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ABSTRACT

The introduction of electronic patient records in the ambulance service provides new opportunities
to monitor the population. Most patients presenting to British ambulance services are discharged
at scene. Ambulance records are therefore an ideal data source for syndromic early event detection
systems to monitor infectious disease in the prehospital population. It has been previously found that
tympanic temperature records can be used to detect influenza outbreaks in emergency departments.
This study investigated whether routine tympanic temperature readings collected by ambulance crews
can be used to detect seasonal influenza. Here we show that these temperature readings do allow the
detection of seasonal influenza before methods applied to conventional data sources. The counts of
pyretic patients were used to calculate a sliding case ratio (CR) as a measurement to detect seasonal
influenza outbreaks. This method does not rely on conventional thresholds and can be adapted to the
data. The data collected correlated with seasonal influenza. The 2016/17 outbreak was detected with
high specificity and sensitivity, up to 9 weeks before other surveillance programs. An unanticipated
outbreak of E. coli was detected in the same dataset. Our results show that ambulance records can be
a useful data source for biosurveillance systems. Two outbreaks caused by different infectious agents
have been successfully detected. The routine ambulance records allowed to use tympanic temperature
readings that can be used as surveillance tool for febrile diseases. Therefore, this method is a valuable
addition to the current surveillance tools.

Keywords Syndromic surveillance · Influenza · Escerichia coli · Ambulance · automated surveillance · outbreak
detection

1 Introduction

An increasing amount of digital data is being generated every day in all domains of human activity. The health services
are not an exception and have also experienced an expansion of their digital footprints. One recently digitised area
of the health service are patient records collected by ambulance crews. These have previously been handwritten and
therefore difficult to access. This digitisation has created a large prehospital data source that to date is mostly untapped.

The South-Western Ambulance Service NHS Foundation Trust (SWASFT) introduced electronic Patient Care Records
(ePCR) in March 2015 using a staggered approach. The ePCR allows to access and monitor all data recorded near
real-time. SWASFT has a high non-conveyance rate of 57.45% (2013-2014), which is the highest in the UK [1]. This
allows to monitor the community rather than the hospital population.
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Most infections result in pyrexia [2,3], therefore body temperature-based surveillance systems are unspecific but
sensitive to virtually any pyrexia causing disease.

In the past, temperature screening has been applied during outbreaks of infectious diseases such as the Severe Acute
Respiratory Syndrome (SARS) [4–6] and was routinely used to identify carriers at airports. It has also been demonstrated
that the monitoring of body temperature on its own, allowed to detect an outbreak of seasonal flu in an emergency
department in Boston (US) [7].

Such a syndromic surveillance system should ideally be deployed within the community before patients are admitted to
hospitals. Therefore, the ambulance service is ideally placed to provide such a detection system [8].

Most surveillance systems rely on user set thresholds to detect outbreaks [9] . This study will demonstrate that it is
possible to use patient records collected by ambulance crews to detect disease outbreaks, solely based on tympanic
temperature readings, without relying on user-set thresholds. The key objectives of this study are:

• To establish if the prehospital tympanic temperature readings mirror the seasonal influenza peak during the
2016/2017 season.

• The evaluation of a method adapted from Singh et al. (2010) [10] using Case Ratios (CR) and its applicability
as Early Event Detection (EED) system when applied to prehospital tympanic temperature readings.

2 Methods

2.1 Data Extraction

The retrospective ePCR dataset was provided by SWASFT Clinical Information and Records Office and was extracted
from a database using queries for the counties of Cornwall and Devon. Records without valid postcodes were excluded
(1.8% of 375,740). The variables used are the record creation date, tympanic temperature and age.

All data were collected during routine patient contact of ambulance crews. As the nature of this study was a clinical
audit and no identifiable patient data was extracted, an ethical approval was not required [11]. The aim of this work was
to evaluate whether these data can be used for a surveillance system in the future. As the data is stored digitally it could
be accessed near real time which would be a requirement of such as system.

The most commonly used temperature probes within SWASFT are the Braun ThermoScan 7 IRT6520 and ThermoScan
5 IRT4520. Both devices have a measurement range of 34-42.2◦ C with an accuracy of 0.2◦ C between 35.5-42◦ C and
0.3◦ C outside this range [12,13]. As the data included temperature readings outside the range of the device capabilities,
records indicating physiological hypothermia (32◦ C) [14,15] and hyperpyrexia (42◦ C) [7] were excluded.

The most commonly used temperature probes within SWASFT are the Braun ThermoScan 7 IRT6520 and ThermoScan
5 IRT4520. Both devices have a measurement range of 34-42.2◦ C with an accuracy of 0.2◦ C between 35.5-42◦ C and
0.3◦ C outside this range [12,13]. As the data included temperature readings outside the range of the device capabilities,
records indicating physiological hypothermia (32◦ C) [14,15] and hyperpyrexia (42◦ C) [7] were excluded.

2.2 Data Processing

All data were processed using MATLAB R2017a (The MathWorks, MA, USA).

The human body temperature varies during the day due to changes in metabolism rates. The lowest oral measurement
(37.2◦ C) was found by Mackowiak et al. (1992) [16] to be at 6am and the highest (37.7◦ C) at 4pm. A cohort
study conducted by Obermeyer et al. (2017) [17] in 35,488 healthy patients confirmed the daily variation and found a
normal range of 35.3-37.7◦ C. This study also established a negligible discrepancy of -0.03◦ C of tympanic versus oral
temperature [17]. Therefore, temperatures between >37.7-42◦ C, were considered as pyrexia where the upper cut-off
accounts for hyperpyrexia [7].
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Figure 1: A. Total number of electronic patient records (ePCR) since its introduction within Devon and Cornwall. B.
Data loss following exclusion criteria. C. Age distribution for both the general population in Devon and Cornwall in
comparison to the patients attended by ambulance crews.

The analysis was performed on records of patients with tympanic temperature readings within the range of 32-42◦ C.
This excluded 0.0306% of the records (i.e. moderate and severe hypothermia as well as hyperpyrexia) – Figure 1B [14].

Daily and weekly counts of call volumes and pyretic patient numbers were used as a basis for all following data analyses.
Due to the staggered deployment of the electronic devices within SWASFT, the point of data saturation at which all
areas were fully operational, was reached on the 05/01/2016 (Figure 1A). Thus, the timeframe was limited to the period
between 05/01/2016 and 30/04/2017. As the saturation date, did not capture the start of the 2015/2016 flu season, all
detections were run against the 2016/17 flu peak.

2.3 Data Smoothing

As the daily patient count varies considerably from one day to another resulting in a noisy time series, the data was
smoothed using an Exponential Moving Average (EMA) with an averaging window of 21 days. This window size
was chosen because the incubation period of influenza can be up to 3.6 days [18] followed by an onset of symptoms
and transmission period of the virus, which can last up to 10 days in hospital [19–21]. This means a patient could be
contagious for up to 14 days following infection. Accounting for the incubation period, a secondary patient could show
symptoms ∼ 18 days after the infection of the index case. Therefore, the averaging window size was chosen to be 21
days as this allows for some leeway.

An EMA method was used because it weighs data points higher if these are closer to the present compared to samples
from the more distant past [9]. This puts emphasis on data from new patients rather than on older data points.

3

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2018. ; https://doi.org/10.1101/462341doi: bioRxiv preprint 

https://doi.org/10.1101/462341
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - NOVEMBER 5, 2018

The weekly summed data were used without smoothing as well as an EMA of 3 weeks equivalent to 3 sample points.

2.4 Baseline calculation

The weekly sums and the smoothed daily and weekly counts of pyretic patients were binned with bin-counts calculated
using the Freedman-Diaconis Rule [22]. The centre of the most frequent bin range was determined and will be referred
to as baseline.

2.5 Normalisation

Figures showing variables of different scales were normalised using feature scaling to represent the values on a scale
between 0 and 1. This is indicated in the figure legend.

2.6 Reference data sets

To establish whether the seasonal influenza outbreak is detectable in the ePCR data, these were compared to a reference
dataset of weekly Influenza cases in England obtained from the European Centre of Disease Control (ECDC)

1.

2.7 Calculation of the modified Case Ratio CRd

The ability of an infectious agent to spread within a population can be described using the basic reproduction number or
R0. This value indicates the mean secondary infections caused by each infected host, in a naïve population without
immunity against the infectious agent. R0 is calculated retrospectively using information about the number of contacts
of each infected individual and the resulting secondary infections [23].

Methods exist to estimate R0 from the progress of a disease outbreak, which do rely on knowledge about the transmission
characteristics of the infectious agent gathered from previous outbreaks [24–27]. As this study aims to demonstrate a
method based on temperature readings only caused by any infection this information is not available which is similar to
the situation during an unidentified outbreak. Singh et al. (2010) [10] demonstrated that weekly case ratios (CR) can be
used as an indirect measure of R0 and allow to detect pandemic influenza outbreaks.

The method was adapted in this study by using several different time frames compared to a solely weekly CR,
furthermore it was applied to pyrexia numbers rather than specific influenza cases and thus will naturally include
infections caused by other infectious agents. To allow to distinguish between different time frames used to calculate the
modified CR in this study it is referred to as CRd where d represents the chosen time step between observations in days.
This means that the time step d must be chosen by the investigator to estimate CRd as follows:

CRn =
ny2

ny1
(1)

where ny represents the number of pyretic patients at the days of observation with the previously defined time step
between observations in days. Thus, ny1 represents the first observation and ny2 the latest.

Here this method is applied to pyrexia cases as an unspecific substitute for infection, which.

1All reference datasets provided by ECDC are based in turn on data provided by WHO and Ministries of Health from the affected
countries. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the ECDC. The
accuracy of the authors’ statistical analysis and the findings they report are not the responsibility of ECDC. ECDC is not responsible
for conclusions or opinions drawn from the data provided. ECDC is not responsible for the correctness of the data and for data
management, data merging and data collation after provision of the data. ECDC shall not be held liable for improper or incorrect use
of the data.
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2.8 The different mean-CRd depending on window sizes

To establish the effect of different choices of d, the ascending area of pyrexia cases peak in 2016/17 was used to
calculate a sliding CRd with varying d for the ascending slope where pyrexia cases increased (Figure 2).
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Figure 2: Comparison of different Case Ratios (CR) calculated with different time steps (d).

CR21 was chosen here as its values for the ascending slope were greater than 1, thus fitting the assumption that the slope
represents an increase in case numbers. Although it included more outliers than CR14, it caused less delay than CR28,
so is effectively a trade-off. To make the approach comparable between daily and weekly counts the same window is
used for both sampling rates meaning a window of 21 days or 3 weeks for the daily and weekly counts respectively.
The data was tested for auto correlation (not shown) and was found to be auto correlated over the time frame of a year,
which would be expected for a seasonal infection. The auto correlation was minor for the 21 day window size and was
therefore not further addressed.
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2.9 Outbreak definition

In this study the outbreak definition is focused on the ascending slope representing an increase in pyrexia case numbers.
Therefore, the definition of an outbreak is the persistent transition from CRd <1 to CRd >1 indicating an increase in
cases, which remains >1 for at least one week. It has to be noted that outbreak here refers to an increase of pyrexia
cases caused by an unspecified infectious agent and could be caused by several agents circulating at the same time.

The delay of one week was chosen because it includes the incubation time, meaning that secondary patients exposed to
influenza should have developed pyrexia within one week [18].

Using the CRd as an indication of an outbreak start is based on the assumption that a disease becomes uncontrolled
once CR becomes larger than 1 [28]. The final change of CRd to >1, that is not followed by a recovery to <1 within one
week until the curve reaches its peak is considered the ascending period of the outbreak.

2.10 Estimation of sensitivity and specificity

Both values were calculated from the point at which the CR returned to <1 after the 2015/16 seasonal peak until the
peak of 2016/17.

This estimate assumes that the peak occurring simultaneously with the influenza cases detected by the ECDC was a
verified event and the unknown peak during summer discussed below was the second verified event see section below. A
false positive thus was an increase of the CR followed by a decline to normal levels without a peak in the data provided
by the ECDC. If a peak reported by the ECDC fell inbetween an increase of the CR and the subsequent decrease these
peaks were deemed to origin from the same event.

3 Results

3.1 Data characteristics

The dataset from the date of saturation was made up of 54.01% female and 45.99% male patients. The age range was
between 0-115 years (one outlier of 864 years was excluded) with a mean age of 59.98 and a median age of 68, where
the discrepancy between the two can be explained by a peak in ambulance attendances to infants.

The estimated population in 2016 was 779,834 for Devon and 553,687 for Cornwall. The combined population was
1,333,521 [29]. In comparison the to the estimated age distribution of Devon and Cornwall our data is different as it is
skewed towards the elderly and infants as shown in figure 1. This reflects that older individuals and young parents are
more likely to require assistance by the ambulance service.

Temperatures recorded were in range of 21-47◦ C, with a mean temperature of 36.89◦ C. As this temperature range is
unphysiological it was concluded that some data points were caused by input errors. The temperature-based exclusion
removed 8 patients (0.0023% ) with temperatures of >42◦ C, 3 of those within the 42-42.2◦ C range. The lower
temperature cut-off removed 98 patients (0.028% ) with temperatures <32◦ C.

To establish whether seasonal influenza was detectable in the dataset, weekly case numbers were compared with weekly
sentinel influenza cases recorded by the ECDC in England (see Figure 3B). Sentinel surveillance data is based on
a network of selected health care facilities which select patients with symptoms suggesting influenza for laboratory
confirmation. The non-sentinel surveillance is a passive system using patient samples for laboratory confirmation of a
variety of sources which are not necessarily from patients showing symptoms of an influenza infection [30].
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Figure 3: A. Comparison of normalised pyrexia cases and all patient records. B. normalised weekly pyrexia recorded in
electronic patient records compared to flu cases in England as reported by the European Centre for Disease Prevention
and Control. The vertical lines indicate the detection of the peaks Public Health England for the following syndromes:
influenza like illness in week 01/17, Acute Respiratory Illness in week 52/2016.

Both peaks seen for the influenza season 2015/16 and 2016/17 correspond to the data collected by the ECDC. The
comparison to the non-sentinel data shows an earlier peak of the ePCR data in the 2016/17 flu season.

This could be explained by the nature of the non-sentinel data, which includes routine patient samples, because the
screening is non-targeted.

The ePCR data is mirrored in both the sentinel and non-sentinel laboratory confirmed influenza cases. The ePCR data
has a stronger similarity to the non-sentinel surveillance systems which could be explained because all patients are
included regardless of symptoms which is also true for the non-sentinel surveillance system. It has to be noted that as
the data sources are from different populations and based on different diagnoses. This complicates the proof of causality
between the two curves. However, a conducted Granger causality test was significant suggesting that in the absence of
a more likely explanation the peak seen in the ePCR data is most likely caused by influenza cases. Some unknown
proportion of pyrexia cases will be caused by other infections but if can be expected that the majority was caused by the
circulating seasonal influenza virus.

The temporal similarity of our data and the ECDC data shows that the use of temperature as sole indicator of infection
allows to monitor unspecific infectious diseases within the community.

A spike in call volumes was seen simultaneously with the peak in pyretic patients and represented an increase of calls
by 26.5% compared to the baseline (Figure 3A). This is interesting and could have implications for the preparedness of
the ambulance service if such an increase could be predicted.

Public Health England (PHE) monitors influenza cases with different surveillance programs. The data is based on
diagnoses from hospitals as well as from GPs. It is separated into Influenza Like Illnesses (ILI) and Acute Respiratory
Infections (ARI) [31].

PHE recorded a peak of ILI consultations in week 01/2017, ARI consultations peaked in week 52/2016. This correlates
temporally with the peaks seen in the daily summed data (week 01/2017) and the weekly summed data in (week
51/2016), indicating that the seasonal influenza outbreak progresses similarly in both data sets and therefore allowing a
direct comparison.
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3.2 Daily detection

The smoothed daily pyretic case numbers peaked on the 02/01/17 (week 1/2017). The peak was reached with 133
(18.47% ) patients of 721 calls (fractions are caused by the smoothing process using the EMA).

The start of the increase in pyrexia cases defined by a final change of the CR21 to >1, was detected on the 24/09/16
(week 38/2016) with 70 pyretic patients (11.2% of 633 calls, Figure 4). This value is 6.8% below the baseline (76.2)
and within the standard deviation (23.48), which would not be detectable using a threshold method. This start of the
seasonal increase of infections was detected earlier than influenza cases by the ECDC, which identified the start in week
46/2016 [32]. However, this might be due to the fact that the sentinel surveillance runs between October and March and
thus had not started when our system detected an increase in cases [33]

To establish the performance of the method, the outbreak detected by PHE was considered the ground truth [31] which
allowed to estimate a specificity of 99.7% and sensitivity of 100% . Because of the limited data available the sensitivity
and specificity can only be considered crude estimates and should be interpreted accordingly. These can be robustly
measure in the future once more specific data is available.
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Figure 4: A. histogram and boxplot of daily pyrexia sums. B. daily pyrexia cases. Case Ratio 21 (CR21) indicated as
circles. C. CR21 values on the same timescale as B.

3.3 Weekly detection

Temperatures recorded were in range of 21-47◦ C, with a mean temperature of 36.89◦ C. As this temperature range is
unphysiological it was concluded that some data points were caused by input errors. The temperature-based exclusion
removed 8 patients (0.0023% ) with temperatures of >42◦ C, 3 of those within the 42-42.2◦ C range. The lower
temperature cut-off removed 98 patients (0.028% ) with temperatures <32◦ C.

To establish whether seasonal influenza was detectable in the dataset, weekly case numbers were compared with weekly
sentinel influenza cases recorded by the ECDC in England (see Figure 3B). Sentinel surveillance data is based on
a network of selected health care facilities which select patients with symptoms suggesting influenza for laboratory
confirmation. The non-sentinel surveillance is a passive system using patient samples for laboratory confirmation of a
variety of sources which are not necessarily from patients showing symptoms of an influenza infection [30].
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Both peaks seen for the influenza season 2015/16 and 2016/17 correspond to the data collected by the ECDC. The
comparison to the non-sentinel data shows an earlier peak of the ePCR data in the 2016/17 flu season.

This could be explained by the nature of the non-sentinel data, which includes routine patient samples, because the
screening is non-targeted.

The ePCR data is mirrored in both the sentinel and non-sentinel laboratory confirmed influenza cases. The ePCR data
has a stronger similarity to the non-sentinel surveillance systems which could be explained because all patients are
included regardless of symptoms which is also true for the non-sentinel surveillance system.

The smoothed daily pyretic case numbers peaked on the 02/01/17 (week 1/2017). The peak was reached with 133
(18.47% ) patients of 721 calls (fractions are caused by the smoothing process using the EMA).

The start of the increase in pyrexia cases defined by a final change of the CR21 to >1, was detected on the 24/09/16
(week 38/2016) with 70 pyretic patients (11.2% of 633 calls, Figure 4). This value is 6.8% below the baseline (76.2)
and within the standard deviation (23.48), which would not be detectable using a threshold method. This start of the
seasonal increase of infections was detected earlier than influenza cases by the ECDC, which identified the start in week
46/2016 [32]. However, this might be due to the fact that the sentinel surveillance runs between October and March and
thus had not started when our system detected an increase in cases [33]

To establish the performance of the method, the outbreak detected by PHE was considered the ground truth [31] which
allowed to estimate a specificity of 99.7% and sensitivity of 100% . Because of the limited data available the sensitivity
and specificity can only be considered crude estimates and should be interpreted accordingly. These can be robustly
measured in the future, once more specific data is available.

The weekly case numbers peaked in week 51/2016 with 1042 (21.64% ) pyretic patients of 4814 total calls. An increase
of the CR21 to >1 was detected in week 39/2016 with 570 (13.73% ) cases of 4151 calls (Figure 5). The pyrexia count
is 5.26% below the baseline (550) at the time of detection and within the standard deviation (134.56), hence would be
difficult to detect with a threshold-based method.
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As comparison, the ECDC recorded the first cases in week 46/2016 [32] corresponding to 693 (15.7% ) cases of 4407
patients attended by ambulances. This pyrexia count at the date of detection by the ECDC is 15.5% above the baseline
(550) but again within the standard deviation (134.56).

The weekly detection method performed with a specificity of 98.2% and sensitivity of 100% when applied to weekly
sums and based on the outbreaks as defined by PHE. Again as described above this is based on limited data and only an
estimated performance.

3.4 Improving accuracy

The weekly data was smoothed using the EMA of 21 days (or 3 sample points), before the sliding CR21 was calculated
(Figure 5). The smoothed weekly dataset peaked in week 51/2016 with 919 (21.64% ) pyretic patients of 4814 total
calls. The final CR21 change to >1 indicating the start of the outbreak was reached in week 44/2017 with 485.5 (12.5%
) pyretic patients of 3868 calls. This case number is 18.40% below the baseline (565) and within the standard deviation
(122.33). Once again, the outbreak could not be detected using a threshold method as the number is below the baseline
(565) as well as the mean (644.87). Smoothing of the weekly data slightly improved specificity to 99.1% with sensitivity
remaining at 100% .

3.5 Identification of unknown outbreak during summer 2016

A peak not matching the reference dataset was noticed starting in July 2016 and disappearing by August 2016. It was
detected using the weekly method in week 26/2016 and in week 27/2016 by the daily summed method. The CR21
recovered to <1 by week 29 and 30/2016 for the weekly and daily method respectively.

This event had small numbers of patients and a short duration not matching the ECDC influenza data. However, this
peak correlates with reports from PHE of an E. coli outbreak caused by contaminated salad (Figure 6) [34]. The peak in
the ePCR data slightly precedes the peak of E. coli bactaeremia recorded by PHE [35]. This can be explained by the
difference in sampling rate because the data provided by PHE is reported monthly whereas our data is collected daily.
Furthermore, the PHE data covers England whereas our data is limited to Devon and Cornwall, which could account for
a different timescale of the progression of the outbreak. The outbreak is detected with a delay compared to the PHE
data, presumably due to its rapid progress and small patient numbers. A reduction of the delay could be reduced by
modifying CR21 and applying a smaller d.
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Figure 6: Comparison of weekly pyrexia cases with monthly E. coli bacteremia during the unidentified peak in summer
2016.
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The detection of the event caused by E.coli shows that the CRd method allows to recognise, not only expected outbreaks,
but also events caused by unknown infections.

The outbreak was attributed to the E. coli strain O157 and according to PHE reached a final case number of 164 cases
with a specific focus in the South-West of England [34,36]. Although the data shown is not specific to strain O157
but shows E. coli in general, it suggests that there were considerable numbers of unidentified associated infections.
An explanation for this discrepancy could be that only patients with severe symptoms were tested for E. coli whereas
patients with mild symptoms might have contacted the non-emergency line 111 and were then referred to the ambulance
service.

4 Discussion

Ambulance crews within SWASFT have collected data for 15.96% of the population in Devon and Cornwall within a
year [29]. It must be noted that this includes patients with possible multiple ambulance attendances a year, which is
something that cannot be accounted for, as no patient identifying data had been extracted.

The collected data mirrored the gender characteristics of the population although with a focus on the elderly and infants.
From these data, it was possible to establish that the pyrexia counts timely matched the seasonal influenza outbreak
recorded by the ECDC. As discussed it is reasonable to assume that the majority of the pyrexia cases were due to
seasonal influenza but some proportion will have been caused by other circulating infections. This will be addressed in
the future by applying the method to more specific syndromes.

Generally epidemiological data tend to be Poisson distributed. However, our data was not Poisson distributed (P values),
this could be explained by the fact that only 1.5 seasons were available and would have to be addressed in future studies
[9] .

Furthermore, using the same data an additional peak was detected, linked to an E. coli outbreak concentrated in the
South-West of England. The presented method using a sliding CRd reliably detected disease outbreak solely based on
tympanic temperature readings. Its non-specificity allowed to detect seasonal influenza and E. coli bacteraemia using
the same data. This demonstrates the ability of this method to detect outbreaks of unknown causes.

The seasonal increase of fever cases was detected up to 9 weeks before influenza cases were recorded by conventional
methods employed by the ECDC. As the method described here does not specifically detect influenza several contributing
factors can be attributed to this finding. In the UK the sentinel detection runs between October and March thus it
could not detect earlier cases. Furthermore, during winter many different infectious agents are circulating including the
common cold, all of which cause fever.

Due to the nature of the described method to date the infectious agent cannot be narrowed down, however this will be
addressed by applying it to more specific syndromes.

The demonstrated method performed with a very similar sensitivity and specificity to the method demonstrated by
Singh et al. 2010 [10]. However, it has to be emphasised that these are estimates and are based on limited data therefore
have to be interpreted with caution. Because it does not rely on thresholds set by an investigator, it is ideally suited as
an EED system for unknown outbreak causes.

Due to its simplicity, the CRd method is easy to deploy and will effectively detect a wide range of syndromes. By
using case numbers of different symptoms, this method will also allow to automatically distinguish between different
infections. For example, patients with a combination of pyrexia and diarrhoea could be monitored separately from
patients experiencing pyrexia only.

The current shortcoming of the method is that it was only applied to pyrexia data but no other syndromes. It is to be
expected that the combination of pyrexia with diarrhoea would have allowed to immediately distinguish between the
peak potentially caused by seasonal influenza and the event caused by E. coli. Therefore, as a continuation of this study,
different symptoms will be combined to allow the monitoring of several syndromes in parallel. Although the proposed
method does not rely on a threshold to detect an increase in cases, it still requires the user to define the value of d, which
will normally require some knowledge about the transmission rate of the monitored infection.
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The necessity to choose a time frame raises similar questions as threshold-based methods, on how to decide on the best
time frame. Therefore, this flexibility makes the CRd method able to adapt to the data and transmission rates allowing
to reduce false positives in noisy data.

In practice this method could be further developed to allow the surveillance of several different syndromes but can also
be used to anticipate spikes in ambulance call rates as well as hospital admissions. It might also lead the way to predict
the length and magnitude of a detected outbreak.

5 Conclusion

It was demonstrated that electronic patient records documented by ambulance crews correlate with the sentinel data
collected by the ECDC and that it allows the implementation of an EED system. The CR-method was found to be
sensitive to several different infectious agents based on the same data.

The detection of events occurred earlier compared to the ECDC but to date does not allow to distinguish between
infectious agents. Therefore, the move to digital patient records allows to monitor the entire population for several
syndromes at high sample rates and for several syndromes at the same time, making it an ideal data source for an EED
system.
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