How does genome size affect the evolution of pollen tube growth rate, a haploid

Effects of genome size on pollen performance performance trait?

37996, U.S.A.
${ }^{1}$ Author for correspondence:
John B. Reese

Tel: 8659749371
Email: jreese11@vols.utk.edu

Abstract

Premise of the Study - Male gametophytes of most seed plants deliver sperm to eggs via a pollen tube. Pollen tube growth rates (PTGRs) of angiosperms are exceptionally rapid, a pattern attributed to more effective haploid selection under stronger pollen competition. Paradoxically, whole genome duplication (WGD) has been common in angiosperms but rare in gymnosperms. Pollen tube polyploidy should initially accelerate $P T G R$ because increased heterozygosity and gene dosage should increase metabolic rates, however polyploidy should also independently increase tube cell size, causing more work which should decelerate growth. We asked how genome size changes have affected the evolution of seed plant PTGRs.

Methods - We assembled a phylogenetic tree of 451 species with known PTGRs. We then used comparative phylogenetic methods to detect effects of neo-polyploidy (within-genus origins), DNA content, and WGD history on $P T G R$, and correlated evolution of $P T G R$ and DNA content. Key Results - Gymnosperms had significantly higher DNA content and slower PTGR optima than angiosperms, and their $P T G R$ and DNA content were negatively correlated. For angiosperms, 89% of model weight favored Ornstein-Uhlenbeck models with a faster PTGR optimum for neo-polyploids, but PTGR and DNA content were not correlated. In comparisons of within-genus and intraspecific-cytotype pairs, $P T G R s$ of neo-polyploids \leq paleo-polyploids.

Conclusions - Genome size increases should negatively affect $P T G R$ when genetic consequences of WGDs are minimized, as found in intra-specific autopolyploids (low heterosis) and gymnosperms (few WGDs). But in angiosperms, the higher $P T G R$ optimum of neopolyploids and non-negative $P T G R$-DNA content correlation suggest that recurrent WGDs have caused substantial PTGR evolution in a non-haploid state.

Keywords: DNA content, evolution of development, gametophyte, macroevolution, pollen competition, pollen tube growth rate, polyploidy, whole genome duplication.

INTRODUCTION

In seed plants, the male gametophyte is a highly-reduced, haploid organism that develops within the pollen grain and completes its life cycle after pollination by growing a pollen tube that invades female reproductive tissues. The pollen tube functions to attach the male gametophyte and to absorb nutrients from female tissues, and in most seed plants (conifers, Gnetales, and angiosperms), it has the novel function of transporting the sperm cells to the egg-bearing female gametophyte (siphonogamy) (Friedman, 1993). Pollen tube growth rate $(P T G R)$ is a central aspect of male gametophyte performance that can evolve due to changes in the time between pollination and fertilization, and due to changes in the intensity of pollen tube competition. Strikingly, angiosperms are known to have much shorter reproductive cycles (Williams and Reese, 2019), much higher potential for pollen competition (Mulcahy, 1979), and orders of magnitude faster PTGRs (Williams, 2012) relative to gymnosperms. The pattern of exceptionally fast angiosperm PTGRs is thought to have evolved rapidly via haploid selection on pollenexpressed genes (Mulcahy, 1979; Arunkumar et al., 2013; Otto et al., 2015), which constitute a large portion of the genome (Tanksley et al., 1981; Rutley and Twell, 2015; Hafidh et al., 2016).

If the dramatic and rapid acceleration of $P T G R \mathrm{~s}$ in angiosperms has been driven by haploid selection on pollen performance genes, then one might expect polyploidy to be rare in angiosperms. Evolution above the haploid level is expected to reduce the efficiency of selection on pollen (Otto et al., 2015). Yet, the opposite is true - ancient whole genome duplications (WGDs), recent polyploids, and speciation by polyploidy have been especially common in angiosperms, whereas in gymnosperms genome size has evolved largely by other processes (Wood et al., 2009; Mayrose et al., 2011; Leitch \& Leitch, 2012, 2013; Landis et al., 2018). In fact, large changes genome size can have a number of immediate effects on PTGR. First, PTGR
might be faster in a neo-diploid pollen tube since increases in gene number cause: 1) heterosis, due to sheltering of deleterious pollen-expressed alleles and/or new allelic interactions upon loss of haploidy (Lande and Schemske, 1985; Husband and Schemske, 1997; Comai, 2005; Birchler et al. 2010; Husband, 2016), and 2) gene dosage effects, due to increased capacity for protein synthesis and hence the possibility for higher metabolic rates (Stebbins, 1974; Comai, 2005; Conant and Wolfe, 2008). On the other hand, substantial increases in DNA content (whether by WGD or other processes) are known to increase nuclear size, cell size, and the duration of the cell cycle, independent of the effects of genes (Bennett, 1971, 1972; Cavalier-Smith, 1978; Price 1988; Cavalier-Smith, 2005). The phenotypic effects of increased bulk DNA, hereafter referred to as "nucleotypic" effects (Bennett, 1971; Snodgrass et al, 2016; Doyle \& Coate, 2019), cause more work for the growing pollen tube cell and should therefore negatively affect $P T G R$, counteracting the positive "genotypic" effects of heterozygosity and gene dosage.

As shown in Figure 1, if genome size expansion occurs without increasing the number of genes, then nucleotypic effects will predominate and slower PTGRs should evolve. But if genome size increase occurs by WGD, then altered gene expression patterns (due to dosage and heterozygosity effects) should counteract nucleotypic effects in the stabilized neo-polyploid (Fig. 1). In the latter case, the balance of nucleotypic and genotypic effects varies depending on the magnitude of potential heterosis, which depends directly on the amount of standing genetic variation (Birchler et al. 2010). In general, at inception tetraploid sporophytes are expected to have higher heterozygosity than their diploid progenitors, irrespective of mode of polyploidization (auto- to allo-polyploidy) or mating system (Lande and Schemske 1985; Soltis and Soltis 2000). Thus, at inception, autopolyploids that arise from outcrossing progenitors and
allopolyploids will have a higher potential for heterosis, relative to autopolyploids that arose from selfing ancestors (Fig. 1).

After the initial effects of WGD, genotypic effects continue to evolve under both stabilizing and directional selection on $P T G R$, mediated by shifts in mating system and phenomena such as genome downsizing, biased gene retentions, recombination, and ultimately the return to disomic inheritance (Conant and Wolfe, 2008; De Smet et al. 2013; Conant et al., 2014; Freeling et al., 2015; Dodsworth et al., 2016; Panchy et al. 2016; Wendel et al., 2018). Nucleotypic effects by definition can only evolve by changes in genome size, which after WGD tend to be biased to small losses relative to the size of the WGD (Dodsworth et al. 2016). Hence, with time, genotypic effects are predicted to overwhelm nucleotypic effects, irrespective of initial effects and the direction of $P T G R$ evolution.

In this study, we used model-based comparative phylogenetic analyses to determine if polyploidy, DNA C-value, and WGD history have affected the evolution of PTGRs in seed plants, and whether genome size effects have occurred predominantly during polyploid periods of history or during subsequent periods of more or less diploid evolution. Because all seed plants have at least one WGD in their history, we defined neo-polyploids as having a higher chromosome multiple than the base chromosome number of their genus, and paleo-polyploids (hereafter, "diploids") as having similar chromosome number as the genus base number (as in Wood et al. 2009; Mayrose et al. 2011). This allowed us to determine if, 1) neo-polyploids have faster PTGRs than diploids, as predicted if WGDs generally produce strong initial genotypic effects that persist in the polyploid condition, or 2) neo-polyploids have slower PTGRs than diploids, as predicted if nucleotypic effects initially outweigh genotypic effects and if fast PTGRs generally evolve after diploidization (eg. in paleopolyploids). We also predict an
underlying negative correlation between $P T G R$ and genome size due to nucleotypic effects, which should be most apparent in intraspecific neo-polyploids and in lineages with little history of WGD.

MATERIALS AND METHODS

Tree Construction and Dating - GenBank accessions for 16 gene regions (rbcL, matK, trnL-F, 18s_rDNA, atpB, ndhF, adh, trnL, rpl32, trnT-L, psbA-trnH, rpl32-trnL, ITS, 5.8s_rRNA, rps16, and $26 s _r D N A$) for 451 seed plant species with pollen tube growth rate data were retrieved, cleaned, and assembled into a multiple gene alignment (length - 9263 base pairs, 16 partitions, 69.6\% missing data) using PHLAWD and phyutility (Smith and Donoghue, 2008; Smith and Dunn, 2008). Tree inference was performed using maximum likelihood in RAxML version 8 (Stamatakis, 2014) on CIPRES. A pruned version of the seed plant tree from Magallón et al. (2015) was used as a guide tree to enforce topology of major clades. The resulting maximum likelihood estimate of the tree was rooted and ultrametricized using the ape (Paradis et al., 2004) and geiger packages in R (Harmon et al., 2008). Time-calibration was performed with the Congruification method (Eastman et al., 2013), using the Magallón et al. (2015) phylogeny as the reference tree.

Data collection and character scoring - Data on PTGRs were taken from Williams (2012) and more recent literature (cited in Appendix S1; see the Supplementary Data with this article). The $P T G R$ value used for each species represents an estimate of maximum sustained growth rate, which is consistent with other comparative analyses of physiological traits, and with the fact that researchers almost always measure PTGRs from the longest pollen tube(s). Thus, $P T G R$ values for each species represent an average of maximum in vivo growth rates, or if there
was more than one report for a species the average of those values (as in Williams, 2012). PTGRs were taken exclusively from within-ploidy level crosses (i.e., never from inter-ploid crosses), in keeping with our overall goal of finding mechanisms underlying the pattern of $P T G R$ evolution within stabilized polyploids.

DNA content was analyzed using 1C-value: the amount of nuclear DNA in the unreplicated gametic nucleus, irrespective of ploidy level (Swift, 1950; Bennett and Leitch, 2012). As we were primarily interested in the nucleotypic effects of bulk DNA amount, we use the terms C-value, DNA content, and genome size interchangeably throughout. C-value data was collected from the Kew Royal Botanic Gardens Plant C-value Database (Bennett and Leitch, 2012). Chromosome counts were obtained from the Index to Plant Chromosome Numbers (IPCN). To examine the effect of recent polyploidy (defined as occurring at or within the genus level; Wood et al., 2009; Mayrose et al., 2011) on PTGR, we scored taxa as "neo-polyploid" if their chromosome counts were ≥ 1.5 times that of their generic 1 x base count (from Wood et al., 2009) and "diploid" (paleo-polyploid) if <1.5 times that value ($N=206$ angiosperms, 23 gymnosperms). To examine the effect of ancient (deeper than genus-level) duplication events on PTGR, the number of WGDs in each genus-to-root lineage was counted for each angiosperm (found in Appendix S1 of Landis et al. 2018) and gymnosperm (Li et al. 2015).

Phylogenetic Comparative Analyses - To visualize changes in DNA content and PTGR along tree branches and to generate estimates of node states, ancestral state reconstructions were performed and plotted using the contMap function in phytools (Felsenstein, 1985; Revell, 2012)(Appendix S2). Given many known biological differences between gymnosperms and angiosperms in pollen tube growth (Friedman, 1993; Williams, 2008) and in mechanisms of genome size change (see Discussion) (Ohri and Khoshoo, 1986; Leitch et al., 1998), all
comparative analyses were performed on gymnosperms only, angiosperms only, and the full dataset (all spermatophytes). C-value and $P T G R$ were $\log _{10}$-transformed for all analyses.

Model-based analyses were used to examine patterns of PTGR and C-value evolution separately. The OUwie function was implemented in R (Beaulieu and O'Meara, 2014), and the following models were tested: single- and multi-rate Brownian motion (BM1, BMS, respectively), single-regime Ornstein-Uhlenbeck (OU1), and multi-regime OU models with either one global $\boldsymbol{\alpha}$ and $\boldsymbol{\sigma}^{2}$ estimate (OUM), one $\boldsymbol{\alpha}$ and multiple $\boldsymbol{\sigma}^{2}$ (OUMV), or multiple $\boldsymbol{\alpha}$ and one σ^{2} (OUMA). In all models, σ^{2} represents the rate of random evolution and $\boldsymbol{\alpha}$, the strength of attraction to an optimum, θ. The single- and multiple-regime models were compared to test whether or not, 1) angiosperms and gymnosperms evolve around different $P T G R$ or C-value optima, and 2) diploids and neo-polyploids (within all three groups) evolve around different $P T G R$ or C-value optima. For all analyses, AICc values were used to calculate model weights and the weighted average of parameter values was then calculated using all models that contributed $>1 \%$ of the model weight (Burnham \& Anderson, 2002). Unless otherwise noted, all measures of uncertainty around parameter estimates are standard errors.

Since each $P T G R$ value represents a species mean obtained from multiple measurements, we attempted to incorporate error into phylogenetic comparative analyses. Since species means were $\log _{10}$-transformed for analysis, $\log _{10}$-transformed $S E$ s are also required. As there is no reliable way to calculate the $\log _{10}$-transformed $S E$ from the literature without the original data for each species, we took the following approach. First, we assumed all species had similar SEs in $P T G R$, and we applied an empirically-determined $S E$ from an exemplar species to all. Magnolia grandiflora has an average PTGR of $828 \pm 141 \mu \mathrm{~m} \mathrm{~h}^{-1}$ ($N=25$ outcrosses), close to the angiosperm median of $587 \mu \mathrm{~m} \mathrm{~h}^{-1}$ (Williams, 2012 and this study) (Appendix S3). The standard
 transformed data to acquire a coefficient of variation $(C V)$ of 0.0237 . We then multiplied the $\log _{10}$-transformed mean $P T G R$ of each species by 0.0237 to provide an estimate of the $\log _{10}$ taxon-specific standard deviation. The standard deviation (SD) was used as a conservative estimate of error because sample sizes were generally not available for calculating $S E$. Secondly, we performed a sensitivity analysis by evaluating each evolutionary model in OUwie with SDs calculated from hypothetical global $C V$ s of $0.00,0.05,0.10,0.25$, and 0.50 (Appendix S4).

The association between recent polyploidy and $P T G R$ was also assessed among 10 diploid-polyploid near-relative pairs (appearing as sister taxa on the tree at the within-genus level). Only polyploid taxa with a single diploid sister on the tree were used. The PTGRs of 11 intraspecific diploid-autopolyploid pairs from the literature were also compared. A two-tailed binomial (sign) test was used to test significance in both.

The cumulative effect of ancient polyploid events was explored with phylogenetic generalized least squares ($P G L S$) regression using the phylolm package in R (Ho \& Ane, 2014). The number of ancient duplication events in the history of each tip taxon (inferred from Landis et al., 2018) was used as the predictor variable with $P T G R$ as the response variable.

The relationship between pollen tube growth rate and gametophytic DNA content was also assessed with PGLS regression. Gametophytic DNA content was used as the predictor variable and PTGR the response variable. BM (Grafen, 1989) and OU (Martins and Hansen, 1997) models were both used, in addition to Pagel's lambda, kappa, and delta models (Pagel, 1997, 1999). To examine the effect of ploidy and the interaction between ploidy and C-value on PTGR, a phylogenetic ANCOVA was implemented with C-value as the covariate in phylolm.

Shifts among convergent $P T G R$ and C-value optima were determined with a maximum likelihood approach to detect multiple optima within seed plants, using SURFACE in R (Ingram and Mahler, 2013). Using an OU model with a global α and σ^{2}, a single-optimum model was subdivided into multiple-optima models in a stepwise fashion until adding another optimum decreased the model likelihood by $\Delta \mathrm{AIC}>-2$. Separate optima were then collapsed (i.e. two regimes were assigned the same optimum) in a pairwise fashion until further collapses decreased model likelihood. Shifts in PTGR and C-value optima that occurred at the same node, or within two nodes of each other, were identified manually. Nodes with $P T G R$ or C-value regime shifts were also manually compared to the Landis et al. (2018) WGD map to see if a WGD had occurred at that node or up to two nodes prior to the regime shift.

RESULTS
 PTGR evolution and C-value evolution in angiosperms versus gymnosperms - The PTGR tree

 comprised 451 seed plants, with 28 species from 7 of 8 gymnosperm orders (Christenhusz et al. 2011) including Cycads, Ginkgo, conifers and Gnetales; and 423 species from 38 of $64(59 \%)$ of angiosperm orders (APG IV 2016), including representatives from all three ANA grade lineages, Chloranthaceae, eumagnoliids, and a broad distribution of both monocots and eudicots (full tree in Appendix S2). Gymnosperm PTGRs ranged from <1 to $19 \mu \mathrm{~m} \mathrm{~h}^{-1}$ (mean $\pm S D=3.29 \pm 4.34$, median $=1.49 \mu \mathrm{~m} \mathrm{~h}^{-1}$), whereas angiosperm PTGRs ranged from <5 to $>30,000 \mu \mathrm{~m} \mathrm{~h}^{-1}($ mean \pm $S D=1744 \pm 3576 \mu \mathrm{~m} \mathrm{~h}^{-1}$, median $=587 \mu \mathrm{~m} \mathrm{~h}^{-1}$). The maximum likelihood (ML) reconstruction indicated that ancestral $\log _{10}$ PTGR of extant angiosperms was $2.44 \mu \mathrm{~m} \mathrm{~h}^{-1}$ ($95 \% \mathrm{CI}: 1.09-3.69$) versus $0.215 \mu \mathrm{~m} \mathrm{~h}^{-1}$ ($95 \% \mathrm{CI}$: -1.48-1.92) for extant gymnosperms (Appendix S2).Model-based analyses of seed plant PTGRs and C-values favored OU models with separate optima for angiosperms and gymnosperms, accounting for $>99.9 \%$ of the model weight in both analyses (Appendix S5, S6). $\log _{10}$ PTGR optima were more than an order of magnitude faster in angiosperms ($2.69 \pm 0.048 \mu \mathrm{~m} \mathrm{~h}^{-1}$) than in gymnosperms $(0.187 \pm 0.123 \mu \mathrm{~m}$ h^{-1}.

The C-value tree included 183 species from the $P T G R$ tree for which DNA content data could be obtained. The resulting $\log _{10} \mathrm{C}$-value optimum for angiosperms $(0.184 \pm 0.051 \mathrm{pg})$ was more than a magnitude of order smaller than that of gymnosperms $(1.231 \pm 0.041 \mathrm{pg})$. Ancestral $\log _{10}$ DNA content was also smaller for angiosperms than for gymnosperms, $0.29 \mathrm{pg}(95 \% \mathrm{CI}$ -$0.45-1.04)$ versus 1.10 pg ($95 \% \mathrm{CI}$: $-0.28-2.47$), consistent with larger comparative analyses of DNA content (see Leitch and Leitch, 2013).

Joint evolution of PTGR and ploidy - In model-based analyses of angiosperms using the empirical error rate, 89% of the model weight favored a separate and higher optimum for neopolyploids $(N=68)$ than for diploids $(N=138)$ (model averaged $\log _{10} P T G R=3.2 \pm 0.23$ vs. 2.8 $\pm 0.08 \mu \mathrm{~m} \mathrm{~h}^{-1}$; Table 2). In the sensitivity analysis, OU models with separate and faster PTGR optima for neo-polyploids than diploids received $>50 \%$ of model weight when the error calculated from $C V$ s ranged from 0 to 25%, but above 25% single-regime and BM models had the majority of the weight (Appendix S4). These are conservative results, since SDs, not SEs, were used to model error on the tree. The gymnosperm-only analysis was not performed due to low sample size (2 of 23 species were polyploid).

A survey of intraspecific cytotypes found autopolyploids had slower $P T G R$ than diploids in 9 of 11 pairs and no difference in the remaining two (Binomial test, $P=0.002$; Appendix S7b). In the nearest-relative comparisons, within-genus polyploids had slower $P T G R$ than
diploids in four pairs, faster $P T G R$ in five, and no difference in one (Two-tailed binomial test, P $=0.623)$ (Appendix S7a).

The historical effect of number of ancient genome duplications on PTGR was nonsignificant, whether or not recent (within-genus) WGDs were included (kappa model weight > $99.9 \%, N=451 ; P>0.3$ in both analyses).

Joint evolution of PTGR, DNA content and ploidy - For seed plants, ordinary least squares (OLS) regression showed a significant negative correlation between DNA content and $\operatorname{PTGR}(N=183, P<0.0001)$, but that result was clearly driven by the large DNA contents and slow PTGRs of gymnosperms relative to angiosperms (Fig. 2), because the PGLS regression was non-significant (Table 1). Taking these two clades separately, DNA content was negatively correlated with $P T G R$ in gymnosperms in the $P G L S$ regression ($N=23$; model-averaged slope: $1.09 \pm 0.49 \log _{10} P T G R ;$ Table 1). In angiosperms, a positive correlation using $O L S(N=161$; $P=0.0005$), was non-significant using $P G L S$ (Table 1). The patterns of $P T G R$ and C -value evolution in seed plants can be visualized in Figure 3. In a smaller phylogenetic ANCOVA analysis, after controlling for C -value, the effect of ploidy on $P T G R$ was non-significant in angiosperms $(N=100)$ and seed plants $(N=118)$ (non-significant ploidy x C-value interaction removed; Appendix S8).

Coincident regime shifts in PTGR and DNA content - Maximum likelihood analysis of convergent evolution of PTGRs detected 13 distinct optima ($N=451$ taxon tree), with 51 shifts (22 to faster and 29 to slower optima). For C-value, there were 9 distinct optima ($N=184$ taxon tree), with 4 shifts to larger and 7 shifts to smaller optima. Regime shifts in both traits were coincident at only two nodes: a $P T G R$ acceleration (from $\theta=0.147$ to $\theta=2.47 \log _{10} \mu \mathrm{~m} \mathrm{~h}^{-1}$) and genome downsizing $\left(\theta=2.71\right.$ to $\left.\theta=0.702 \log _{10} \mathrm{pg}\right)$ in the CA of extant angiosperms; and a

PTGR slowdown $\left(\theta=2.78\right.$ to $\left.\theta=2.47 \log _{10} \mu \mathrm{~m} \mathrm{~h}^{-1}\right)$ and genome size decrease $(\theta=0.209$ to $\theta=$ $-0.386 \log _{10} \mathrm{pg}$) in the CA of rosids and Saxifragales (i.e. superrosids; Fig. 4). When the search was relaxed to include adjacent nodes, an additional coincidence occurred, with shift to higher PTGR followed by a shift to higher C-value near the base of monocots. Ancient WGDs coincided with the shifts in PTGR and C-value at the CA of angiosperms (above) and with a decrease in C -value in the CA of eudicots.

DISCUSSION

The impact of genome size on $P T G R$ is determined by the magnitudes of conflicting nucleotypic and genotypic effects. Such effects depend on the mechanism of genome size change.

Nucleotypic effects decelerate $P T G R$ and are always present irrespective of mode of genome size change, whereas large-scale genetic effects are only possible after WGD. We predicted that angiosperms and gymnosperms should have different patterns of PTGR evolution based on their contrasting patterns of genome size change. Gymnosperm PTGRs should be most susceptible to nucleotypic effects because they have evolved large genomes sizes and WGDs have been rare. In contrast, angiosperms have evolved smaller genome sizes despite recurrent WGDs and widespread present-day polyploidy. Thus, gene duplication and sorting have played a much greater role in the evolution of angiosperm PTGRs, allowing genotypic effects to counterbalance or overwhelm nucleotypic effects. Below we discuss our findings in light of these expected patterns.

The evolution of PTGR in angiosperms versus gymnosperms - We found that seed plant PTGRs best fit an OU model, indicating less PTGR variation among lineages than expected
under a Brownian motion evolutionary model, with a faster optimum for angiosperms than for gymnosperms. Phylogenetic half-lives were similar (5.6 and 5.7 MY, respectively) and very short (only 3.9% and 2.3% of their respective crown ages), indicating a strong attraction to their optimum values. Such a pattern is consistent with stabilizing selection on PTGR imposed by slower evolution of linked sporophytic traits, such as the timing of stigma receptivity relative to egg receptivity, pollen tube pathway length, or maternal provisioning. Gymnosperm PTGRs may have been constrained by a hard boundary such as by biophysical or physiological limitations, or a soft boundary, such as by lack of selection for fast rates. Angiosperms have clearly not been bound by those same limitations, given their much higher PTGR optimum, the convergent evolution of extremely fast $P T G R s$ in many unrelated derived lineages of monocots and eudicots, and occasionally large within-genus differences in PTGR.

Our results suggest that most of the accelerations of angiosperm PTGR, and their higher $P T G R$ variance relative to gymnosperms, have largely evolved after the origin of angiosperms and their novel pollen tube cell biology. First, estimates of angiosperm ancestral $P T G R$ and ancestral optimum under OU (275 and $295 \mu \mathrm{~m} \mathrm{~h}^{-1}$, respectively) are slower than the angiospermwide OU optimum of $490 \mu \mathrm{~m} \mathrm{~h}^{-1}$ and the angiosperm median of $587 \mu \mathrm{~m} \mathrm{~h}^{-1}$. Secondly, the higher among-lineage variance is due to many transitions to both faster and slower $P T G R$ optima within extant angiosperms. Transitions to slower rates within angiosperms are concentrated on lineages that have evolved delayed fertilization, such Fagales, orchids and others, or high selfing rates, which suggests relaxation of directional selection on $P T G R$ (Williams and Reese, 2019). In contrast, gymnosperm PTGRs were likely ancestrally slow (Figure 4).

There are several non-mutually exclusive hypotheses for what triggered the evolution of fast PTGRs in angiosperms. First, Mulcahy (1979) invoked a shift to much higher intensity of
pollen competition in angiosperms as a driver of the origin and continued evolution of faster growth rates. Notably, no other type of tip-growing cell in land plants (whether gametophytic or sporophytic) has evolved comparably fast tip-growth rates and none of those cell types, including gymnosperm pollen tubes, experience intense competition for resources (Williams et al., 2016). Secondly, gymnosperm PTGRs may be slow because they lack novel biophysical or physiological attributes of pollen tubes and/or those attributes enabled faster PTGRs to evolve in angiosperms (Hoekstra, 1983; Derksen et al., 1999; Fernando et al., 2005; Williams, 2008, 2009). Thirdly, with or without pollen competition, rapid PTGRs may have been necessary as angiosperm sporophytes transitioned to a much faster reproductive cycle (Stebbins, 1974; Williams, 2012; Williams and Reese, 2019). Finally, our results suggest a new possibility, that strong differences in genome-level processes have impacted the evolution of angiosperm PTGRs relative to their living and extinct seed plant relatives.

Mechanisms of genome size change and PTGR evolution within seed plants - A major finding

 of this study is that angiosperm neo-polyploids evolved around a much faster PTGR optimum ($1648 \mu \mathrm{~m} \mathrm{~h}^{-1}$) than diploids ($595 \mu \mathrm{~m} \mathrm{~h}^{-1}$), despite several sources of variation in the data. First, neo-polyploids were by definition derived within genera, and their smaller sample size and shorter branch lengths reduced the power to estimate parameters relative to diploids, as reflected by the larger standard error around the neo-polyploid optimum. Nevertheless, the proportion of neo-polyploids in our data set (33% of angiosperms) is almost exactly that found in the full Wood et al. (2009) data set and similar to that in other studies (Mayrose et al., 2011; Barker et al., 2016; Landis et al., 2018).There was also biological variability in our dataset. In our taxon sampling, we were agnostic to variation in mating systems and modes of polyploid origins, since our interest was in how $P T G R$ has evolved in natural stabilized polyploids. In retrospect, our sample does seem representative. Of 14 angiosperm polyploids whose mode of origin has been studied, seven were autopolyploid and seven allopolyploid, similar to the nearly-equal proportions found by Barker et al. (2016). Furthermore, among 16 polyploids for which mating system has been studied, eight were fully outcrossing, seven were self-compatible (two autogamous, two mixed mating, and three unknown), and one was apomictic - a not unusual distribution (Goodwillie et al., 2005; Gibbs, 2014; Ashman et al., 2014). Thus, our taxon sampling seems not be have been greatly biased. Even with such information, predicting the magnitude of genetic variation in polyploids is not so simple. For example, autotetraploids originate with a subset of the genetic variation in the diploid progenitor population but they often outcross and hybridize, whereas allopolyploids can be highly heterozygous when they originate, but often are highly selfing (Stebbins, 1974; Soltis and Soltis, 1999; Barringer 2007; Whitney et al., 2010). Hence, despite several sources of heterogeneity, the faster $P T G R$ optimum of neo-polyploids indicates that $P T G R$ acceleration evolves either at the time of WGDs or during the time period in which the descendant species retain a polyploid chromosome number.

The closest approximation of the initial effect of polyploidy on $P T G R$ is the comparison of diploids with their intraspecific, autopolyploid cytotypes. In all 11 pairs, PTGRs of autopolyploid cytotypes were slower than or equal to those of their intraspecific diploid progenitors. We should re-emphasize that all studies involved in vivo crosses among diploid sporophytes (1 x pollen on 2 x pistils) compared to crosses among tetraploid sporophytes (2 x pollen on 4x pistils), in keeping with our goal of generalizing effects on $P T G R$ in stabilized
polyploids. Nucleotypic effects acting to slow PTGR should be most apparent in autopolyploids at inception, because there is lower potential for heterosis. Thus, the lack of any examples of faster $P T G R$ in neo-autotetraploid cytotypes than in their diploid progenitors suggests that increased gene dosage by itself generally does not initially fully offset nucleotypic effects.

Nucleotypic effects on $P T G R$ could be substantial. Tube size affects $P T G R$ in a linear fashion, because larger tubes must make more tube wall per unit time, and since tube diameter is constant during growth, the rate of wall production is directly proportional to tip extension rate (Williams et al., 2016). Kostoff \& Prokofieva (1935) reported in vivo pollen tubes to be 39% larger in diameter in an allotetraploid Nicotiana relative to the mean of its presumed diploid progenitors, and Iyengar (1938) found 8-53\% larger tube diameters in tetraploid versus diploid species of Gossypium.

Taken together our results suggest that nucleotypic effects are strong and act as a brake on PTGR at inception (intraspecific polyploid analysis), but as neo-polyploids become stabilized and persist over time, nucleotypic effects are more than offset by genotypic effects (within-genus pairs and model-based analyses) which often produce faster PTGRs in angiosperms.

We found that DNA content has evolved around a significantly lower optimum in angiosperms than in gymnosperms, even though angiosperms have a broad range of DNA Cvalues that encompass the entire range of seed plant genome sizes (Fig. 3; see Leitch and Leitch, 2013 for a larger survey). Angiosperms also have great variation in ploidy level, a history of speciation by polyploidy, and much evidence of past genome duplication (Ahuja, 2005; Wood et al., 2009; Husband et al., 2013; Van de Peer et al., 2017; Landis et al., 2018). There were at least 1-7 WGDs in the lineages leading from the seed plant root to each of the tips in our $P T G R$ tree, and 33% of taxa (68/206 angiosperms versus $2 / 23$ gymnosperms) were identified as neo-
polyploids. The often low DNA content and high ploidy levels of angiosperms are not surprising given that genome duplication is commonly followed by rapid loss of DNA sequences, gene fractionation by large-scale deletions, biased retention of genes with beneficial dosage effects, and ultimately a return to an apparent diploid state in sporophytes (Conant and Wolfe, 2008; Conant et al., 2014; Freeling et al., 2015; Dodsworth et al., 2016; Wendel et al., 2018). Thus, one explanation for the much faster PTGRs of angiosperms relative to gymnosperms is that widespread gene duplication by WGDs have often enabled transgressive evolution of faster PTGRs leading to the observed pattern of convergent evolution of extremely fast PTGRs in many unrelated lineages of monocots and eudicots.

WGDs have been rare in gymnosperms (Ahuja, 2005; Leitch et al., 2005; Wood et al., 2009; Soltis et al., 2009; Husband et al., 2013; Leitch and Leitch, 2013; Lee and Kim, 2014) and their high DNA contents are thought to be due mainly to high transposon activity without repeated rounds of genome duplication (Leitch \& Leitch, 2013; Lee and Kim, 2014). Hence, gymnosperms may have experienced the nucleotypic effects of higher DNA content on pollen tube dimensions, which is predicted to reduce $P T G R$, without the potential for counter-balancing effects, such as initially higher gene dosage and heterozygosity followed by gene sorting during the diploidization process. Our finding of a negative correlation between PTGR and DNA content in gymnosperms, but not in angiosperms supports that hypothesis.

Though gymnosperm PTGRs are likely affected by tube sizes, nucleotypic effects do not account for the magnitude of the difference in their slow PTGRs relative to those of angiosperms. Gymnosperm pollen tubes can range up to $300 \mu \mathrm{~m}$ in diameter (Coulter and Chamberlain, 1928; Gifford and Foster, 1989), but many species of siphonogamous conifers and Gnetales have angiosperm-like pollen tube diameters in the 10 to $20 \mu \mathrm{~m}$ range. Yet no gymnosperm has
evolved a $P T G R$ faster than $20 \mu \mathrm{~m} \mathrm{~h}^{-1}$. It has been argued that their pecto-cellulosic wall structure is a limitation relative to angiosperm pollen tube walls, which use the plasma membrane-bound enzymes callose synthase and pectin-methylesterase in a novel way to more rapidly synthesize a strong and durable tube cell wall and callose plugs (Derksen, 1999, Abercrombie et al., 2012; Wallace and Williams, 2017). However, other types of pecto-cellosic tip-growing cells, such as root hairs, grow faster than gymnosperm pollen tubes (Williams et al., 2016). Thus, it seems likely that the extremely slow growth rates of gymnosperm pollen tubes reflect an ancestrally antagonistic relationship between maternal tissues and pollen tubes that functioned as invasively growing rhizoids, coupled with a lack of selection for faster growth rate due to the absence of pollen competition and a long period between pollination and fertilization. Our results also suggest a lack of opportunity for genotypic effects to evolve due to the rarity of WGDs.

Conclusions - Studies across the tree of life have consistently shown that ploidy level and DNA content are correlated with cell size and metabolic rate (Cavalier-Smith, 1978; Gregory, 2001; Cavalier-Smith, 2005). Pollen tube dimensions and energetics affect the amount of cell wall material produced per unit of growth and the rate at which cell wall is produced, which together determine $P T G R$. In gymnosperms, $P T G R$ was negatively correlated with genome size, but in angiosperms, where the effects of WGDs are much more prevalent, there was no such correlation, and neo-polyploids evolved around a higher $P T G R$ optimum than diploids. These results support the expectation that genome size increases incur nucleotypic effects that act as a brake on growth rate. The degree to which genotypic effects counterbalance nucleotypic effects depends on the historical nature and time since genome size increase in any particular lineage.

Understanding causal relationships between genome size, ploidy and $P T G R$ will involve mechanistic studies of tube cell dimensions and wall synthesis rates in haploid and polyploid gametophytes. On the other hand, there appears to be great variation in the tug of war between genotypic and nucleotypic effects, and there are likely to be deeper evolutionary patterns underlying that variation.

ACKNOWLEDGEMENTS

We thank B. O'Meara and J. Beaulieu for advice on phylogenetic analyses, I. Leitch for data on DNA content, and J. Edwards and M. Rankin for assistance in the lab. We are tremendously grateful to several anonymous reviewers for their perceptive and useful comments. Partial support to J.B.R. was provided by National Science Foundation award IOS 1052291 to J.H.W.

Authors Contributions: J.B.R. and J.H.W. jointly conceived of the study and wrote the paper; J.B.R. collected data on genome sizes and ploidy levels, constructed the phylogenetic tree and performed all comparative analyses; J.H.W. collected data on PTGRs and diploid-autopolyploid PTGRs.

Data Accessibility Statement: Scripts written during the creation of this manuscript are available on GitHub: https://github.com/jbr1848/PTGR.genome.evolution. The phylogenetic tree created during this study can be found on TreeBase: http://purl.org/phylo/treebase/phylows/study/TB2:S24291.

LITERATURE CITED

Abercrombie, J. M., B. C. O’Meara, A. R. Moffatt, and J. H. Williams. 2011. Developmental evolution of flowering plant pollen tube cell walls: callose synthase (CalS) gene expression patterns. EvoDevo 2: 14.

Ahuja, M. R. 2005. Polyploidy in gymnosperms: revisited. Silvae Genetica 54:2:59-69.

Arunkumar, R., E. B. Josephs, R. J. Williamson, and S. I. Wright. 2013. Pollen-specific, but not sperm-specific, genes show stronger purifying selection and higher rates of positive selection than sporophytic genes in Capsella grandiflora. Molecular Biology and Evolution 30: 24752486.

Ashman, T-L., D. Bachtrog, H. Blackmon, E. E. Goldberg, M. W. Hahn, M. Kirkpatrick, J. Kitano, J. E. Mank, et al. 2014. Tree of Sex: A database of sexual systems. Scientific Data 1: 140015.

Barker, M. S., N. Arrigo, A. E. Baniaga, Z. Li, \& D. A. Levin. (2016). On the relative abundance of autopolyploids and allopolyploids. New Phytologist, 210(2), 391-398.

Beaulieu, J. M., and B. O'Meara. 2014. OUwie: analysis of evolutionary rates in an OU framework. R package version 1 .

Bennett, M. D. 1971. The duration of meiosis. Proceedings of the Royal Society of London B: Biological Sciences 178: 277-299.

Bennett, M. D. 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proceedings of the Royal Society of London B: Biological Sciences 181: 109-135.

Bennett, M. D., and I. J. Leitch. 2012. Plant DNA C-values Database (Release 6.0).
Birchler, J. A., H. Yao, S. Chudalayandi, D. Vaiman, and R. A. Veitia. 2010. Heterosis. Plant Cell: 110.076133.

Blomberg, S. P., T. Garland Jr., and A. R. Ives. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57: 717-745.

Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference: a practical information-theoretic approach. New York. Springer-Verlag.

Cavalier-Smith, T. 1978. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. Journal of Cell Science 34: 247-278.

Cavalier-Smith, T. 2005. Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Annals of Botany 95: 147-175.

Christenhusz, M. J., J. L. Reveal, A. Farjon, M. F. Gardner, R. R. Mill, and M. W. Chase. 2011. A new classification and linear sequence of extant gymnosperms. Phytotaxa 19: 55-70.

Comai, L. 2005. The advantages and disadvantages of being polyploid. Nature Reviews Genetics 6: 836.

Conant, G. C., J. A. Birchler, and J. C. Pires. 2014. Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Current Opinion in Plant Biology 19: 91-98.

Conant, G. C., and K. H. Wolfe. 2008. Turning a hobby into a job: how duplicated genes find new functions. Nature Reviews Genetics 9: 938.

Coulter, J. M., and C. J. Chamberlain. 1928. Morphology of Gymnosperms (4th ed.). University of Chicago Press, Chicago.

Cosgrove, D. J. 2005. Growth of the plant cell wall. Nature Reviews Molecular Cell Biology 6: 850.

De Smet, R., K. L. Adams, K. Vandepoele, M. C. Van Montagu, S. Maere, and Y. Van de Peer. 2013. Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proceedings of the National Academy of Sciences 110: 2898-2903.

Derksen, J., Y. Li, B. Knuiman, and H. Geurts. 1999. The wall of Pinus sylvestris L. pollen tubes. Protoplasma 208: 26-36.

Dodsworth, S., M. W. Chase, and A. R. Leitch. 2016. Is post-polyploidization diploidization the key to the evolutionary success of angiosperms? Botanical Journal of the Linnean Society 180: $1-5$.

Doyle, J. J., and J. E. Coate. 2019. Polyploidy, the Nucleotype, and Novelty: The Impact of Genome Doubling on the Biology of the Cell. International Journal of Plant Sciences 180: 1-52.

Eastman, J. M., L. J. Harmon, and D. C. Tank. 2013. Congruification: support for time scaling large phylogenetic trees. Methods in Ecology and Evolution 4: 688-691.

Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125: 1-15.

Fernando, D. D., M. D. Lazzaro, and J. N. Owens. 2005. Growth and development of conifer pollen tubes. Sexual Plant Reproduction 18: 149-162.

Freeling, M., M. J. Scanlon, and J. E. Fowler. 2015. Fractionation and subfunctionalization following genome duplications: mechanisms that drive gene content and their consequences. Current Opinion in Genetics \& Development 35: 110-118.

Friedman, W. E. 1993. The evolutionary history of the seed plant male gametophyte. Trends in Ecology \& Evolution 8: 15-21.

Gibbs, P. E. 2014. Late-acting self-incompatibility-the pariah breeding system in flowering plants. New Phytologist 203: 717-734.

Gifford, E. M., and A. S. Foster. 1989. Morphology and Evolution of Vascular Plants. W. H. Freeman, New York.

Goodwillie, C., S. Kalisz, and C. G. Eckert. 2005. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annual Review of Ecology Evolution and Systematics. 36: 47-79.

Grafen, A. 1989. The phylogenetic regression. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 326: 119-157.

Gregory, T. R. 2001. The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cells, Molecules, and Diseases 27: 830-843.

Hafidh, S., J. Fíla, and D. Honys. 2016. Male gametophyte development and function in angiosperms: a general concept. Plant Reproduction 29: 31-51.

Harmon, L. J., J. T. Weir, C. D. Brock, R. E. Glor, and W. Challenger. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24: 129-131.

Ho, L. S. T., and C. Anné. 2014. Phylolm: phylogenetic linear regression. R package version 2.1.

Hoekstra, F. A. 1983. Physiological evolution in angiosperm pollen: possible role of pollen vigour. In: Mulcahy DL, Ottaviano E, eds. Pollen: Biology and Implications for Plant Breeding, 35-41. Elsevier Science, Amsterdam.

Husband, B. C. 2016. Effect of inbreeding on pollen tube growth in diploid and tetraploid Chamerion angustifolium: Do polyploids mask mutational load in pollen? American Journal of Botany 103: 532-540.

Husband, B. C., S. J. Baldwin, and J. Suda. 2013. The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes. In J. Greilhuber, J. Doležel, and J. F. Wendel [eds.], Plant Genome Diversity Volume 2, 255-276. Springer.

Husband, B. C., and D. W. Schemske. 1997. The effect of inbreeding in diploid and tetraploid populations of Epilobium angustifolium (Onagraceae): implications for the genetic basis of inbreeding depression. Evolution 51: 737-746.

Ingram, T., and D. L. Mahler. 2013. SURFACE: detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike Information Criterion. Methods in Ecology and Evolution 4: 416-425.

Iyengar N. K. 1938. Pollen-tube studies in Gossypium. Journal of Genetics 37: 69-106.

Jörgensen A, and C. Rydin. 2015. Reproductive morphology in the Gnetum cuspidatum group (Gnetales) and its implications for pollination biology in the Gnetales. Plant Ecology and Evolution 148: 387-396.

Kostoff, D., and A. Prokofieva. 1935. Studies on the pollen-tubes. I. The growth potency of the pollen-tubes in Nicotiana in connection with the length of the styles and some other factors. Bul. Inst. Genetics, Acad. Sci. Leningrad 10: 65-82.

Lande, R., and D. W. Schemske. 1985. The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39: 24-40.

Landis, J. B., D. E. Soltis, Z. Li, H. E. Marx, M. S. Barker, D. C. Tank, and P. S. Soltis. 2018. Impact of whole-genome duplication events on diversification rates in angiosperms. American Journal of Botany.

Lee, S-I., and N-S. Kim. 2014. Transposable elements and genome size variations in plants. Genomics \& Informatics 12: 87-97.

Leitch, I. J., M. W. Chase, and M. D. Bennett. 1998. Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Annals of Botany 82: 85-94.

Leitch, A. R., and I. J. Leitch. 2012. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytologist 194: 629-646.

Leitch, I. J., and A. R. Leitch. 2013. Genome size diversity and evolution in land plants. In J. Greilhuber, J. Doležel, and J. F. Wendel [eds.], Plant Genome Diversity Volume 2, 307-322. Springer.

Leitch, I. J., D. E. Soltis, P. S. Soltis, and M. D. Bennett. 2005. Evolution of DNA amounts across land plants (Embryophyta). Annals of Botany 95: 207-217.

Li, Z., A. E. Baniaga, E. B. Sessa, M. Scascitelli, S. W. Graham, L. H. Rieseberg, and M. S. Barker 2015. Early genome duplications in conifers and other seed plants. Science Advances 1: e1501084.

Magallón, S., S. Gómez-Acevedo, L. L. Sánchez-Reyes, and T. Hernández-Hernández. 2015. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytologist 207: 437-453.

Martins, E. P., T. F. Hansen. 1997. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. The American Naturalist 149: 646-667.

Mayrose, I., Zhan, S. H., Rothfels, C. J., Magnuson-Ford, K., Barker, M. S., Rieseberg, L. H., and S. P. Otto. 2011. Recently formed polyploid plants diversify at lower rates. Science 333: 1257-1257.

Mulcahy, D.L. 1979. The rise of the angiosperms: a genecological factor. Science 206: 20-23.

Ohri, D., and T. N. Khoshoo. 1986. Genome size in gymnosperms. Plant Systematics and Evolution 153: 119-132.

Otto, S. P., M. F. Scott, and S. Immler. 2015. Evolution of haploid selection in predominantly diploid organisms. Proceedings of the National Academy of Sciences 112: 15952-15957.

Owens, J. N., T. Takaso, and C. J. Runions. 1998. Pollination in conifers. Trends in Plant Science 3: 479-485.

Pagel, M. 1997. Inferring evolutionary processes from phylogenies. Zoologica Scripta 26: 331348.

Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877.

Panchy, N., M. Lehti-Shiu, and S-H. Shiu. 2016. Evolution of gene duplication in plants. Plant Physiology 171: 2294-2316.

Paradis, E., J. Claude, and K. Strimmer. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289-290.

Price, H. 1988. DNA Content Variation Among Higher-Plants. Annals of the Missouri Botanical Garden 75: 1248-1257.

Revell, L. J. 2012. Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217-223.

Rutley, N., and D. Twell. 2015. A decade of pollen transcriptomics. Plant Reproduction 28: 7389.

Smith, S. A., and M. J. Donoghue. 2008. Rates of molecular evolution are linked to life history in flowering plants. Science 322: 86-89.

Smith, S. A., and C. W. Dunn. 2008. Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24: 715-716.

Snodgrass, S. J., J. Jaraczek and J. F. Wendel. 2016. An examination of nucleotypic effects in diploid and polyploid cotton. AoB PLANTS. 8: plw082.

Soltis, D. E., V. A. Albert, J. Leebens-Mack, C. D. Bell, A. H. Paterson, C. Zheng, D. Sankoff et al. 2009. Polyploidy and angiosperm diversification. American Journal of Botany 96: 336-348.

Soltis, D. E., and P. S. Soltis. 1999. Polyploidy: recurrent formation and genome evolution. Trends in Ecology \& Evolution 14: 348-352.

Soltis, P. S., \& Soltis, D. E. 2000. The role of genetic and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences 97: 7051-7057.

Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313.

Stebbins, G. L. 1974. Flowering plants: evolution above the species level. London: Arnold xviii, 399p. Illustrations. General (KR, 197500089).

Swift, H. 1950. The constancy of desoxyribose nucleic acid in plant nuclei. Proceedings of the National Academy of Sciences 36: 643-654.

Tanksley, S. D., D. Zamir, and C. M. Rick. 1981. Evidence for extensive overlap of sporophytic and gametophytic gene expression in Lycopersicon esculentum. Science 213: 453-455.

Van de Peer, Y., E. Mizrachi, and K. Marchal. 2017. The evolutionary significance of polyploidy. Nature Reviews Genetics 18: 411.

Wallace, S., and J. H. Williams. 2017. Evolutionary origins of pectin methylesterase genes associated with novel aspects of angiosperm pollen tube walls. Biochemical and biophysical research communications 487: 509-516.

Wendel, J. F., D. Lisch, G. Hu, and A. S. Mason. 2018. The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Current Opinion in Genetics \& Development 49: 1-7.

Whitney, K. D., E. J. Baack, J. L. Hamrick, M. J. W. Godt, B. C. Barringer, M. D. Bennett, C. G. Eckert et al. 2010. A role for nonadaptive processes in plant genome size evolution? Evolution: 64: 2097-2109.

Williams, J. H. 2008. Novelties of the flowering plant pollen tube underlie diversification of a key life history stage. Proceedings of the National Academy of Sciences 105: 11259-11263.

Williams, J. H. 2009. Amborella trichopoda (Amborellaceae) and the evolutionary developmental origins of the angiosperm progamic phase. American Journal of Botany 96: 144165.

Williams, J. H. 2012. Pollen tube growth rates and the diversification of flowering plant reproductive cycles. International Journal of Plant Sciences 173: 649-661.

Williams, J. H., J. A. Edwards, and A. J. Ramsey. 2016. Economy, efficiency, and the evolution of pollen tube growth rates. American Journal of Botany 103: 471-483.

Williams, J. H., and J. B. Reese. 2019. Evolution of development of pollen performance. In U. Grossinklaus [ed.], Plant Development and Evolution. Current Topics in Developmental Biology, Volume 131. Chapter 12. 299-336. Elsevier.

Williams, J. H., M. L. Taylor, and B. C. O’Meara. 2014. Repeated evolution of tricellular (and bicellular) pollen. American Journal of Botany 101: 559-571.

Wood, T. E., N. Takebayashi, M. S. Barker, I. Mayrose, P. B. Greenspoon, and L. H. Rieseberg. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences 106: 13875-13879.

Table 1: Phylogenetic generalized least squares regression of $\log _{10} P T G R$ as a function of $\log _{10}$ C-value. Only models contributing more than 1% of total weight are included. P values are for the slope of the regression. Gymnosperm averaged model: $\log _{10} P T G R=1.46(\pm 0.62)-1.09(\pm$ $0.49) *\left(\log _{10} \mathrm{C}\right.$-value $)$.

Seed plants $(N=183)$			Angiosperms ($N=161$)			Gymnosperms ($N=23$)		
Model	Weight	\boldsymbol{P}	Model	Weight	\boldsymbol{P}	Model	Weight	P
kappa	0.999	0.463	kappa	0.975	0.284	OU	0.265	0.020
			lambda	0.024	0.221	delta	0.257	0.006
						kappa	0.193	0.445
						BM	0.121	0.001
						lambda	0.119	0.327
						EB	0.044	0.001

Model	$\triangle \mathrm{AICc}$	Model weight	Diploid Polyploi $\sigma^{2} \quad \sigma^{2}$	Diploid Polyploid $\alpha \quad \alpha$	Diploid optimum	Polyploid optimum
OUMA	[332.76]	0.373	0.099	$0.077 \quad 0.074$	2.776	3.285
OUMV	0.23	0.333	$0.099 \quad 0.057$	0.077	2.768	3.262
OUM	1.53	0.174	0.090	0.080	2.760	3.263
OU1	2.26	0.120	0.089	0.077	2.812	
$\begin{array}{r} \text { AVE } \\ \mathbf{M} \end{array}$	$\begin{aligned} & \text { GED } \\ & \text { EL } \end{aligned}$	~ 1.0	$\begin{array}{cc} 0.096 \pm & 0.082 \pm \\ 0.177 & 0.220 \end{array}$	$\begin{array}{cc} \hline 0.078 \pm & 0.077 \pm \\ 0.213 & 0.217 \end{array}$	$\begin{gathered} 2.775 \pm \\ 0.079 \end{gathered}$	$\begin{gathered} 3.217 \pm \\ 0.231 \end{gathered}$

Table 2: Parameter estimates for angiosperm PTGR analyses under different evolutionary models. Note that OU1 is a single optimum model, and the rest specify separate "diploid" (paleo-polyploid) and neo-polyploid optima. BM1 and BMS models contributed $<1 \%$ model weight and were excluded.

FIGURE LEGENDS

Figure 1. Predicted initial effects of large increases in genome size on pollen tube growth rate (PTGR). The dashed line indicates an ancestral haploid (1x) PTGR. Upon transition to a larger (> 1x) genome size, nucleotypic effects should act to decrease PTGR regardless of mechanism of change. Genotypic effects are only present after WGD or large-scale gene duplications and are predicted to increase $P T G R$ via increased gene dosage and heterozygosity. The magnitude of heterosis due to initial increase in heterozygosity is expected to scale with genetic variation in the descendent taxon. The ancestral haploid $P T G R$ can only be conserved when genotypic and nucleotypic effects perfectly offset each other.

Figure 2: Relationship between pollen tube growth rate (PTGR) and DNA content (1Cvalue) in seed plants. The model- averaged slope of the PGLS regression is shown for gymnosperms (green points, $N=161$), whereas slopes for seed plants (all points, $N=183$) and angiosperms (purple points, $N=23$) were non-significant. Optima (with standard error bars) for each group (from model-based analyses in Tables S3, S4) are included for illustrative purposes.

Figure 3: Inferred pattern of pollen tube growth rate (PTGR) and genome size changes in seed plants. Contour plot comparing $P T G R$ evolution (left, $\mu \mathrm{m} \mathrm{h}^{-1}$) and C-value evolution (right, picograms) $(N=183)$. Scale bar at the bottom of each phylogeny indicates 100 million years. GYM = gymnosperms; ANA = Amborellales, Nymphaeales, Austrobaileyales, Chloranthales, eumagnoliids; $\mathrm{MONO}=$ monocots.

Figure 4: Coincident evolution of pollen tube growth rate (PTGR) and DNA content (Cvalue). Paired SURFACE plot showing regime shifts in PTGR (left) versus DNA content (right) ($N=183$). Nodes which have experienced a regime shift along the stem leading to it are marked with magenta diamonds (not all PTGR shifts are shown, since $P T G R$ tree has been pruned to match C-value tree). Branch colors: gray $=$ seed plant ancestral optimum $(P T G R ~ \theta=0.147 ; ~ C-$ value $\theta=2.71) ;$ green $=$ ancestral optimum for angiosperms $(P T G R \theta=2.47 ;$ C-value $\theta=$ 0.702); red = derived lineages following a shift to a higher optimum than previously; blue = derived lineages following a shift to a lower optimum than previously. Black arrows indicate instances where shifts in PTGR and C-value coincide. Scale bar at the bottom of each phylogeny indicates 100 million years. GYM = gymnosperms; $\mathrm{A}=$ Amborellales, Nymphaeales, Autrobaileyales, Chloranthales, eumagnoliids; MONO = monocots.

Additional Supporting Information may be found online in the supporting information section at the end of the article:

Appendix S1: 119 additional PTGR values and references not reported in Williams 2012.

Appendix S2: Pollen tube growth rate (PTGR) evolution across Spermatophytes.

Appendix S3: Summary statistics for pollen tube growth rate (PTGR) of Magnolia grandiflora.

Appendix S4: Sensitivity analysis for the magnitude of $\log _{10} P T G R$ error estimates.

Appendix S5: PTGR evolution in gymnosperms vs. angiosperms.

Appendix S6: C-value evolution in gymnosperms vs. angiosperms.

Appendix S7: Closely-related taxon analyses.

Appendix S8: Phylogenetic ANCOVA results.

Keese and Williams 2019 - American Journal ot Botany - Appendix SI

Appendix S1: 119 additional $P T G R$ values and references not reported in Williams 2012.

Taxon	PTGR $\left(\boldsymbol{\mu} \mathbf{m ~ h}^{-1}\right)$	Reference
Abelmoschus esculentus	5217	Patil et al 2013
Abutilon x hybridum	1292	Cited in Sears 1937
Acacia mangium	46.5	Ngheim et al 2013
Acacia_auriculiformis	116	Ngheim et al 2013
Acer rubrum	182	van Ryn et al 1988, Radford et al 1968
Aegle marmelos	181	Bhardwaj and Tandon 2013
Albuca canadensis	1000	Johnson et al 2012
Albuca setosa	2477	Johnson et al 2012
Alstroemeria aurea	3091	Aizen and Raffaele 1998, De Jeu et al. 1996
Alstroemeria pelegrina	574	De Jeu et al. 1996
Anathallis	4320	Gontijo et al 2010
Antirrhinum controversum	131	Cario and Guemes 2014
Antirrhinum valentinum	160	Cario and Guemes 2014
Aureolaria pedicularia	15.2	Ramstetter and Mulcahy 1986
Bertholletia excels	800	Moritz and Ludders 1993
Betula papyrifera	11.1	Williams unpbl.
Boswellia serrata	182	Sunnichan et al 2005
Brassica rapa	371	Hiroi et al 2013
Calluna vulgaris	387	Behrend et al 2012, Mahy and Jacquemart 1999
Cambessedesia	587	dos Santos et al 2012
Camellia oleifera	338	Gao et al 2015
Carica papaya	214	Traub and O'Rork 1939
Ceiba pentandra	2500	Gribel et al 1999
Ceratonia siliqua	152	Von Haselberg et al. 2004
Chamaecrista fasciculata	637	Tucker 1996, Fenster and Sork 1988
Citrullus lanatus	1151	Sedgley and Buttrose 1978
Citrus maxima	58.3	Distephano et al 2012
Citrus medica	122	Distefano et al 2012
Citrus reticulata	51.3	Distefano et al 2012
Clarkia xantiana	630	Hove and Mazer 2013
Commiphora wrightii	42.4	Geetha et al 2013
Cornus florida	70.8	Reed 2004
Corylus heterophylla	62.5	Liu et al 2014
Cucumis anguria	774	Matsumoto et al. 2012
Cucumis melo	870	Matsumoto et al. 2012
Cucumis metulifer	1009	Matsumoto et al. 2012
Cybistax antisyphilitica	583	Bittencourt et al 2010

Keese and Williams 2019 - American Journal of Botany - Appendix SI

Cyrtandra kauaiensis	261	Johnson et al 2015
Cyrtandra longifolia	221	Johnson et al 2015
Cyrtandra platyphylla	305	Johnson et al 2015
Cytisus multiflorus	4.48	Valtueña et al 2010
Cytisus striatus	19.8	Rodriguez-Riaño et al 1999
Dalzellia zeylanica	1159	Sehgal et al 2011
Dianthus caryophyllus	3002	Larsen et al 1995
Downingia bacigalupii	853	Kaplan 1969
Echium vulgare	590	Melser et al 1997
Eruca vesicaria	275	Cited in Sears 1937
Eucalyptus globulus	58.3	Gore et al 1990
Faramea occidentalis	2183	Travers 1999
Ficus carica	47.6	Beck and Lord 1988
Fumana	273	Carrio and Guemes 2013
Guihaiothamnus acaulis	188	Xie et al 2013
Haberlea rhodopensis	152	Bogacheva-Milkoteva 2013
Handroanthus ochraceus	1617	Oliveira, pers. comm.
Handroanthus serratifolius	1617	Oliveira, pers. comm.
Hedyosmum brasiliense	97.2	Williams and Edwards, unpbl.
Hedyotis acutangula	991	Wu et al 2010
Helleborus foetidus	514	Vesprini and Pacini 2000
Heuchera micrantha	181	Rabe and Soltis 1999
Hippophae rhamnoides	20.9	Mangla et al 2013
Hymenaea	1667	Gibbs et al 1999
Ipomoea purpurea	7450	Shu-Mei Chang, pers. comm. 2014
Ipomopsis aggregata	2409	Sage et al 2006, Wolf et al 2001
Jathropa curcas	915	Abdelgadir et al 2012
Lactoris fernandeziana	40	Bernardello et al 1999
Lactuca sativa	3085	Einset 1944
Lagerstroemia indica	1175	Pounders et al 2006
Lathyrus chloranthus	271	Herrick et al 1993
Lathyrus odoratus	321	Herrick et al 1993
Limnocharis	467	Hall 1902
Linaria	392	Cited in Sears 1937
Lupinus arizonicus	442	Wainwright 1978
Magnolia grandiflora	828	Edwards, Rankin, and Williams, unpbl. 2014
Medicago rigidula	82.2	Sangduen et al 1983
Medicago sativa	192	Barnes and Cleveland 1963
Morinda parvifolia	957	Liu et al 2012
Mussaenda kwangtungensis	963	Luo et al 2015
Mussaenda shikokiana	816	Chen et al 2014
Nemesia strumosa	333	Sears 1937

Keese and Williams 2019 - American Journal of Botany - Appendix SI

Nivenia corymbosa	873	Goldblatt and Bernhardt 1990
Nivenia stokeii	1217	Goldblatt and Bernhardt 1990
Nuphar advena	835	Taylor and Williams, unpbl.
Nyctanthes arbor tristis	526	Bhatnagar and Uma 1969
Orchis anthropophora	357	Luca et al 2015
Orchis italica	357	Luca et al 2015
Oreocharis acaulis	1318	Guo et al 2013
Oroxylum indicum	3000	Gautam et al 2009
Paeonia brownii	20.8	Bernhardt et al 2013
Parthenium	1333	Gerstel and Riner 1950
Passiflora edulis	2174	Rego et al 2000
Phalaenopsis	208	Zhang and O-Neill 1993
Phoenix dactylifera	315	Reuveni et al 1986
Platanthera	462	Stickler et al 2013 (poster)
Plumbago zeylanica	12741	Russell 1985
Polypleurum stylosum	153	Khosla et al 2000
Potamogeton intortusifolius	267	Zhang et al 2010
Potamogeton perfoliatus	1585	Zhang et al 2010
Potamogeton wrightii	1483	Zhang et al 2010
Pseudopiptadenia	39	Pires and Freitas 2008
Restrepia	99	Millner et al 2015
Schisandra sphenanthera	88.9	Du et al 2012
Silene vulgaris	2323	Glaeti 2006
Solanum chacoense	396	Liu et al 2012
Solanum laxum	333	Lewis and Crowe 1958
Sorghum bicolor	3638	Heslop-Harrison et al 1984, Hodnett et al 2005
Spathodea campanulata	4028	Bittencourt et al 2003
Sporobolus anglicus	8943	Li et al 2008
Thryptomene calycina	320	Beardsell et al 1993
Ticodendron incognitum	382	Sogo and Tobe 2008
Torenia baillonii	3200	Kikuchi et al 2007
Torenia concolor	1900	Kikuchi et al 2007
Trimezia	2000	Bystedt and Vennigerholz 1991
Vaccinium corybosum	191	Knight and Scott 1964
Vaccinium myrtillus	67.1	Jacquemart and Thompson 1996
Vaccinium uliginosum	54.3	Jacquemart and Thompson 1996
Vaccinium vitis idaea	98.6	Jacquemart and Thompson 1996
Zeyheria montana	2554	Bittencourt and Semir 2004
Zeylanidium lichenoides	354	Chaudhary et al 2014, Sehgal et al 2014

Keese and Williams 2019 - American Journal of Botany - Appendix SI

References

Abdelgadir, H., S. Johnson, and J. Van Staden. 2012. Pollen viability, pollen germination and pollen tube growth in the biofuel seed crop Jatropha curcas (Euphorbiaceae). South African Journal of Botany 79:132-139.
Aizen, M. A., and E. Raffaele. 1998. Flowering-shoot defoliation affects pollen grain size and postpollination pollen performance in Alstroemeria aurea. Ecology 79:2133-2142.
Barnes, D., and R. Cleveland. 1963. Genetic evidence for nonrandom fertilization in alfalfa as influenced by differential pollen tube growth 1. Journal of Crop Science 3:295-297.
Beardsell, D., R. Knox, and E. Williams. 1993. Breeding system and reproductive success of Thryptomene calycina (Myrtaceae). Australian Journal of Botany 41:333-353.
Beck, N., and E. Lord. 1988. Breeding system in Ficus carica, the common fig. II. Pollination events. American Journal of Botany 75:1913-1922.
Behrend, A., T. Borchert, A. Müller, J. Tänzer, and A. Hohe. 2013. Malformation of gynoecia impedes fertilisation in bud-flowering Calluna vulgaris. Plant Biology 15:226-232.
Bernardello, G., G. J. Anderson, P. Lopez, M. A. Cleland, T. F. Stuessy, and D. J. Crawford. 1999. Reproductive biology of Lactoris fernandeziana (Lactoridaceae). American Journal Of Botany 86:829-840.
Bernhardt, P., R. Meier, and N. Vance. 2013. Pollination ecology and floral function of Brown's peony (Paeonia brownii) in the Blue Mountains of northeastern Oregon. Journal of Pollination Ecology 2:9-20.
Bhardwaj, V., and R. Tandon. 2013. Self-incompatibility and post-fertilization maternal regulation cause low fecundity in Aegle marmelos (Rutaceae). Botanical Journal of the Linnean Society 172:572-585.
Bhatnagar, S. P., and M. C. Uma. 1969. The structure of style and stigma in some Tubiflorae. Phytomorphology 19:99-109.
Bittencourt Jr, N. S., E. J. Pereira Jr, P. de Souza São-Thiago, and J. Semir. 2011. The reproductive biology of Cybistax antisyphilitica (Bignoniaceae), a characteristic tree of the South American savannah-like "Cerrado" vegetation. Flora-Morphology, Distribution, Functional Ecology of Plants 206:872-886.
Bittencourt, N. S., and J. Semir. 2004. Pollination biology and breeding system of Zeyheria montana (Bignoniaceae). Plant Systematics and Evolution 247:241-254.
Bittencourt, N. S. J., P. E. Gibbs, and J. Semir. 2003. Histological study of post-pollination events in Spathodea campanulata Beauv. (Bignoniaceae), a species with late-acting selfincompatibility. Annals of Botany 91:827-834.
Bogacheva-Milkoteva, K., E. Kozuharova, R. Claßen-Bockhoff, and A. Gogala. 2013. Pollination ecology of Haberlea rhodopensis Friv. (Gesneriaceae), a Tertiary relict endemic to the Balkan Peninsula. Journal Comptes rendus de l'Académie bulgare des Sciences 66.
Bystedt, P. A., and F. Vennigerholz. 1991. The transmitting tract in Trimezia fosteriana (Iridaceae). III. Pollen tube growth in the stigma, style and ovary. Nordic Journal of Botany 11:459-464.
Carrió, E., and J. Güemes. 2013. The role of a mixed mating system in the reproduction of a Mediterranean subshrub (Fumana hispidula, Cistaceae). Journal of Plant Research 126:33-40.

Keese and Williams 2019 - American Journal ot Botany - Appendix SI

Carrió, E., and J. Güemes. 2014. The effectiveness of pre-and post-zygotic barriers in avoiding hybridization between two snapdragons (Antirrhinum L.: Plantaginaceae). 176:159-172.
Chaudhary, A., P. Khanduri, R. Tandon, P. Uniyal, and H. M. Ram. 2014. Central cell degeneration leads to three-celled female gametophyte in Zeylanidium lichenoides Engl. (Podostemaceae). South African Journal of Botany 91:99-106.
Chen, S., Z. Luo, and D. Zhang. 2014. Pre-and post-zygotic reproductive isolation between cooccurring Mussaenda pubescens var. alba and M. shikokiana (Rubiaceae). Journal of Integrative Plant Biology 56:411-419.
de Assis Pires, J. P., and L. Freitas. 2008. Reproductive biology of two tree species of Leguminosae in a Montane Rain Forest in southeastern Brazil. Flora-Morphology, Distribution, Functional Ecology of Plants 203:491-498.
de Jeu, M. J., F. G. Caldere, and J. L. van Went. 1996. Sporogenesis, gametogenesis, and progamic phase in Alstroemeria. Canadian Journal of Botany 74:1354-1361.
Distefano, G., A. Hedhly, G. Las Casas, S. La Malfa, M. Herrero, and A. Gentile. 2012. Malefemale interaction and temperature variation affect pollen performance in Citrus. Scientia Horticulturae 140:1-7.
dos Santos, A. P. M., C. M. Fracasso, M. Luciene dos Santos, R. Romero, M. Sazima, and P. E. Oliveira. 2012. Reproductive biology and species geographical distribution in the Melastomataceae: a survey based on New World taxa. Annals of Botany 110:667-679.
Du, W., L. J. Huang, and X. F. Wang. 2012. Deceit pollination and the effect of deforestation on reproduction in dioecious Schisandra sphenanthera (Schisandraceae) in central China. Journal of Systematics and Evolution 50:36-44.
Einset, J. 1944. Cytological basis for sterility in induced autotetraploid lettuce (Lactuca sativa L.). American Journal of Botany :336-342.

Fenster, C. B., and V. L. Sork. 1988. Effect of crossing distance and male parent on in vivo pollen tube growth in Chamaecrista fasciculata. American Journal of Botany 75:18981903.

Gao, C., D. Yuan, Y. Yang, B. Wang, D. Liu, and F. Zou. 2015. Pollen tube growth and double fertilization in Camellia oleifera. Journal of the American Society for Horticultural Science 140:12-18.
Gautam, M., R. Tandon, and H. M. Ram. 2009. Pollination ecology and breeding system of Oroxylum indicum (Bignoniaceae) in the foothills of the Western Himalaya. Journal of Tropical Ecology 25:93-96.
Geetha, K., A. Kawane, A. K. Bishoyi, A. Phurailatpam, C. Ankita, S. Malik, R. Srinivasan, and S. Bhat. 2013. Characterization of mode of reproduction in Commiphora wightii [(Arnot) Bhandari] reveals novel pollen-pistil interaction and occurrence of obligate sexual female plants. Trees 27:567-581.
Gerstel, D. U., and M. E. Riner. 1950. Self-Incompatibility studies in Guayule .1. Pollen-tube behavior. Journal of Heredity 41:49-55.
Gibbs, P. E., P. E. Oliveira, and M. B. Bianchi. 1999. Postzygotic control of selfing in Hymenaea stigonocarpa (Leguminosae-Caesalpinioideae), a bat-pollinated tree of the Brazilian Cerrados. International Journal of Plant Sciences 160:72-78.
Glaettli, M., and J. Goudet. 2006. Variation in the intensity of inbreeding depression among successive life-cycle stages and generations in gynodioecious Silene vulgaris (Caryophyllaceae). Journal of Evolutionary Biology 19:1995-2005.

Keese and Williams 2019 - American Journal of Botany - Appendix SI

Goldblatt, P., and P. Bernhardt. 1990. Pollination biology of Nivenia (Iridaceae) and the presence of heterostylous self-compatibility. Israeli Journal of Plant Sciences 39:93-111.
Gontijo, S. L., A. R. Barbosa, M. C. de Melo, and E. L. Borba. 2010. Occurrence of different sites of self-incompatibility reaction in four Anathallis (Orchidaceae, Pleurothallidinae) species. Plant Species Biology 25:129-135.
Gore, P. L., B. M. Potts, P. W. Volker, and J. Megalos. 1990. Unilateral cross-incompatibility in Eucalyptus: the case of hybridization between E. globulus and E. nitens. Australian Journal of Botany 38:383-394.
Gribel, R., P. E. Gibbs, and A. L. Queiróz. 1999. Flowering phenology and pollination biology of Ceiba pentandra (Bombacaceae) in Central Amazonia. Journal of Tropical Ecology 15:247-263.
Guo, Y.-F., Y.-Q. Wang, and A. Weber. 2013. Floral ecology of Oreocharis acaulis (Gesneriaceae): An exceptional case of "preanthetic" protogyny combined with approach herkogamy. Flora-Morphology, Distribution, Functional Ecology of Plants 208:58-67.
Hall, J. G. 1902. An embryological study of Limnocharis emarginata. Botanical Gazette 33:214219.

Herrick, J., B. Murray, and K. Hammett. 1993. Barriers preventing hybridisation of Lathyrus odoratus with L. chloranthus and L. chrysanthus. New Zealand Journal of Crop Horticultural Science 21:115-121.
Heslop-Harrison, Y., B. Reger, and J. Heslop-Harrison. 1984. The pollen-stigma interaction in the grasses. 6. The stigma ('silk') of Zea mays L. as host to the pollens of Sorghum bicolor (L.) Moench and Pennisetum americanum (L.) Leeke. Acta Botanica Nederlandica 33:205-227.
Hiroi, K., M. Sone, S. Sakazono, M. Osaka, H. Masuko-Suzuki, T. Matsuda, G. Suzuki, K. Suwabe, and M. Watanabe. 2013. Time-lapse imaging of self-and cross-pollinations in Brassica rapa. Annals of Botany 112:115-122.
Hodnett, G. L., B. L. Burson, W. L. Rooney, S. L. Dillon, and H. J. Price. 2005. Pollen-pistil interactions result in reproductive isolation between Sorghum bicolor and divergent Sorghum species. Crop science 45:1403-1409.
Hove, A. A., and S. J. Mazer. 2013. Pollen performance in Clarkia taxa with contrasting mating systems: implications for male gametophytic evolution in selfers and outcrossers. Plants 2:248-278.
Jacquemart, A.-L., and J. Thompson. 1996. Floral and pollination biology of three sympatric Vaccinium (Ericaceae) species in the Upper Ardennes, Belgium. Canadian Journal of Botany 74:210-221.
Johnson, M. A., D. K. Price, J. P. Price, and E. A. Stacy. 2015. Postzygotic barriers isolate sympatric species of Cyrtandra (Gesneriaceae) in Hawaiian montane forest understories. American Journal Of Botany 102:1870-1882.
Johnson, S. D., A. Jürgens, and M. Kuhlmann. 2012. Pollination function transferred: modified tepals of Albuca (Hyacinthaceae) serve as secondary stigmas. Annals of Botany 110:565572.

Kaplan, D. R. 1969. Sporogenesis and gametogenesis in Dowingia (Campanulaceae; Loelioideae). Bulletin of the Torrey Botanical Club 96:418-434.
Khosla, C., K. Shivanna, and H. M. Ram. 2000. Reproductive biology of Polypleurum stylosum (Podostemaceae). Journal of Aquatic Botany 67:143-154.

Kikuchi, S., H. Kino, H. Tanaka, and H. Tsujimoto. 2007. Pollen tube growth in cross combinations between Torenia fournieri and fourteen related species. Breeding Science 57:117-122.
Knight Jr, R., and D. Scott. 1964. Effects of temperatures on self-and cross-pollination and fruiting of four highbush blueberry varieties. Proceedings of the American Society for Horticultural Science.
Larsen, P. B., E. N. Ashworth, M. L. Jones, and W. R. Woodson. 1995. Pollination-induced ethylene in carnation (role of pollen tube growth and sexual compatibility). Plant Physiology 108:1405-1412.
Lewis, D., and L. K. Crowe. 1958. Unilateral interspecific incompatibility in flowering plants. Heredity 12:233-256.
Li, H., S. An, Y. Zhi, C. Yan, L. Zhao, C. Zhou, Z. Deng, W. Su, and Y. Liu. 2008. Protogynous, pollen limitation and low seed production reasoned for the dieback of Spartina anglica in coastal China. Plant Science 174:299-309.
Liu, B., N. Boivin, D. Morse, and M. Cappadocia. 2012. A time course of GFP expression and mRNA stability in pollen tubes following compatible and incompatible pollinations in Solanum chacoense. Sexual Plant Reproduction 25:205-213.
Liu, J., H. Zhang, Y. Cheng, S. Kafkas, and M. Güney. 2014. Pistillate flower development and pollen tube growth mode during the delayed fertilization stage in Corylus heterophylla Fisch. Plant Reproduction 27:145-152.
Liu, Y., Z. L. Luo, X. Q. Wu, X. F. Bai, and D. X. Zhang. Functional dioecy in Morinda parvifolia (Rubiaceae), a species with stigma-height dimorphism. Plant Systematics and Evolution 298:775-785.
Luca, A., A. Palermo, F. Bellusci, and G. Pellegrino. 2015. Pollen competition between two sympatric Orchis species (Orchidaceae): the overtaking of conspecific of heterospecific pollen as a reproductive barrier. Plant Biology 17:219-225.
Luo, Y., L. Lu, A. H. Wortley, D.-Z. Li, H. Wang, and S. Blackmore. 2015. Evolution of angiosperm pollen. 3. Monocots. Annals of the Missouri Botanical Garden 101:406-455.
Mahy, G., and A. L. Jacquemart. 1999. Early inbreeding depression and pollen competition in Calluna vulgaris (L.) Hull. Annals of Botany 83:697-704.
Mangla, Y., R. Tandon, S. Goel, and S. Raina. 2013. Structural organization of the gynoecium and pollen tube path in Himalayan sea buckthorn, Hippophae rhamnoides (Elaeagnaceae). AoB Plants 5.
Matsumoto, Y., M. Miyagi, N. Watanabe, and T. Kuboyama. 2012. Temperature-dependent enhancement of pollen tube growth observed in interspecific crosses between wild Cucumis spp. and melon (C. melo L.). Scientia Horticulturae 138:144-150.
Melser, C., M. C. Rademaker, and P. G. Klinkhamer. 1997. Selection on pollen donors by Echium vulgare (Boraginaceae). Sexual Plant Reproduction 10:305-312.
Millner, H. J., A. R. McCrea, and T. C. Baldwin. 2015. An investigation of self-incompatibility within the genus Restrepia. American Journal Of Botany 102:487-494.
Moritz, A., and P. Ludders. 1993. Pollen germination, pollen-tube growth and fertilization behavior of different Brazil nut clones (Bertholletia excelsa Humb And Bonpl). Angewandte Botanik 67:107-112.
Nghiem, Q., J. Harbard, C. Harwood, A. Griffin, T. Ha, and A. Koutoulis. 2013. Pollen-pistil interactions between autotetraploid and diploid Acacia mangium and diploid A. auriculiformis. Journal of Tropical Forest Science:96-110.

Keese and Williams 2019 - American Journal of Botany - Appendix SI

Patil, P., S. K. Malik, K. S. Negi, J. John, S. Yadav, G. Chaudhari, and K. V. Bhat. 2013. Pollen germination characteristics, pollen-pistil interaction and reproductive behaviour in interspecific crosses among Abelmoschus esculentus Moench and its wild relatives. Grana 52:1-14.
Pounders, C., S. Reed, and M. Pooler. 2006. Pollination biology of Lagerstroemia indica and several interspecific hybrids. HortScience 413:575-578.
Rabe, A. J., and D. E. Soltis. 1999. Pollen tube growth and self-incompatibility in Heuchera micrantha var. diversifolia (Saxifragaceae). International Journal of Plant Sciences 160:1157-1162.
Radford, A. E., H. E. Ahles, and C. R. Bell. 1968. Manual of the vascular flora of the Carolinas. University of North Carolina Press, Chapel Hill, NC:.
Ramstetter, J., and D. Mulcahy. 1986. Pollen competition in Aureolaria pedicularia. Pages 411416 Biotechnology and Ecology of Pollen. Springer.
Reed, S. M. 2004. Self-incompatibility in Cornus florida. HortScience 39:335-338.
Rêgo, M., E. Rêgo, C. Bruckner, E. Da Silva, F. Finger, and K. Pereira. 2000. Pollen tube behavior in yellow passion fruit following compatible and incompatible crosses. Theoretical and Applied Genetics 101:685-689.
Reuveni, O., S. Abu, and S. Golobovitz. 1985. Date palm pollen germination and tube elongation on pistillate flowers cultured at different temperatures. Pages 91-96 in Symposium on Physiology of Productivity of Subtropical and Tropical Tree Fruits 175.
Rodríguez-Riaño, T., A. Ortega-Olivencia, and J. A. Devesa. 1999. Reproductive biology in two Genisteae (Papilionoideae) endemic of the western Mediterranean region: Cytisus striatus and Retama sphaerocarpa. Canadian Journal of Botany 77:809-820.
Russell, S. D. 1985. Preferential fertilization in Plumbago - Ultrastrucural evidencefor gametelevel recognition in an angiosperm. Proceedings Of The National Academy Of Sciences Of The United States Of America 82:6129-6132.
Sage, T. L., M. V. Price, and N. M. Waser. 2006. Self-sterility in Ipomopsis aggregata (Polemoniaceae) is due to prezygotic ovule degeneration. American Journal Of Botany 93:254-262.
Sangduen, N., E. L. Sorensen, and G. H. Liang. 1983. Pollen germination and pollen tube growth following self-pollination and intra- and interspecific pollination of Medicago species. Euphytica 32:527-534.
Sears, E. R. 1937. Cytological phenomena connected with self-sterility in the flowering plants. Genetics 22:130.
Sedgley, M., and M. Buttrose. 1978. Some effects of light intensity, daylength and temperature on flowering and pollen tube growth in the watermelon (Citrullus lanatus). Annals of botany 42:609-616.
Sehgal, A., J. P. Khurana, M. Sethi, and H. Ara. 2011. Occurrence of unique three-celled megagametophyte and single fertilization in an aquatic angiosperm-Dalzellia zeylanica (Podostemaceae-Tristichoideae). Sexual Plant Reproduction 24:199-210.
Sehgal, A., N. Mann, and H. M. Ram. 2014. Structural and developmental variability in the female gametophyte of Griffithella hookeriana, Polypleurum stylosum, and Zeylanidium lichenoides and its bearing on the occurrence of single fertilization in Podostemaceae. Plant reproduction 27:205-223.

Keese and Williams 2019 - American Journal ot Botany - Appendix SI

Sogo, A., and H. Tobe. 2008. Mode of pollen tube growth in pistils of Ticodendron incognitum (Ticodendraceae, Fagales) and the evolution of chalazogamy. Botanical Journal of the Linnean Society 157:621-631.
Sunnichan, V. G., H. Y. M. Ram, and K. R. Shivanna. 2005. Reproductive biology of Boswellia serrata, the source of salai guggul, an important gum-resin. Botanical Journal of the Linnean Society 147:73-82.
Traub, H. P., and C. T. O'Rork. 1939. Course of pollen tube growth in Carica papaya and Cucurbita spp. Nature 143:562-562.
Travers, S. E. 1999. Environmental effects on components of pollen performance in Faramea occidentalis (L.) A. Rich.(Rubiaceae) 1. Biotropica 31:159-166.
Tucker, S. C. 1996. Trends in evolution of floral ontogeny in Cassia sensu stricto, Senna, and Chamaecrista (Leguminosae: Caesalpinioideae: Cassieae: Cassiinae); a study in convergence. American Journal Of Botany 83:687-711.
Valtueña, F. J., T. Rodríguez-Riaño, F. Espinosa, and A. Ortega-Olivencia. 2010. Self-sterility in two Cytisus species (Leguminosae, Papilionoideae) due to early-acting inbreeding depression. American Journal Of Botany 97:123-135.
van Ryn, D., J. Lassoie, and J. Jacobson. 1988. Effects of acid mist on in vivo pollen tube growth in red maple. Canadian Journal of Forest Research 18:1049-1052.
Vesprini, J. L., and E. Pacini. 2000. Breeding systems in two species of the genus Helleborus (Ranunculaceae). Plant Biosystems 134:193-197.
von Haselberg, C., P. Ludders, and R. Stosser. 2004. Pollen tube growth, fertilization and ovule longevity in the carob tree (Ceratonia siliqua L.). Angew. Bot 78:32-40.
Wainwright, C. M. 1978. Floral biology and pollination ecology of two desert Lupines. Bulletin of the Torrey Botanical Club 105:24-38.
Williams, J. H. 2012. Pollen tube growth rates and the diversification of flowering plant reproductive cycles. International Journal of Plant Sciences 173:649-661.
Wolf, P. G., D. R. Campbell, N. M. Waser, S. D. Sipes, T. R. Toler, and J. K. Archibald. 2001. Tests of pre- and postpollination barriers to hybridization between sympatric species of Ipomopsis (Polemoniaceae). American Journal Of Botany 88:213-219.
Wu, X., A. Li, and D. Zhang. 2010. Cryptic self-incompatibility and distyly in Hedyotis acutangula Champ.(Rubiaceae). Journal of Plant Biology 12:484-494.
Xie, P. W., Z. L. Luo, and D. X. Zhang. 2013. Syrphid fly pollination of Guihaiothamnus acaulis (Rubiaceae), a species with "butterfly" flowers. Journal of Systematics and Evolution 51:86-93.
Zhang, X. L., R. W. Gituru, C. F. Yang, and Y. H. Guo. 2010. Exposure to water increased pollen longevity of pondweed (Potamogeton spp.) indicates different mechanisms ensuring pollination success of angiosperms in aquatic habitat. Evolutionary Ecology 24:939-953.
Zhang, X. S., and S. D. O'Neill. 1993. Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. Plant Cell 5:403-418.

Keese and Williams 2019 - American Journal of Botany - Appendıx S'2

Appendix S2: Pollen tube growth rate (PTGR) evolution across Spermatophytes. Contour plot showing reconstructed history of $P T G R$. Cool colors indicate $P T G R$ s closer to the minimum value in seed plants while warm colors indicate $P T G R$ s closer to the maximum value in seed plants. Scale bar indicates millions of years before present.

Figure 3.

Keese and Williams 2019 - American Journal ot Botany - Appendix S3

Appendix S3: Summary statistics for pollen tube growth rate (PTGR) of Magnolia

grandiflora.

Statistic	PTGR
raw mean $(N=25$ crosses $)$	$827.6 \mu \mathrm{~m} \mathrm{~h}^{-1}$
raw SD $(N=25)$	$141.3 \mu \mathrm{~m} \mathrm{~h}^{-1}$
raw CV	0.1708
$\log (10)$ mean	$2.912 \mu \mathrm{~m} \mathrm{~h}^{-1}$
transformed SD	$0.0689 \mu \mathrm{~m} \mathrm{~h}^{-1}$
transformed CV	0.0237

Keese and Williams 2019 - Amerıcan Journal ot Botany - Appendix S4

Appendix S4: Sensitivity analysis for the magnitude of $\log _{10} P T G R$ error estimates. Values

 in each column represent model weights from separate analyses of angiosperm diploids ($N=$ $138)$ vs. polyploids $(N=68)$. Column headings indicate the coefficient of variation (CV), ranging from zero to 0.50 , used to calculate estimated species-specific standard deviations around $P T G R s$ in each analysis. The best-fitting model at each CV is indicated in bold. ${ }^{\text {a }}$, Empirically-determined CV of Magnolia grandiflora.| | Coefficient of Variation | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model | $\mathbf{0 . 0 0}$ | $\mathbf{0 . 0 2 3 7}^{\mathbf{a}}$ | $\mathbf{0 . 0 5}$ | $\mathbf{0 . 1 0}$ | $\mathbf{0 . 2 5}$ | $\mathbf{0 . 5 0}$ | |
| OUMV | $\mathbf{0 . 3 7 6}$ | $\mathbf{0 . 3 7 3}$ | $\mathbf{0 . 4 5 9}$ | $\mathbf{0 . 4 6 1}$ | 0.119 | 0.045 | |
| OUMA | 0.363 | 0.333 | 0.307 | N/A | 0.172 | 0.070 | |
| OUM | 0.157 | 0.174 | 0.137 | 0.309 | 0.212 | 0.080 | |
| OU1 | 0.104 | 0.120 | 0.097 | 0.230 | $\mathbf{0 . 3 9 0}$ | 0.188 | |
| BM1 | $1.74 \mathrm{E}-31$ | $1.77 \mathrm{E}-25$ | $3.20 \mathrm{E}-20$ | $4.58 \mathrm{E}-14$ | 0.089 | $\mathbf{0 . 5 2 8}$ | |
| BMS | $5.45 \mathrm{E}-32$ | $5.52 \mathrm{E}-26$ | $4.81 \mathrm{E}-24$ | $1.30 \mathrm{E}-12$ | 0.017 | 0.089 | |

Keese and Williams 2019 - American Journal ot Botany - Appendix SS

Appendix S5: PTGR evolution in gymnosperms vs. angiosperms. Selective regime 1
represents gymnosperms $(N=28)$ and selective regime 2 represents angiosperms ($N=423$).
Models representing $<1 \%$ of the model weight are excluded.

model	ロAICe	model weight	sigma sq1	alpha1	sigma sq2	alpha2	optimum1	se1	optimum2	se2
OUMV	(822.1)	0.338	0.091	0.122	0.139	0.122	0.187	0.123	2.690	0.048
OUM	0.040	0.332	0.137	0.124	0.137	0.124	0.188	0.150	2.690	0.047
OUMA	0.051	0.330	0.091	0.120	0.091	0.123	0.187	0.123	2.690	0.048
AVERAGED MODEL	~ 1	0.106	0.122	0.122	0.123	0.187	0.132	2.690	0.048	

Keese and Williams 2019 - American Journal of Botany - Appendix S6

Appendix S6: C-value evolution in gymnosperms vs. angiosperms. Selective regime 1 represents gymnosperms $(N=23)$ and selective regime 2 represents angiosperms $(N=161)$.

Models representing $<1 \%$ of the model weight are excluded.

model	ロAICe	model weight	sigma sq1	alpha1	sigma sq2	alpha2	optimum1	se1	optimum2	se2
OUMV	(172.4)	0.502	0.007	0.095	0.005	0.095	1.231	0.041	0.184	0.051
OUMA	0.02	0.498	0.006	0.085	0.006	0.096	1.231	0.042	0.184	0.051
AVERAGED										
MODEL	~ 1	0.007	0.09	0.005	0.095	1.231	0.041	0.184	0.051	

Keese and Williams 2019 - American Journal of Botany - Appendix S'/

Appendix S7: Closely-related taxon analyses.

Appendix S7a. Closely-related species pairs extracted from ploidy dataset. PTGRs in $\mu \mathrm{m} \mathrm{h}^{-1}$.
Binomial test ($P=0.623 ; N=10$).

DIPLOID	POLYPLOID	DIPLOID	POLYPLOID	FASTER
TAXON	TAXON	PTGR	PTGR	TAXON
Anagallis arvensis	Anagallis monelli	233.33	105.56	diploid
Hemerocallis thunbergii	Hemerocallis fulva	4166.67	6266.67	polyploid
Ipomoea purpurea	Ipomoea batatas	7450	4625	diploid
Iris mandshurica	Iris pseudacorus	278.65	4255.50	polyploid
Lythrum junceum	Lythrum salicaria	722.22	493.60	diploid
Medicago rigidula	Medicago sativa	82.23	192.17	polyploid
Prunus avium	Prunus domestica	260.88	177.5	diploid
Tabebuia rosea	Tabebuia chrysotricha	1111.11	1342.45	polyploid
Trifolium pratense	Trifolium polymorphum	103.89	444.44	polyploid
Ulmus pumila	Ulmus americana	56.25	56.25	equivocal

Keese and Williams 2019 - American Journal of Botany - Appendix S'/

Appendix S7b. Intraspecific diploid-polyploid cytotypes taken from the literature. All are autopolyploids. Binomial test, $N=11, P=0.0020$. Percent difference is calculated relative to the diploid.

REF.	TAXON	$\begin{gathered} \text { DIPLOID } \\ P T G R \end{gathered}$	POLYPLOID PTGR	$\begin{aligned} & \text { POLYPLOID } \\ & +/-(\% \text { DIFF }) \end{aligned}$
1	Beta vulgaris $2 x, 4 x$	$241.2 \mu \mathrm{~m} / \mathrm{h}$	$142.7 \mu \mathrm{~m} / \mathrm{h}$	slower (-69\%)
2	Cucumis melo $2 x, 4 x$	"no difference"		equivocal
3	Datura stramonium $2 \mathrm{x}, 4 \mathrm{x}$	2953.7 m $/ \mathrm{h}$	$2812.5 \mu \mathrm{~m} / \mathrm{h}$	slower (-4.8\%)
4	Lactuca sativa $2 x, 4 x$	"faster"	"slower"	slower
5	Malus domestica $2 x, 4 x$	3.8 units/96 h	3.1 units/96 h	slower (-18.4\%)
6	Malus domestica $2 x, 3 x$	$682 \mu \mathrm{~m} / \mathrm{h}$	$465 \mu \mathrm{~m} / \mathrm{h}$	slower (-31.8\%)
7	Secale cereale $2 x, 4 x$	12.24 units/h	12.08 units/h	slower (-1.3\%)
8	Solanum sp. $2 \mathrm{x}, 4 \mathrm{x}$	"faster"	"slower"	slower
9	Trifolium pratense $2 x, 4 x$	$2322 \mu \mathrm{~m} / \mathrm{h}$	$1950 \mu \mathrm{~m} / \mathrm{h}$	slower (-16\%)
10,11	Zea mays $2 \mathrm{x}, 4 \mathrm{x}$	Slower pollen pollen tube g	germination and owth rate in $4 x$	slower

References

1. Matsumura S, Mochizuki A. 1953. Improvement of sugar beet by means of induced triploidy. The Japanese Journal of Genetics 28(2): 47-56.
2. Susin I, Álvarez JM. 1997. Fertility and pollen tube growth in polyploid melons (Cucumis melo L.). Euphytica 93(3): 369-373.
3. Buchholz JT, Blakeslee AF. 1929. Pollen-tube growth in crosses between balanced chromosomal types of Datura stramonium. Genetics 14: 538-568.

Keese and Williams 2019-American Journal of Botany - Appendix S'/
4. Einset J. 1944. Cytological basis for sterility in induced autotetraploid lettuce (Lactuca sativa L.). American Journal of Botany: 336-342.
5. Adachi Y, Komori S, Hoshikawa Y, Tanaka N, Abe K, Bessho H, Watanabe M, Suzuki A. 2009. Characteristics of fruiting and pollen tube growth of apple autotetraploid cultivars showing self-compatibility. Journal of the Japanese Society for Horticultural Science 78(4): 402-409.
6. Modlibowska I. 1945. Pollen tube growth and embryo-sac development in apples and pears. Ph.D. dissertation, University of London, London.
7. Chin T. 1943. Cytology of the autotetraploid rye. Botanical Gazette 104(4): 627-632.
8. Modlibowska I. 1945. Pollen tube growth and embryo-sac development in apples and pears. Ph.D. dissertation, University of London, London.
9. Evans AM. 1962. Species hybridization in Trifolium. 2. Investigating pre-fertilization barriers to compatibility. Euphytica 11(3): 256-262.
10. Randolph L. 1935. Cytogenetics of tetraploid maize. J. agric. Res 50: 591-605.
11. Green JM. 1946. Comparative rates of pollen tube establishment in diploid and tetraploid maize. Journal of Heredity 37(4): 117-121.

Keese and Williams 2019 - American Journal ot Botany - Appendix Š

Appendix S8: Phylogenetic ANCOVA results. Models comprising $<1 \%$ of the model weight are excluded.
Appendix S8a: Angiosperms only ($N=100$).
Full model

Model	$\underline{\text { Weight }}$		$\boldsymbol{P}_{\text {C-value }}$	$\underline{\boldsymbol{P}_{\text {ploidy }}}$
kappa	0.688	0.028	0.565	$\underline{\boldsymbol{P}_{\text {interaction }}}$
OU	0.287	0.005	0.679	0.334
lambda	0.025	0.076	0.867	0.414

Model averaged slope for C-value: 0.399 ± 0.167

No interaction

Model	$\underline{\text { Weight }}$	$\underline{\boldsymbol{P}_{\text {C-value }}}$	$\underline{\boldsymbol{P}_{\text {ploidy }}}$
	0.652	0.046	0.748
OU	0.313	0.006	0.895
lambda	0.035	0.083	0.979

Model averaged slope for C-value: 0.344 ± 0.153

	C-value only	
Model	$\underline{\text { Weight }}$	$\underline{\boldsymbol{P} \text { C-value }}$
kappa	0.642	0.045
OU	0.322	0.005
lambda	0.036	0.079
Model averaged slope for C-value: 0.344 ± 0.153		

Appendix S8b: All seed plants ($N=118$).
Full model

Model	Weight	$\boldsymbol{P}_{\text {C-value }}$	$\underline{\boldsymbol{P}_{\text {ploidy }}}$	$P_{\text {interaction }}$
kappa	0.998	0.080	0.486	0.624

Slope for C-value: 0.288 ± 0.163

No interaction

$\underline{\text { Model }}$	$\underline{\text { Weight }}$	$\underline{\boldsymbol{P}_{\text {C-value }}}$	$\underline{\boldsymbol{P}_{\text {ploidy }}}$
kappa	0.997	0.092	0.562

Slope for C-value: 0.263 ± 0.155

C-value only

Model	$\frac{\text { Weight }}{0.997}$	$\frac{\boldsymbol{P}_{\text {C-value }}}{0.090}$
kappa		

