fig. 3), a reduced anterobasal cusp of second
- upper premolar (P3), and a shorter rostrum (in terms of GLS, PL, MANL; Table 2,
- 333 Supplementary Data SD2). We add to this list mastoid breadth (MB) and mandibular
- tooth row length (MANTRL), which are also smaller for A. latidens (Table 2,
- 335 Supplementary Data SD2). Toothrow angle, which Handley (1984) suggested is more
- 336 parallel for A. latidens, did not in fact show significant differences (after Tukey and
- 337 Bonferroni corrected posthoc tests) between any of the species in our analyses (Table 3).
- 338 Finally, although Handley (1984) suggested that A. latidens has a more inflated
- braincase, we found that its braincase (BCB, Table 2, Supplementary Data SD2) is in fact
- 340 significantly less inflated than *A. geoffroyi* and *A. peruana*.
- 341
- 342 Distribution and implications for the conservation of Anoura latidens in Colombia By
- 343 combining the 2 valid previously-published records of Anoura latidens in Colombia
- 344 (Handley 1984, Mora-Beltrán & López-Arévalo 2018) with the 7 records we found here,
- 345 we report *A. latidens* in 7 localities across the country (Fig. 4, Supplementary Data SD1).

346	With the exception of the Sierra Nevada de Santa Marta, all localities fall within highly
347	altered ecosystems (IAvH 2004). Vereda El Hormiguero (ICN 4398) is located in a sugar
348	cane agricultural system, even at the time of the capture of the specimen (Arata et al.
349	1967). San Juan de Rioseco (AMNH 69187) and Vereda La Huerta (MUD 587) are
350	mountainous areas with a landscape composed of ranching pastures, small agricultural
351	fields, and fragments of natural forests. Vereda La Suiza (ICN 11195) presents a
352	heterogeneous forest cover composed of fragments of natural forests, secondary forests,
353	and reforested areas; it is part of the Santuario de Fauna y Flora Otún Quimbaya,
354	registered in the Colombian National System of Protected Areas (SINAP) (Estrada-
355	Villegas et al. 2010). Reserva Forestal Bosque de Yotoco (ICN 22807) is a protected
356	reserve in the Valle del Cauca department on the eastern slopes of the Western
357	Cordillera. All records are located in the Andean region and the Sierra Nevada de Santa
358	Marta between 590 and 1690 m.a.s.l. (Fig. 4, Supplementary Data SD1). In Venezuela, A.
359	latidens has a similar elevational distribution, with records from 50 to 2240 meters above
360	sea level and the majority (81%) located between 1000-1500 m.a.s.l. (Handley 1984,
361	Linares 1986, Soriano et al. 2002).

Assessing the conservation status of *A. latidens* in Colombia under the conventional parameters (variation in population size, size of distribution range and habitat loss) becomes a challenge given its discontinuous distribution. It is immersed in highly transformed environments and not associated with natural vegetation cover. Local abundances are also unknown, but its limited presence in Colombian mammal collections suggests a pattern of low abundance in the Colombian Andes. Adding to this issue, given that *A. latidens* is sympatric to *A. geoffroyi*, and only craniodental features are useful for

369 its diagnosis, it is likely that they are misidentified during fieldwork, as suggested by the 370 fact that all new records for Colombia were previously identified as *A. geoffroyi*. In 371 summary, *Anoura latidens* is a species with a broad distribution with unknown 372 population numbers inhabiting highly transformed ecosystems. It is crucial to coordinate 373 strategies with the different Bat Conservation Programs in South America to encourage 374 research and conservation on this species, which can lead to effective conservation 375 strategies.

376 In conclusion, this study provides evidence that A. carishina should be treated as a 377 junior synonym of A. latidens, given extensive overlap in morphology, including key 378 traits such as 1) shape of the upper third premolar (P4), 2) craniodental measurements 379 and 3) the presence of the anterobasal cusp in the second upper premolar (P3). We found 380 support for several characters suggested by Handley (1984) to distinguish A. latidens 381 from A. geoffrovi, including a shorter rostrum, more robust premolars, and triangular 382 shape to P4 (with medial-internal cusp being enclosed by the base of the tooth), while we 383 detected no differences in toothrow angle. Finally, contrary to Handley (1984), we find 384 that the braincase of A. latidens is in fact significantly less inflated than that of A. 385 geoffroyi. Given the high morphological overlap between A. geoffroyi subspecies and A. 386 *peruana*, we recommend further taxonomic work combined with genetic analyses to 387 better understand the species limits of this species complex. 388 389 **ACKNOWLEDGMENTS** 390 This work was possible thanks to the collaboration of the collection managers of

391 multiple mammalogical collections, who provided access to specimens and their internal

392	databases and/or provided scanned images of specimens. We want to thank H. López
393	Arévalo (ICN), M. Ruedi (MHNG), C.A. Medina Uribe (IAVH), M. Rivas-Pava
394	(MHNUC), A. Rodríguez-Bolaños (UD), D. Zurc (CSJ), S. Solari (CTUA), B. Patterson
395	(FMNH), D. Lunde (USNM), and N. Simmons (AMNH). I. Jimenez provided helpful
396	advice regarding elliptical Fourier transformation analysis.
397	
398	FUNDING STATEMENT
399	The city of Geneva (Switzerland) provided travel expenses for MRP to review the
400	Colombian bat specimens deposited in MHNG as the holotype of A. lasiopyga. The
401	American Museum of Natural History (through the Collection Visiting Grant), the
402	Whitney Harris Center for World Ecology, and the Biology Graduate Student Association
403	at the University of Missouri-St. Louis provided funds for CAC in order to visit
404	Colombian and U.S. based mammal collections.
405	
406	SUPPLEMENTARY DATA
407	Supplementary Data SD 1—Database of specimens examined and their geographical
408	information including localities and geographical coordinates. Specimens revised and
409	identified but not measured are indicated with an asterisk (*)
410	Supplementary Data SD 2—Summary measurements of A. carishina, A. g. geoffroyi, A.
411	g. lasiopyga, A. peruana and A. latidens.
412	Supplementary Data SD 3— Supplementary Figure 1 Type Series of A. carishina, A)
413	Type specimen ICN 14530, B) ICN 14531, C) ICN 5224, D) ICN 5225 E) ICN 5398.
414	Supplementary Figure 2. PCA analyses discriminating between the different

415	species/subspecies of the A. geoffroyi species complex, Top) using 12 craniodental and
416	11 postcranial measurements Bottom) using only the 12 craniodental measurements.
417	Supplementary Figure 3. Depiction of toothrow angle measurement.
418	LITERATURE CITED
419	Alberico, M., A. Cadena, J. Hernández-Camacho, and Y. Muñoz-Saba. 2000.
420	Mamíferos (Synapsida: Theria) de Colombia. Biota colombiana 1:43-75.
421	ALLEN, H. 1898. On the Glossophaginae. Transactions of the American
422	Philosophical Society 19:237-266.
423	ARATA, A. A., J. B. VAUGHN, AND M. E. THOMAS. 1967. Food habits of certain
424	Colombian bats. Journal of Mammalogy 48:653-655.
425	Estrada-Villegas, S., J. Pérez-Torres, and P. R. Stevenson. 2010. Ensamblaje de
426	murciélagos en un bosque subandino colombiano y análisis sobre la dieta de algunas
427	especies. Mastozoología neotropical 17:31-41.
428	GRIFFITHS, T. AND A. GARDNER. 2007 [2008]. Subfamily Glossophaginae
429	Bonaparte, 1845. Pp. 224-244 in Mammals of South America, Vol 1 Marsupials,
430	Xenarthrans, Shrews, and Bats (Gardner A ed.), The University of Chicago Press,
431	Chicago.
432	HANDLEY, C. O., JR 1960. Description of new bats from Panama. Smithsonian
433	Institution.
434	HANDLEY, C. O., JR 1976. Mammals of the Smithsonian Venezuelan project.
435	Brigham Young University Science Bulletin-Biological Series 20:1-91.
436	HANDLEY, C. O., JR 1984. New species of mammals from northern South
437	America: a long-tongued bat, genus Anoura Gray. Proceedings of the Biological
438	Society of Washington 97:513-521.
439	IWATA, H. AND Y. UKAI. 2002. SHAPE: a computer program package for
440	quantitative evaluation of biological shapes based on elliptic Fourier descriptors.
441	Journal of Heredity 93:384-385.
442	JARRÍN-V, P. AND T. H. KUNZ. 2008. Taxonomic history of the genus Anoura
443	(Chiroptera: Phyllostomidae) with insights into the challenges of morphological
444	species delimitation. Acta Chiropterologica 10:257-269.
445	LIM, B. K. AND M. D. ENGSTROM. 2001. Species diversity of bats (Mammalia:
446	Chiroptera) in Iwokrama Forest, Guyana, and the Guianan subregion: implications
447	for conservation. Biodiversity and Conservation 10:613-657.
448	LINARES, O. 1986. Murciélagos de Venezuela. Cuadernos Lagoven, Caracas.
449	LINARES, O. 1998. Mamíferos de Venezuela. Sociedad Conservacionista
450	Audubon de Venezuela, Caracas, Venezuela.
451	Mantilla-Meluk, H. and R. J. Baker. 2006. Systematics of small Anoura
452	(Chiroptera: Phyllostomidae) from Colombia, with description of a new species.
453	Ocassional Papers, Museum of Texas Tech University 261:1-18.
454	MANTILLA-MELUK, H. AND R. J. BAKER. 2010. New species of Anoura (Chiroptera:
455	Phyllostomidae) from Colombia, with systematic remarks and notes on the
100	i ing nooconnaac ji tom coroniora, wich systematic remarks and notes on the

456 distribution of the A. geoffroyi complex. Occasional Papers, Museum of Texas Tech 457 University 292:1-19. 458 MOLINARI, J. 1994. A new species of Anoura (Mammalia Chiroptera 459 Phyllostomidae) from the Andes of northern South America. Tropical Zoology 7:73-460 86. 461 MORA-BELTRÁN, C. AND H. F. LÓPEZ-ARÉVALO, 2018. Interactions between bats 462 and oral resources in a premontane forest, Valle del Cauca, Colombia. THERYA 463 9:129-136 464 MUCHHALA, N., P. V. MENA, AND L. V. ALBUJA. 2005. A new species of Anoura 465 (Chiroptera: Phyllostomidae) from the Ecuadorian Andes. Journal of Mammalogy 466 86:457-461 467 MUÑOZ, J. 2001. Los murciélagos de Colombia. Sistemática, distribución, 468 descripción, historia natural y ecología. Editorial Universidad de Antioquia, 469 Medellín, Antioquia, Colombia. 470 NAGORSEN, D. AND J. TAMSITT. 1981. Systematics of Anoura cultrata, A. 471 brevirostrum, and A. werckleae. Journal of Mammalogy 62:82-100. 472 PACHECO, V., P. SÁNCHEZ-VENDIZÚ, AND S. SOLARI. 2018. A New Species of Anoura 473 Gray, 1838 (Chiroptera: Phyllostomidae) from Peru, with Taxonomic and 474 Biogeographic Comments on Species of the Anoura caudifer Complex. Acta 475 Chiropterologica 20:31-50. 476 RIVAS-PAVA, M., H. RAMÍREZ-CHAVES, Z. ÁLVAREZ, AND B. NIÑO-VALENCIA. 2007. 477 Catálogo de los mamíferos presentes en las colecciones de referencia y exhibición 478 del Museo de Historia Natural de la Universidad del Cauca. Taller Editorial 479 Universidad del Cauca, Popayán. 480 SCHNEIDER, C. A., W. S. RASBAND, AND K. W. ELICEIRI. 2012. NIH Image to Image]: 481 25 years of image analysis. Nature methods 9:671. 482 SOLARI, S., Y. MUÑOZ-SABA, J. V. RODRÍGUEZ-MAHECHA, T. R. DEFLER, H. E. RAMÍREZ-483 CHAVES, AND F. TRUJILLO. 2013. Riqueza, endemismo y conservación de los mamíferos 484 de Colombia. Mastozoología neotropical 20:301-365. 485 SOLARI, S., V. PACHECO, AND E. VIVAR. 1999. Nuevos registros distribucionales de 486 murciélagos peruanos. Revista Peruana de Biología 6:152-159. 487 SORIANO, P. J., A. RUIZ, AND A. ARENDS. 2002. Physiological Responses to Ambient 488 Temperature Manipulation by three Species of Bats from Andean Cloud Forests. 489 Journal of Mammalogy 83:445-457. 490 VELAZCO, P. M. 2005. Morphological phylogeny of the bat genus Platyrrhinus 491 Saussure, 1860 (Chiroptera: Phyllostomidae) with the description of four new 492 species. Fieldiana Zoology:1-53. 493 VELAZCO, P. M. AND B. D. PATTERSON. 2008. Phylogenetics and biogeography of 494 the broad-nosed bats, genus Platyrrhinus (Chiroptera: Phyllostomidae). Molecular 495 Phylogenetics and Evolution 49:749-759. 496 VELAZCO, P. M. AND N. B. SIMMONS. 2011. Systematics and taxonomy of great 497 striped-faced bats of the genus Vampyrodes Thomas, 1900 (Chiroptera: 498 Phyllostomidae). American Museum Novitates 3710:1-35. 499 WILSON, D. E. AND D. REEDER. 1993. Mammal species of the world. Smithsonian 500 Institution Press, WashingtonDC. 501

502	FIGURE LEGENDS
503	Fig. 1. Skull morphology of A) A. latidens type AMNH 370119, B) A. carishina type
504	ICN 14530 and C) A. carishina paratype ICN 5938. Note the robust molars and
505	premolars in the first two, in contrast to the slender premolars of the A. carishina
506	paratype ICN 5938.
507	
508	Fig. 2. A) PCA analyses using 12 craniodental and 11 postcranial measurements of
509	Anoura specimens. B) PCA analyses using only the 12 craniodental measurements of
510	Anoura carishina, A. latidens and A. geoffroyi species complex specimens.
511	
512	Fig. 3. A) Mean (solid lines), -2SD (short-dashed lines), and + 2SD (long-dashed lines)
513	contour shapes of the third premolar (P4) in our sample (with all three super-imposed to
514	the left), showing the variation explained by each of the elliptical Fourier descriptor
515	(EFD) Principal Components. B) Scatterplot of EFD PC1 vs. P4 area. Note that the A.
516	carishina type specimen (ICN 14530) is nested well within the morphospace of A.
517	latidens.
518	
519	Fig. 4. Distribution of A. latidens in Colombia. Black stars show specimens previously

520 attributed to *A. carishina*, while grey stars show all other records.

521 Tables

- 522 Table 1. Measurements (mm) of the type specimen of *A. latidens*, and the type series of *A.*
- 523 *carishina*, see methods for measurement abbreviations.

	A. latidens Type	A. carishina Type	A. carishina	A. carishina	A. carishina	A. carishina	
	USNM 370119	ICN 14530	ICN 5224	ICN 5225	ICN 14531	ICN 5938	
GLS	24.05	24.08	24.44	24.05	23.90	24.12	
CBL	23.27	23.35	23.65	23.53	23.45	23.52	
ZW	10.66	10.95	9.93	9.97	10.59	10.70	
PB	4.81	5.24	4.91	4.86	5.19	5.15	
BCB	9.50	10.03	9.81	9.35	9.82	9.88	
MB	9.99	10.11	9.75	10.02	10.17	10.22	
MTRL	9.06	9.09	9.32	9.18	9.01	9.28	
PL	13.44	12.27	12.52	12.71	12.87	13.11	
PPL	8.79	9.57	9.01	9.40	9.17	8.71	
M3-M3	5.94	6.31	6.22	5.91	6.09	6.06	
C-C CW	4.09	4.46	4.39	4.06	4.16	4.52	
	6.08	6.23	5.89	5.90	5.73	6.26	
HBC	7.54	8.30	8.04	7.91	7.83	7.72	
MANL	16.89	17.15	17.46	17.00	17.27	17.36	
MANTRL	9.35	9.71	9.48	9.48	9.39	9.63	
MH	4.44	4.67	5.06	4.57	4.45	4.69	
FA	42.69	43.09	44.15	43.79	41.14	41.07	
D3MC	39.53	39.32	39.24	39.86	38.22	39.11	
D3P1	13.21	13.69	13.48	13.00	13.47	12.81	
D3P2	21.18	20.42	20.50	21.18	21.01	20.47	
D4MC	37.88	37.09	38.97	38.37	36.43	37.73	

D4P1	9.73	9.64	10.20	10.07	10.26	9.97
D4P2	13.32	14.24	13.65	15.03	14.11	14.08
D5MC	33.57	32.64	33.56	33.07	30.89	32.62
D5P1	7.81	8.20	8.20	8.00	8.68	8.06
D5P2	11.92	11.62	12.65	13.22	12.34	12.61
Tibia	14.97	13.64	15.05	15.40	14.73	14.34

- ---

Table 2. MANOVA *F* values and *P*-values for Bonferroni-corrected posthoc tests of morphometric variables between *Anoura*

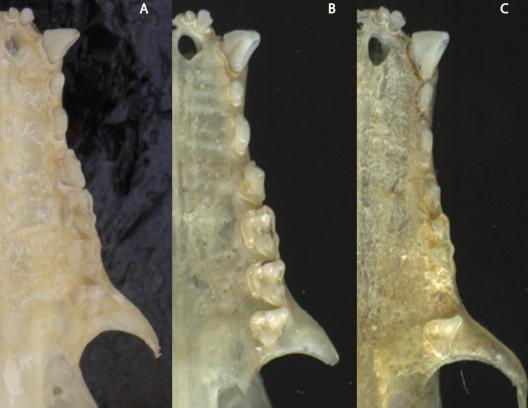
542 *peruana* (n=5), A. *carishina* (n=5), A. *geoffroyi* (n=75) and A. *latidens* (n=40), with significant P-values in bold. See methods for

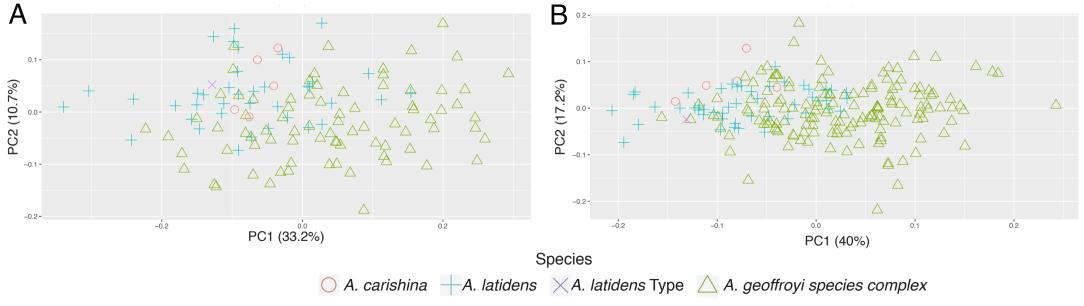
543 measurement abbreviations.

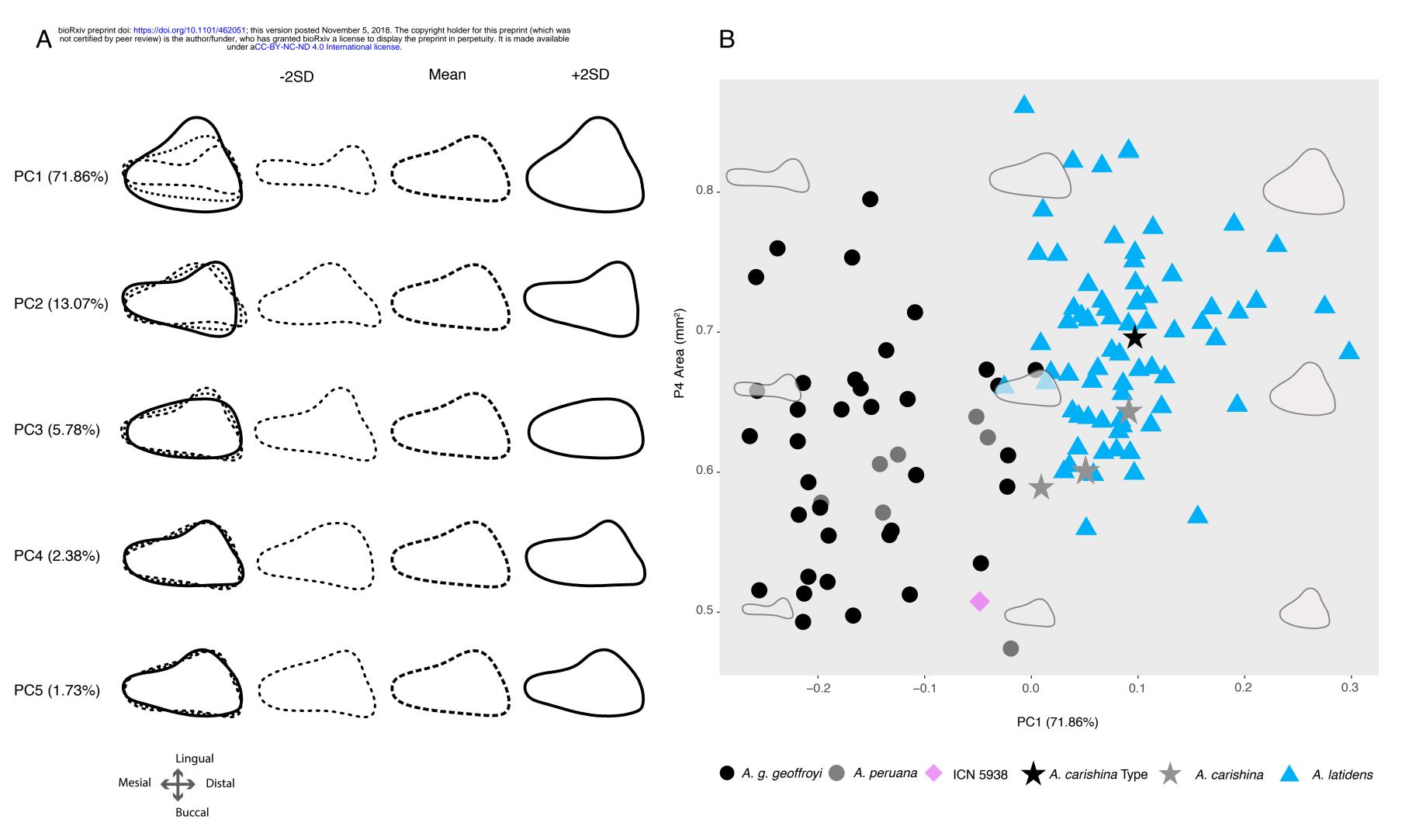
Variable	MANOVA F	MANOVA P	A. latidens A. carishina	A. geoffroyi A. carishina	A.peruana A. carishina	A. geoffroyi - A. latidens	A. peruana - A. latidens	A. geoffroyi - A.peruana
GLS	33.013	0.000	1.000	0.001	0.001	0.000	0.000	1.000
CBL	25.771	0.000	1.000	0.001	0.006	0.000	0.001	1.000
PB	1.023	0.385	1.000	1.000	0.867	1.000	1.000	0.607
BCB	5.587	0.001	1.000	1.000	1.000	0.001	1.000	0.354
HBC	5.625	0.001	0.030	0.295	0.005	0.166	0.500	0.043
MB	9.297	0.000	1.000	0.047	1.000	0.000	1.000	0.255
PL	21.262	0.000	1.000	0.001	0.001	0.000	0.000	0.787
MTRL	9.982	0.000	1.000	0.087	0.120	0.000	0.003	0.415
M3.M3	3.094	0.030	1.000	1.000	1.000	0.021	0.902	1.000
C.C	17.085	0.000	1.000	0.058	1.000	0.001	1.000	0.387
MANL	5.034	0.003	1.000	0.515	0.211	0.009	0.850	1.000
MANTRL	14.744	0.000	1.000	0.012	0.002	0.000	0.000	0.417
FA	0.223	0.881	1.000	1.000	1.000	1.000	1.000	1.000

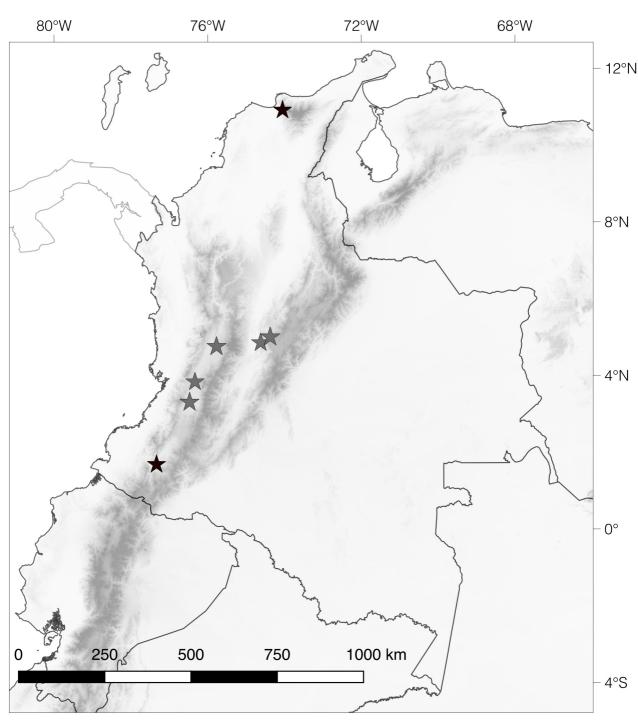
Table 3. MANOVA F and P-values for Bonferroni-corrected posthoc tests of P3 and P4 area, toothrow angles (TRA) and Principal

545 components 1 and 2 of P4 shape between Anoura peruana (n=4), A. carishina (n=5), A. g. geoffroyi (n=34) and A. latidens (n=66),


546 with significant *P*-values in bold. See methods for measurement abbreviations.


547


Variable	MANOVA F	MANOVA P	A. latidens - A. carishina	A. g. geoffroyi - A. carishina	A.peruana - A. carishina	A. g. geoffroyi - A. latidens	A. peruana - A. latidens	A. g. geoffroyi - A. peruana
P3 area	0.952	0.418	1.000	1.000	1.000	0.641	1.000	1.000
P4 area	14.878	0.000	0.049	1.000	1.000	0.000	0.002	1.000
P4 Shape PC1	103.508	0.000	0.678	0.000	0.079	0.000	0.000	0.122
P4 Shape PC2	0.340	0.797	1.000	1.000	1.000	1.000	1.000	1.000
TRA	3.157	0.028	1.000	1.000	1.000	0.066	0.407	1.000


548

549

