Abstract
Antibiotic resistance is rendering common bacterial infections untreatable. Wildlife can incorporate and disperse antibiotic resistant bacteria in the environment, such as water systems, which in turn serve as reservoirs of resistance genes for human pathogens. We used bulk RNA-sequencing (meta-transcriptomics) to assess the diversity and expression levels of functionally active resistance genes in the microbiome of birds with aquatic behavior. We sampled birds across a range of habitats, from penguins in Antarctica to ducks in a wastewater treatment plant in Australia. This revealed 81 antibiotic resistance genes in birds from all localities, including β-lactam, tetracycline and chloramphenicol resistance in Antarctica, and genes typically associated with multidrug resistance plasmids in areas with high human impact. Notably, birds feeding at a wastewater treatment plant carried the greatest resistance gene burden, suggesting that human waste, even if it undergoes treatment, contributes to the spread of antibiotic resistance genes to the wild. Differences in resistance gene burden also reflected the birds’ ecology, taxonomic group and microbial functioning. Ducks, which feed by dabbling, carried a higher abundance and diversity of resistance genes than turnstones, avocets and penguins, that usually prey on more pristine waters. In sum, this study helps to reveal the complex factors explaining the distribution of resistance genes and their exchange routes between humans and wildlife.