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Abstract 31 

Antibiotic resistance is rendering common bacterial infections untreatable. Wildlife can 32 

incorporate and disperse antibiotic resistant bacteria in the environment, such as water 33 

systems, which in turn serve as reservoirs of resistance genes for human pathogens. We 34 

used bulk RNA-sequencing (meta-transcriptomics) to assess the diversity and expression 35 

levels of functionally active resistance genes in the microbiome of birds with aquatic 36 

behavior. We sampled birds across a range of habitats, from penguins in Antarctica to ducks 37 

in a wastewater treatment plant in Australia. This revealed 81 antibiotic resistance genes in 38 

birds from all localities, including β-lactam, tetracycline and chloramphenicol resistance in 39 

Antarctica, and genes typically associated with multidrug resistance plasmids in areas with 40 

high human impact. Notably, birds feeding at a wastewater treatment plant carried the 41 

greatest resistance gene burden, suggesting that human waste, even if it undergoes 42 

treatment, contributes to the spread of antibiotic resistance genes to the wild. Differences in 43 

resistance gene burden also reflected the birds’ ecology, taxonomic group and microbial 44 

functioning. Ducks, which feed by dabbling, carried a higher abundance and diversity of 45 

resistance genes than turnstones, avocets and penguins, that usually prey on more pristine 46 

waters. In sum, this study helps to reveal the complex factors explaining the distribution of 47 

resistance genes and their exchange routes between humans and wildlife. 48 

  49 
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Introduction 50 

Tons of antibiotics are used annually in clinical and agricultural settings worldwide. Food 51 

animals alone consumed over 130,000 tons of antibiotics in 2013 (1), and antibiotic usage 52 

by humans increased 65% between 2000 and 2015, reaching 34.8 billion defined daily 53 

doses (2). The resulting proliferation and spread of bacteria that are resistant to antibiotics 54 

poses a major health and economic threat (3). Genes for the production of antibiotics and 55 

antibiotic resistance determinants are naturally found in some microbial species and their 56 

presence in the environment is not necessarily an indication of human impact (4, 5). 57 

However, the use of antibiotics in clinical and agricultural settings selects for bacteria 58 

carrying resistance genes. When these genes are encoded in mobile elements, such as 59 

plasmids and conjugative transposons, they can be readily transmitted via horizontal gene 60 

transfer between environmental bacteria and clinically important pathogens (i.e. acquired 61 

resistance genes). Multiple resistance genes can be present in a single mobile element and 62 

the spread of plasmid-borne resistance has jeopardized the efficacy of many antibiotics, 63 

including β-lactam drugs of last resort (6, 7). 64 

Both the environment and wildlife are major sources and reservoirs of resistance 65 

gene diversity (8, 9). The ecological niches and behavior of birds make them particularly 66 

likely to transport antibiotic resistant bacteria. Migrating bird species transport pathogens 67 

which may contain antibiotic resistance genes across large distances (10, 11). Birds also 68 

serve as sensitive bioindicators of environmental contamination with antibiotic resistant 69 

bacteria (10, 12-16). For instance, ESBL-producing Escherichia coli were found to occur 70 

over 3 times more frequently in gulls than in humans in the same region (15). Bacteria 71 

resistant to -lactam and tetracycline drugs are commonly found in the gut microbiome of 72 

birds, especially in scavenging and aquatic species, such as waterfowl, gulls and waders 73 

(10, 12, 14, 17-20). Aquatic bird species likely acquire these genes through contact with 74 

contaminated water. Human sewage is enriched in antibiotic-resistant bacteria, which are 75 

only partially removed during the water treatment process (21-26). Birds in contact with 76 

wastewater treatment influents or effluents could therefore be at increased risk of acquiring 77 

these genes, although empirical data to support this idea are scarce (8). 78 

 While the majority of studies on birds were based on in vitro assessments of bacterial 79 

cultures, the development of culture-independent sequencing techniques has substantially 80 

expanded our knowledge of the environmental reservoir of resistance genes (7, 9, 27-32). 81 

Among these techniques, sequencing the entire set of transcribed (i.e. expressed) genes via 82 

‘meta-transcriptomics’ has rarely been used in the context of antibiotic resistance, despite its 83 

advantages. In particular, use of meta-transcriptomics allows data to be obtained from the 84 

entire microbial population, with a focus on functionally active genes. This is important 85 

because genetic material is a metabolic burden and genes that are not essential tend to be 86 
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lost (33-36). In the absence of antibiotics, it is likely that resistance genes are regularly lost 87 

by bacteria, either by large deletions or gradual deactivation (erosion). Other high-88 

throughput techniques, such as DNA-based metagenomics, cannot distinguish recently 89 

deactivated resistance genes from their functional relatives. An alternative is to clone inserts 90 

from environmental strains into cultivable vectors (e.g. E. coli), select for resistance in vitro 91 

and then sequence their genomes (e.g. 17, 22). However, this approach can result in bias 92 

towards genes present in organisms closely related to the cloning vector (7). Meta-93 

transcriptomics does not have this limitation as the transcripts of all microorganisms are 94 

assessed using bulk RNA sequencing. To our knowledge, only two studies have used meta-95 

transcriptomics to report on the presence of resistance genes that are functionally active 96 

under natural conditions in human and environmental samples (37, 38). 97 

We used meta-transcriptomics to assess the diversity and abundance of antibiotic 98 

resistance genes actively transcribed in the microbiome of water birds of Australia and 99 

penguins in Antarctica. Birds were sampled across a range of habitats, from remote places 100 

in Antarctica and Australia, beaches in Melbourne, the second largest city in Australia, to the 101 

ponds of a waste water treatment plant (WWTP) processing half of Melbourne’s sewage. We 102 

specifically tested whether ducks from the WWTP harbor a higher diversity and abundance 103 

of acquired resistance genes, as might be expected given their exposure to partially treated 104 

human waste. Additionally, we explore possible associations between resistance gene 105 

burden and intrinsic bird traits such as feeding behavior, taxonomic order and gut functional 106 

profile (expression of metabolic pathways by the microbiome).  107 

 108 

Results 109 

Microbiome samples from 110 birds, grouped into 11 libraries (Table S1), contained 110 

transcripts corresponding to 81 unique antibiotic resistance genes, previously associated 111 

with phenotypic resistance to nine classes of antibiotics (Fig. 1, Table S2). These results 112 

only include acquired resistance genes, which are most commonly spread among bacteria 113 

via mobile genetic elements, and do not include resistance mediated by chromosomal 114 

mutations (e.g. in housekeeping genes). Resistance to tetracyclines and phenicols 115 

(chloramphenicol and florfenicol) was present in samples from all bird orders and in all 116 

locations, except for one site in Antarctica where phenicol resistance was not detected. 117 

 118 

 119 

 120 

 121 

 122 

 123 
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 124 

Figure 1. Antibiotic resistance genes expressed in the microbiome of wild birds. The graph 125 

on the right shows the diversity of resistance genes observed in each library (containing a 126 

pool of 10 individual birds each), colored by the drug class to which these genes confer 127 

resistance. Closely related gene variants were merged into one category (see Table S2) for 128 

representation on the left side of the figure. Lines link genes to the libraries where they were 129 

found, and dark lines indicate the genes observed in the Wastewater treatment plant 130 

(WWTP) in Melbourne, Australia. PB = Western Port Bay, Melbourne area, Australia; KI = 131 

King Island, Bass Strait, Australia; IN = Innamincka reserve, Australia; OB = O'Higgins Base, 132 

Antarctica; GGV = Gabriel González Videla Base, Antarctica. Libraries of birds infected with 133 

avian influenza virus are indicated with ‘AIV+’, and the library of diseased birds is indicated 134 

with ‘DIS’. MLS = Macrolides, Lincosamide and Streptogramin B resistance. Bird drawings: 135 

M. Wille. 136 

 137 

 138 

Anthropogenic impact 139 

Birds foraging at the partially treated lagoons of a wastewater treatment plant (the last stage 140 

of the wastewater treatment process, after aerating and decanting has taken place) had a 141 

significantly higher diversity and abundance of antibiotic resistant genes, as well as a 142 

significantly higher number of antibiotic classes against which these genes confer resistance 143 

(Kruskal-Wallis p<0.05, Fig. 2). For simplicity, we refer to ‘resistance gene burden’ or 144 

‘resistance load’ as the resistance gene diversity, abundance (i.e. gene expression levels) 145 

and number of antibiotic classes to which these genes confer resistance. Most notably, 146 
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ducks (order Anseriformes) foraging at the WWTP harbored 86% of the resistance gene 147 

diversity observed, most of which occurred exclusively at the WWTP (Figs. 1, 2, Table S2). 148 

 149 

 150 

 151 

Figure 2. Diversity and abundance of antibiotic resistance genes (ARG) in birds foraging in 152 

a wastewater treatment plant (WWTP) compared with birds from other sites in Australia and 153 

Antarctica. Differences between groups were assessed with a Kruskal-Wallis test and p-154 

values are given. Resistance gene abundances were estimated based on a stably 155 

expressed host gene.  156 

 157 

 158 

When only ducks were considered in comparing the effects of wastewater, we 159 

observed that those from the WWTP carried more resistance genes than ducks from the 160 

remote Innamincka reserve, located in the interior of Australia (Fig. 1, Table S3): ducks from 161 

the Innamincka reserve carried nine resistance genes, fewer than the number observed in 162 

any library from the WWTP (average 20.5, +/-15.8 SD). The abundance of these genes was 163 

also smallest in ducks from Innamincka (2.9, compared with an average of 146.1, +/- 275.2 164 

SD in ducks from the WWTP). The number of antibiotic classes to which these genes confer 165 

resistance did not differ substantially between sites (5 antibiotics in birds from Innamincka, 166 

compared with 5.7, +/- 1.7 in birds from the WWTP). 167 

To take into account potential confounding variables, we also analyzed libraries by 168 

individual collection localities (Fig S1), and without including diseased birds or birds infected 169 

with avian influenza in the analyses (Fig. S2). The results consistently indicated that birds 170 

from the WWTP have a higher resistance gene burden than birds from other localities. 171 

Importantly, an additional PCR-based assessment of the resistance genes in individual birds 172 

from two libraries (n=20 samples) confirmed the results obtained using meta-transcriptomics: 173 

we observed 68 resistance gene occurrences (amplifications) in samples from the WWTP 174 

and 12 occurrences in other sites (Kruskal-wallis p=0.0023, Supplementary Materials, Fig 175 

S3).  176 

Samples from gentoo penguins (Pygoscelia papua) collected in two localities next to 177 

research bases in Antarctica, contained five resistance genes in total, conferring resistance 178 
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against β-lactams (blaTEM), tetracyclines (two variants of tet(C)), chloramphenicol (catA1) 179 

and erythromycin (msr(A)) (Table S2). The erythromycin-resistance gene, which confers 180 

resistance to Macrolides, Lincosamide and Streptogramin B, was observed in penguins only. 181 

Penguins living near the research base with the largest human population (O'Higgins Base) 182 

contained more antibiotic resistance genes (four genes - blaTEM,, msr(A), catA1, and tet(C)), 183 

than those living next to the more remote Gabriel González Videla Base (one tet(C) gene). 184 

 185 

Host traits and functional context 186 

 Our sampling design included birds from a range of habitats and species, which will 187 

impact their microbiome and possibly their propensity to carry antibiotic resistance genes. 188 

Shelducks and Anas ducks (Anseriiformes) feed by dabbling (filtering water). Turnstones 189 

and avocets (Charadriiformes) commonly prey on invertebrates, and penguins 190 

(Sphenisciformes) prey on fish. Dabbling ducks live in a range of habitats, including nutrient-191 

rich and heavily altered environments. The majority of ducks analyzed here were sampled at 192 

the WWTP: 40 samples (4 libraries) at the WWTP and 10 samples (1 library) in a pristine 193 

site. Turnstones and penguins on the other hand inhabit pristine habitats. Host taxonomic 194 

order therefore serves as a proxy for the ecology of the birds analyzed here. Our results 195 

indicated that ducks contained the greatest diversity and abundance of resistance genes, 196 

while penguins contained the lowest resistance load (Fig. 1 and Fig. S4). 197 

 Host ecology is intrinsically linked to microbiome function. By investigating how 198 

microbiomes functionally differ among bird orders and collection sites we can gain insights 199 

into why some hosts harbor more resistance genes than others. We characterized the 200 

metabolic pathways expressed by the microbial community (that is, their functional profile, 201 

Table S4). Some of the metabolic pathways observed were produced by common human 202 

pathogens (e.g. E. coli), but a large proportion of the metabolic products (91%) could not be 203 

associated with particular bacterial genera (Table S4). Compared with the human gut, the 204 

microbiome of wild animals is far less characterized, and it is expected that several bacterial 205 

species remain undetected. Principal coordinate analyses showed that ducks (from 206 

Innamincka reserve and from the WWTP) have a distinct microbial metabolism (i.e. set of 207 

metabolic pathways) when compared with birds from other sites (Fig S5). We statistically 208 

assessed the distinctiveness of functional profiles between sites and bird orders using 209 

Random forest analysis, a machine learning approach based on classification trees that has 210 

a suitably high discriminating power for use in microbial ecology (39). This analysis revealed 211 

a clear distinction (zero out-of-bag classification error) in the functional profiles between 212 

birds from the WWTP and other sites, and between Anseriformes and the two other bird 213 

orders that comprised the data set (Charadriiformes and Sphenisciformes; Table S5). 214 
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 The bird microbiome, and consequently its functional profile, can also be affected by 215 

pathogens (40). We sampled birds with avian influenza virus infection and Newcastle 216 

disease symptoms; potential associations between these infections and antibiotic resistance 217 

are discussed in the Supplementary Materials. 218 

 219 

Discussion 220 

This study shows that clinically important and functional antibiotic resistance genes are 221 

widespread, even in birds from areas as remote as Antarctica, and that the resistance gene 222 

load is significantly higher in birds living in lagoons of a wastewater treatment facility. 223 

Although resistance genes can be found in natural environments regardless of human 224 

influence (4, 5), our results indicate that contact with human waste – even if it goes through 225 

sewage treatment – appears to have a strong impact on the acquisition of antibiotic 226 

resistance genes by avian wildlife. 227 

The resistance genes observed here encompass the three major resistance 228 

mechanisms of relevance to human infection: (i) drug inactivation, (ii) reduced influx of 229 

antibiotics into bacterial cells or increased efflux from cells and (iii) alteration in, or 230 

overexpression of, the antibiotic target (7, 41). The observed resistance genes conferred 231 

resistance against nine classes of antibiotics (Fig. 1). This number is slightly higher than the 232 

six classes of antibiotic resistance observed in humans, pigs, sponges and environmental 233 

samples in another study using meta-transcriptomics (37). Among the most common were 234 

genes conferring resistance to -lactam drugs, which is one of the oldest and most widely 235 

used antibiotic classes. Genes conferring resistance to aminoglycosides and tetracyclines 236 

were also common, in agreement with studies reporting these genes in human-impacted 237 

soils and sewage (22, 27, 29, 31). 238 

Some of the resistance genes observed are particularly concerning for public health. 239 

blaCTX-M genes, observed exclusively in birds from the WWTP, play a key role in widely 240 

disseminated and highly resistant E. coli and Klebsiella pneumoniae strains (42). A 241 

fosfomycin resistance gene (fosD) was found in birds from metropolitan Melbourne (WWTP 242 

and Western Port Bay). Fosfomycin was discovered over 40 years ago, it is uncommonly 243 

used in humans, but the low resistance levels against this drug have led to a renewed 244 

interest in its therapeutic use (43). One of the bird libraries from the WWTP contained a 245 

florfenicol resistance gene, which was first observed in Salmonella typhimurium (44). 246 

Florfenicol is restricted to livestock and veterinary use. It is possible that the presence of this 247 

gene is due to the administration of florfenicol to pets and wildlife within the WWTP 248 

catchment range. The florfenicol gene has been observed co-located with other resistance 249 

genes in integrons and plasmids (44, 45). It is therefore also possible that this gene is found 250 

in the WWTP due to co-selection with other genes. We also found resistance against 251 
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chemically synthesized antibiotic classes, such as quinolones and sulphonamides, which are 252 

not expected to be widespread in the environment (unlike naturally produced antibiotics such 253 

as penicillin, which is derived from fungi). Quinolone drugs can persist in the environment for 254 

long periods (46) and despite being a synthetic drug, the origins of quinolone resistance 255 

were traced back to aquatic bacterial species (47). Therefore it is perhaps unsurprising that 256 

these genes are found in birds with aquatic behavior (also reported in 19). It is noteworthy, 257 

however, that quinolone resistance was only observed in birds near the WWTP, suggesting 258 

that these genes most likely derive from bacteria of human origin. One of the WWTP 259 

libraries also contained the aac(6)-Ib-cr gene (100% identity with clinical isolates), which 260 

confers resistance to quinolones and aminoglycosides and is often localized in multidrug 261 

resistance plasmids. First reported in Shanghai in 2003, this gene has already been found in 262 

several parts of the world, including in a recent report of multidrug-resistant Salmonella in 263 

Australia (7, 48, 49). 264 

The distinct ecological niche and microbiome functioning of the different bird species 265 

analyzed here likely influences their acquisition of antibiotic resistant bacteria. Penguins and 266 

avocets hunt small aquatic animals, while ducks filter water and sediments to trap plant and 267 

animal material. It is possible that ducks ingest large amounts of bacteria while dabbling. In 268 

addition, birds may have historical-evolutionary associations with particular microbial 269 

species, resulting in a distinct microbiome composition and functioning across avian 270 

taxonomic groups. Indeed, a metabarcoding study showed that bird taxonomy explained 271 

most of the compositional variation in the microbiome of birds (50). Our functional analyses 272 

also suggest that the different bird orders harbor microbial communities with distinct 273 

metabolisms. The microbiome of Anseriformes (ducks) expressed genes encoding 274 

significantly different metabolic pathways compared with other birds, while there was no 275 

clear distinction among Charadriiformes and Sphenisciformes (Fig. S5, Table S5). It is 276 

therefore plausible that the high resistance gene expression in ducks from the WWTP is 277 

influenced by their distinct microbiome, which in turn reflects their ecological niche and 278 

established host-microbe associations. In this scenario, bird traits modulate (amplifying or 279 

diminishing) the human impact on the spread of resistance genes. 280 

Migratory birds are of particular concern as they might spread antibiotic resistance 281 

across large geographic distances in the same way that they disperse pathogens (9, 11, 51, 282 

52). There are significant differences in gut microbiomes of migratory and resident red-283 

necked stints (Calidris ruficolis) and curlew sandpipers (Calidris furringea), although these 284 

differences may be temporary (53, 54). Ruddy turnstones have a remarkable migration 285 

habit, travelling between breeding areas in Siberia to non-breeding sites in Australia via 286 

East-Asia, potentially acquiring and distributing resistant bacteria along the way. The 287 

turnstones analyzed here carried resistance against several antibiotic classes, but the 288 
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diversity of genes within those classes was much smaller than in birds at the WWTP (Fig. 1). 289 

Anas ducks travel hundreds of kilometers within Australia (55). It is possible that ducks from 290 

the Innamincka reserve have been in sites of high human impact previously, resulting in the 291 

higher load of resistance genes when compared with other birds from remote areas. It is 292 

also plausible that ducks acquire resistant bacteria due to their feeding behavior and the 293 

composition of their gut microbiome. 294 

Despite their isolation, we found genes conferring resistance against four antibiotic 295 

classes in penguins from Antarctica. Previous studies of antibiotic resistance in penguins 296 

have produced contradictory results. In one, various tetracycline resistant bacteria were 297 

isolated from the cloaca of penguins (56), while in another high levels of resistance against 298 

multiple antibiotics were detected in penguin droppings (57). However, other studies have 299 

reported that antibiotic resistant bacteria are rare in these animals (24, 58, 59). It is possible 300 

that penguins acquire resistance genes from migratory fish and other prey or animals with 301 

which they interact. As antibiotics are naturally produced by bacteria, it is also possible that 302 

the resistance genes observed in the penguin microbiome occur in the environment 303 

regardless of human influence. The possibility of some cross-library and/or environmental 304 

contamination cannot be completely excluded. Nevertheless, the bona fide influence of 305 

human activity is supported by the larger number of resistance genes adjacent to the more 306 

populated O’Higgins Base compared with the much smaller González Videla Base. 307 

Additionally, previous research shows higher antibiotic resistance levels near research 308 

facilities compared to more pristine sites in Antarctica (24, 57). Increasing research 309 

activities, tourism and limited sewage treatment (60) are therefore the most likely 310 

explanation for the presence of antibiotic resistance in Antarctic penguins. 311 

 The bird microbiome expressed resistance against nine classes of antibiotics, even 312 

though we putatively enriched libraries with resistant bacterial strains using only two classes 313 

of antibiotics in the collection media (aminoglycoside and -lactams, see Materials and 314 

Methods). Acquired (horizontally transferred) resistance genes can be constitutively 315 

expressed, in which case the presence of their transcripts is expected even without antibiotic 316 

exposure. It is also possible that these resistance genes were acting against antibiotics 317 

present in the environment and/or that these genes are co-transmitted with others that have 318 

functions in addition to antibiotic resistance (e.g. metal resistance, 61). Variables related to 319 

the ecology and geographic distribution of the different bird species could also play a role, 320 

although the results based on individual collection sites and bird taxonomic group show that 321 

these variables are unlikely to change the conclusion that birds from the WWTP carry the 322 

highest diversity and abundance of resistance genes. Meta-transcriptomic studies 323 

necessarily rely on reference databases, which limits the discovery of novel resistance 324 

genes (30), and the database used here (ResFinder, 62) does not include resistance that 325 
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arises through de novo mutation in the bacterial genome (which would increase the 326 

detection of false positives). Therefore, although we were limited to assessing acquired 327 

resistance genes, these genes residing on mobile elements pose greater public health risk 328 

as they can be transferred easily between bacteria (63). Potentially unequal RNA yields 329 

across libraries represent an additional caveat. We observed no correlation between library 330 

size or microbial mRNA reads and the diversity or abundance of resistance genes, indicating 331 

that the higher number of resistance genes observed in the WWTP does not result from 332 

unequal sequencing effort, or from failing to extract and sequence microbes from other sites 333 

(Fig. S6). Considering our rather conservative analyses (see Materials and Methods), it is 334 

possible that we underestimate the presence of some resistance genes that were not 335 

expressed or were expressed at low abundance. 336 

In sum, we show that ducks feeding on wastewater are particularly prone to harbor 337 

bacteria with transcriptionally active antibiotic resistance genes. Ecological and functional 338 

traits are likely intertwined in explaining the higher propensity of ducks to carry antibiotic 339 

resistance genes. This study also contributes to the increasing literature reporting 340 

widespread antibiotic resistance in birds, even in isolated areas like the Australian outback 341 

and Antarctica. For antibiotic resistant bacteria, aquatic systems are major traffic routes 342 

between wildlife and humans (8, 64). The resistance genes acquired by birds can be re-343 

introduced in the environment, possibly in other water systems (e.g. by migrating ducks) and 344 

might re-infect humans directly via contact with contaminated water, or indirectly by the 345 

introduction of these genes into the food chain (64). Investigating the mechanisms that 346 

sustain the persistence and cycling of resistance genes in wild populations despite the 347 

metabolic burden that these gene impose is a logical next step towards tackling antibiotic 348 

resistance. 349 

 350 

Materials and Methods 351 

 352 

Sampling 353 

Samples were collected as part of long-term avian influenza virus surveillance studies (65-354 

70). Ethics approvals, bird capture methods and sample handling are reported in the 355 

Supplementary Materials. In short, cloacal and oropharyngeal swabs were collected using a 356 

sterile-tipped applicator and placed in viral transport media (VTM, Brain-heart infusion broth 357 

containing 2x106IU/l penicillin, 0.2mg/ml streptomycin, 0.5mg/ml gentamicin, 500U/ml 358 

amphotericin B, Sigma). VTM is a standard buffer used in avian influenza surveys and has 359 

the advantage of killing a portion of non-resistant bacterial strains. This step enriches meta-360 

transcriptomes libraries with antibiotic resistant bacteria and, consequently, increases the 361 

sensitivity of the antibiotic resistance survey. As all samples were stored in VTM, there is no 362 
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reason to believe that this step would affect the abundance comparisons among libraries, 363 

and thus, it is unlikely to bias the results. All birds in this study were apparently healthy, with 364 

the exception of one library constructed from dead and dying shelducks with symptoms of 365 

Newcastle Disease. Samples were assayed for avian influenza virus as previously described 366 

(66). Samples were collected at sites with different levels of anthropogenic impact 367 

(Supplementary Materials). Birds sampled at the WWTP were found in lagoons composed of 368 

partially treated water (the final stage of wastewater treatment). 369 

 370 

RNA-sequencing and data processing 371 

RNA isolation procedures are detailed in the Supplementary Materials. Libraries were 372 

composed of 10 conspecific bird samples pooled at equal concentrations. Paired-end 373 

sequencing (100bp) was performed on a HiSeq2500 platform and the number of reads 374 

obtained are reported in Table S1. Low quality reads, adapters, host reads and ribosomal 375 

RNA were filtered out from the data set (Supplementary Materials). 376 

 377 

Resistance genes characterization 378 

The ResFinder reference database (62) was used in conjunction with the KMA program (71) 379 

(downloaded in December 2017) to identify resistance genes in the meta-transcriptomic data 380 

set. The ResFinder database currently contains 2255 resistance genes compiled from 381 

published manuscripts and existing databases. KMA was preferred over other alignment 382 

tools because it performs well in aligning short reads against highly redundant databases 383 

and is able to resolve non-unique read matches by assessing and statistically testing global 384 

alignment scores. To minimize the risk of false-positives and increase the minimum mapping 385 

length allowed, only genes with a mapping coverage greater than 20% were considered in 386 

the analyses, all of with had an alignment p-value << 0.05. The average length of the 387 

resistance genes observed was 944bp – a gene with this length was only considered in the 388 

downstream analyses if query reads overlapped by at least 189 bp (20% coverage). This 389 

approach is highly conservative because it uses an aligner that yields a minimal number of 390 

false positives (71), does not include housekeeping genes (which would increase the 391 

occurrence of false positives), and defines resistance genes based on gene fragments (at 392 

least 20% of the genes) rather than individual reads. The gene fragments analyzed here are 393 

longer than the ones obtained via qPCR (generally 100bp amplicons), which are widely used 394 

in AMR assessments of environmental samples and in diagnostic laboratories. One gene 395 

(blaTEM-116) was observed in all libraries but was removed from the analyses due to its 396 

potential contaminant nature (72). It is possible that the data set contains other laboratory 397 

contaminants, but the fact that one of the libraries contained only one resistance gene, and 398 

that no other gene (except for blaTEM-116) was found in all libraries, suggests that 399 
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contamination is unlikely. Genes conferring resistance to Macrolide, Lincosamide and 400 

Streptogramin B were considered as one antibiotic class (MLS). Absolute read abundances 401 

were estimated based on a stably expressed host gene and normalized for gene length 402 

(Supplementary Materials). The number of antibiotic classes to which resistance was found, 403 

the diversity (i.e. number of genes) and the abundance of resistance genes in each library 404 

were classified into two bins (‘WWTP’ and ’Other’, Fig. 2). Differences between WWTP and 405 

other sites were tested with a Kruskal-Wallis test using the native stats R package (R Core 406 

Team 73). The higher diversity of resistance genes in libraries from the WWTP was 407 

validated with a PCR-based approach targeting resistance genes in individual birds from two 408 

libraries (n=20, Supplementary Materials). 409 

 410 

Functional profiling 411 

The microorganism-based functional profile was inferred with HUMAnN2 (74) 412 

(http://huttenhower.sph.harvard.edu/humann2), using the UniRef90 protein database as 413 

reference (75). Community-level differences in expression of pathways between sites and 414 

bird orders was visually assessed with Principal Coordinate Analysis based on an Euclidean 415 

distance matrix with the ape R package (76) and further investigated with Random Forest 416 

analysis, using 1000 trees, with the randomForest R package (77). 417 

 418 
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