1	Effects of genome size on pollen performance
2	
3	
4	
5	How does genome size affect the evolution of pollen tube growth rate, a haploid
6	performance trait?
7	
8	
9	
10	
11	John B. Reese ^{1,2} and Joseph H. Williams ²
12	Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN
13	37996, U.S.A.
14	
15	
16	
17	¹ Author for correspondence:
18	John B. Reese
19	Tel: 865 974 9371
20	Email: jreese11@vols.utk.edu
21	

2	2
7	7

ABSTRACT

23	Premise of the Study – Male gametophytes of most seed plants deliver sperm to eggs via a
24	pollen tube. Pollen tube growth rates (PTGRs) of angiosperms are exceptionally rapid, a pattern
25	attributed to more effective haploid selection under stronger pollen competition. Paradoxically,
26	whole genome duplication (WGD) has been common in angiosperms but rare in gymnosperms.
27	Pollen tube polyploidy should initially accelerate PTGR because increased heterozygosity and
28	gene dosage should increase metabolic rates, however polyploidy should also independently
29	increase tube cell size, causing more work which should decelerate growth. We asked how
30	genome size changes have affected the evolution of seed plant PTGRs.
31	Methods - We assembled a phylogenetic tree of 451 species with known PTGRs. We then used
32	comparative phylogenetic methods to detect effects of neo-polyploidy (within-genus origins),
33	DNA content, and WGD history on PTGR, and correlated evolution of PTGR and DNA content.
34	Key Results - Gymnosperms had significantly higher DNA content and slower PTGR optima
35	than angiosperms, and their PTGR and DNA content were negatively correlated. For
36	angiosperms, 89% of model weight favored Ornstein-Uhlenbeck models with a faster PTGR
37	optimum for neo-polyploids, but PTGR and DNA content were not correlated. In comparisons of
38	within-genus and intraspecific-cytotype pairs, $PTGRs$ of neo-polyploids \leq paleo-polyploids.
39	Conclusions – Genome size increases should negatively affect PTGR when genetic
40	consequences of WGDs are minimized, as found in intra-specific autopolyploids (low heterosis)
41	and gymnosperms (few WGDs). But in angiosperms, the higher PTGR optimum of neo-
42	polyploids and non-negative PTGR-DNA content correlation suggest that recurrent WGDs have
43	caused substantial PTGR evolution in a non-haploid state.
44	

44

- **Keywords:** DNA content, evolution of development, gametophyte, macroevolution, pollen
- 46 competition, pollen tube growth rate, polyploidy, whole genome duplication.

49

INTRODUCTION

50 In seed plants, the male gametophyte is a highly-reduced, haploid organism that develops 51 within the pollen grain and completes its life cycle after pollination by growing a pollen tube that 52 invades female reproductive tissues. The pollen tube functions to attach the male gametophyte 53 and to absorb nutrients from female tissues, and in most seed plants (conifers, Gnetales, and 54 angiosperms), it has the novel function of transporting the sperm cells to the egg-bearing female 55 gametophyte (siphonogamy) (Friedman, 1993). Pollen tube growth rate (*PTGR*) is a central 56 aspect of male gametophyte performance that can evolve due to changes in the time between 57 pollination and fertilization, and due to changes in the intensity of pollen tube competition. 58 Strikingly, angiosperms are known to have much shorter reproductive cycles (Williams and 59 Reese, 2019), much higher potential for pollen competition (Mulcahy, 1979), and orders of 60 magnitude faster *PTGRs* (Williams, 2012) relative to gymnosperms. The pattern of exceptionally 61 fast angiosperm *PTGRs* is thought to have evolved rapidly via haploid selection on pollen-62 expressed genes (Mulcahy, 1979; Arunkumar et al., 2013; Otto et al., 2015), which constitute a 63 large portion of the genome (Tanksley et al., 1981; Rutley and Twell, 2015; Hafidh et al., 2016). 64 If the dramatic and rapid acceleration of *PTGRs* in angiosperms has been driven by 65 haploid selection on pollen performance genes, then one might expect polyploidy to be rare in 66 angiosperms. Evolution above the haploid level is expected to reduce the efficiency of selection 67 on pollen (Otto et al., 2015). Yet, the opposite is true – ancient whole genome duplications 68 (WGDs), recent polyploids, and speciation by polyploidy have been especially common in 69 angiosperms, whereas in gymnosperms genome size has evolved largely by other processes 70 (Wood et al., 2009; Mayrose et al., 2011; Leitch & Leitch, 2012, 2013; Landis et al., 2018). In 71 fact, large changes genome size can have a number of immediate effects on PTGR. First, PTGR

72 might be faster in a neo-diploid pollen tube since increases in gene number cause: 1) heterosis, 73 due to sheltering of deleterious pollen-expressed alleles and/or new allelic interactions upon loss 74 of haploidy (Lande and Schemske, 1985; Husband and Schemske, 1997; Comai, 2005; Birchler 75 et al. 2010; Husband, 2016), and 2) gene dosage effects, due to increased capacity for protein 76 synthesis and hence the possibility for higher metabolic rates (Stebbins, 1974; Comai, 2005; 77 Conant and Wolfe, 2008). On the other hand, substantial increases in DNA content (whether by 78 WGD or other processes) are known to increase nuclear size, cell size, and the duration of the 79 cell cycle, independent of the effects of genes (Bennett, 1971, 1972; Cavalier-Smith, 1978; Price 80 1988; Cavalier-Smith, 2005). The phenotypic effects of increased bulk DNA, hereafter referred 81 to as "nucleotypic" effects (Bennett, 1971; Snodgrass et al, 2016; Doyle & Coate, 2019), cause 82 more work for the growing pollen tube cell and should therefore negatively affect *PTGR*, 83 counteracting the positive "genotypic" effects of heterozygosity and gene dosage. 84 As shown in Figure 1, if genome size expansion occurs without increasing the number of 85 genes, then nucleotypic effects will predominate and slower *PTGRs* should evolve. But if 86 genome size increase occurs by WGD, then altered gene expression patterns (due to dosage and 87 heterozygosity effects) should counteract nucleotypic effects in the stabilized neo-polyploid (Fig. 88 1). In the latter case, the balance of nucleotypic and genotypic effects varies depending on the 89 magnitude of potential heterosis, which depends directly on the amount of standing genetic 90 variation (Birchler et al. 2010). In general, at inception tetraploid sporophytes are expected to 91 have higher heterozygosity than their diploid progenitors, irrespective of mode of 92 polyploidization (auto- to allo-polyploidy) or mating system (Lande and Schemske 1985; Soltis 93 and Soltis 2000). Thus, at inception, autopolyploids that arise from outcrossing progenitors and

allopolyploids will have a higher potential for heterosis, relative to autopolyploids that arosefrom selfing ancestors (Fig. 1).

96 After the initial effects of WGD, genotypic effects continue to evolve under both 97 stabilizing and directional selection on *PTGR*, mediated by shifts in mating system and 98 phenomena such as genome downsizing, biased gene retentions, recombination, and ultimately 99 the return to disomic inheritance (Conant and Wolfe, 2008; De Smet et al. 2013; Conant et al., 100 2014; Freeling et al., 2015; Dodsworth et al., 2016; Panchy et al. 2016; Wendel et al., 2018). 101 Nucleotypic effects by definition can only evolve by changes in genome size, which after WGD 102 tend to be biased to small losses relative to the size of the WGD (Dodsworth et al. 2016). Hence, 103 with time, genotypic effects are predicted to overwhelm nucleotypic effects, irrespective of 104 initial effects and the direction of *PTGR* evolution.

105 In this study, we used model-based comparative phylogenetic analyses to determine if 106 polyploidy, DNA C-value, and WGD history have affected the evolution of *PTGRs* in seed 107 plants, and whether genome size effects have occurred predominantly during polyploid periods 108 of history or during subsequent periods of more or less diploid evolution. Because all seed plants 109 have at least one WGD in their history, we defined neo-polyploids as having a higher 110 chromosome multiple than the base chromosome number of their genus, and paleo-polyploids 111 (hereafter, "diploids") as having similar chromosome number as the genus base number (as in 112 Wood et al. 2009; Mayrose et al. 2011). This allowed us to determine if, 1) neo-polyploids have 113 faster *PTGRs* than diploids, as predicted if WGDs generally produce strong initial genotypic 114 effects that persist in the polyploid condition, or 2) neo-polyploids have slower *PTGRs* than 115 diploids, as predicted if nucleotypic effects initially outweigh genotypic effects and if fast 116 *PTGRs* generally evolve after diploidization (eg. in paleopolyploids). We also predict an

117 underlying negative correlation between *PTGR* and genome size due to nucleotypic effects,

118 which should be most apparent in intraspecific neo-polyploids and in lineages with little history

119 of WGD.

- 120
- 121

MATERIALS AND METHODS

122 Tree Construction and Dating – GenBank accessions for 16 gene regions (rbcL, matK, trnL-F, 123 18s rDNA, atpB, ndhF, adh, trnL, rpl32, trnT-L, psbA-trnH, rpl32-trnL, ITS, 5.8s rRNA, rps16, 124 and 26s rDNA) for 451 seed plant species with pollen tube growth rate data were retrieved, 125 cleaned, and assembled into a multiple gene alignment (length -9263 base pairs, 16 partitions, 126 69.6% missing data) using PHLAWD and phyutility (Smith and Donoghue, 2008; Smith and 127 Dunn, 2008). Tree inference was performed using maximum likelihood in RAxML version 8 128 (Stamatakis, 2014) on CIPRES. A pruned version of the seed plant tree from Magallón et al. 129 (2015) was used as a guide tree to enforce topology of major clades. The resulting maximum 130 likelihood estimate of the tree was rooted and ultrametricized using the *ape* (Paradis et al., 2004) 131 and *geiger* packages in R (Harmon et al., 2008). Time-calibration was performed with the 132 Congruification method (Eastman et al., 2013), using the Magallón et al. (2015) phylogeny as the 133 reference tree.

134Data collection and character scoring – Data on PTGRs were taken from Williams135(2012) and more recent literature (cited in Appendix S1; see the Supplementary Data with this136article). The PTGR value used for each species represents an estimate of maximum sustained137growth rate, which is consistent with other comparative analyses of physiological traits, and with138the fact that researchers almost always measure PTGRs from the longest pollen tube(s). Thus,139PTGR values for each species represent an average of maximum in vivo growth rates, or if there

140 was more than one report for a species the average of those values (as in Williams, 2012). 141 *PTGRs* were taken exclusively from within-ploidy level crosses (i.e., never from inter-ploid 142 crosses), in keeping with our overall goal of finding mechanisms underlying the pattern of *PTGR* 143 evolution within stabilized polyploids. 144 DNA content was analyzed using 1C-value: the amount of nuclear DNA in the 145 unreplicated gametic nucleus, irrespective of ploidy level (Swift, 1950; Bennett and Leitch, 146 2012). As we were primarily interested in the nucleotypic effects of bulk DNA amount, we use 147 the terms C-value, DNA content, and genome size interchangeably throughout. C-value data was 148 collected from the Kew Royal Botanic Gardens Plant C-value Database (Bennett and Leitch, 149 2012). Chromosome counts were obtained from the Index to Plant Chromosome Numbers 150 (IPCN). To examine the effect of recent polyploidy (defined as occurring at or within the genus 151 level; Wood et al., 2009; Mayrose et al., 2011) on PTGR, we scored taxa as "neo-polyploid" if 152 their chromosome counts were ≥ 1.5 times that of their generic 1x base count (from Wood et al., 153 2009) and "diploid" (paleo-polyploid) if < 1.5 times that value (N = 206 angiosperms, 23 154 gymnosperms). To examine the effect of ancient (deeper than genus-level) duplication events on 155 PTGR, the number of WGDs in each genus-to-root lineage was counted for each angiosperm 156 (found in Appendix S1 of Landis et al. 2018) and gymnosperm (Li et al. 2015). 157 Phylogenetic Comparative Analyses - To visualize changes in DNA content and PTGR 158 along tree branches and to generate estimates of node states, ancestral state reconstructions were 159 performed and plotted using the contMap function in *phytools* (Felsenstein, 1985; Revell, 160 2012)(Appendix S2). Given many known biological differences between gymnosperms and 161 angiosperms in pollen tube growth (Friedman, 1993; Williams, 2008) and in mechanisms of

162 genome size change (see Discussion) (Ohri and Khoshoo, 1986; Leitch et al., 1998), all

163	comparative analyses were performed on gymnosperms only, angiosperms only, and the full
164	dataset (all spermatophytes). C-value and <i>PTGR</i> were log ₁₀ -transformed for all analyses.
165	Model-based analyses were used to examine patterns of PTGR and C-value evolution
166	separately. The OUwie function was implemented in R (Beaulieu and O'Meara, 2014), and the
167	following models were tested: single- and multi-rate Brownian motion (BM1, BMS,
168	respectively), single-regime Ornstein-Uhlenbeck (OU1), and multi-regime OU models with
169	either one global α and σ^2 estimate (OUM), one α and multiple σ^2 (OUMV), or multiple α and
170	one σ^2 (OUMA). In all models, σ^2 represents the rate of random evolution and α , the strength of
171	attraction to an optimum, θ . The single- and multiple-regime models were compared to test
172	whether or not, 1) angiosperms and gymnosperms evolve around different PTGR or C-value
173	optima, and 2) diploids and neo-polyploids (within all three groups) evolve around different
174	PTGR or C-value optima. For all analyses, AICc values were used to calculate model weights
175	and the weighted average of parameter values was then calculated using all models that
176	contributed > 1% of the model weight (Burnham & Anderson, 2002). Unless otherwise noted, all
177	measures of uncertainty around parameter estimates are standard errors.
178	Since each <i>PTGR</i> value represents a species mean obtained from multiple measurements,
179	we attempted to incorporate error into phylogenetic comparative analyses. Since species means
180	were log ₁₀ -transformed for analysis, log ₁₀ -transformed SEs are also required. As there is no
181	reliable way to calculate the log_{10} -transformed SE from the literature without the original data for
182	each species, we took the following approach. First, we assumed all species had similar SEs in
183	PTGR, and we applied an empirically-determined SE from an exemplar species to all. Magnolia

184 grandiflora has an average *PTGR* of $828 \pm 141 \,\mu\text{m h}^{-1}$ (*N* = 25 outcrosses), close to the

angiosperm median of 587 μ m h⁻¹ (Williams, 2012 and this study) (Appendix S3). The standard

186	deviation (SD) of log ₁₀ -transformed data was calculated and divided by the mean of the log ₁₀ -
187	transformed data to acquire a coefficient of variation (CV) of 0.0237. We then multiplied the
188	log_{10} -transformed mean <i>PTGR</i> of each species by 0.0237 to provide an estimate of the log_{10}
189	taxon-specific standard deviation. The standard deviation (SD) was used as a conservative
190	estimate of error because sample sizes were generally not available for calculating SE. Secondly,
191	we performed a sensitivity analysis by evaluating each evolutionary model in OUwie with SDs
192	calculated from hypothetical global CVs of 0.00, 0.05, 0.10, 0.25, and 0.50 (Appendix S4).
193	The association between recent polyploidy and PTGR was also assessed among 10
194	diploid-polyploid near-relative pairs (appearing as sister taxa on the tree at the within-genus
195	level). Only polyploid taxa with a single diploid sister on the tree were used. The PTGRs of 11
196	intraspecific diploid-autopolyploid pairs from the literature were also compared. A two-tailed
197	binomial (sign) test was used to test significance in both.
197 198	binomial (sign) test was used to test significance in both. The cumulative effect of ancient polyploid events was explored with phylogenetic
198	The cumulative effect of ancient polyploid events was explored with phylogenetic
198 199	The cumulative effect of ancient polyploid events was explored with phylogenetic generalized least squares (<i>PGLS</i>) regression using the <i>phylolm</i> package in R (Ho & Ane, 2014).
198 199 200	The cumulative effect of ancient polyploid events was explored with phylogenetic generalized least squares (<i>PGLS</i>) regression using the <i>phylolm</i> package in R (Ho & Ane, 2014). The number of ancient duplication events in the history of each tip taxon (inferred from Landis et
198 199 200 201	The cumulative effect of ancient polyploid events was explored with phylogenetic generalized least squares (<i>PGLS</i>) regression using the <i>phylolm</i> package in R (Ho & Ane, 2014). The number of ancient duplication events in the history of each tip taxon (inferred from Landis et al., 2018) was used as the predictor variable with <i>PTGR</i> as the response variable.
198 199 200 201 202	The cumulative effect of ancient polyploid events was explored with phylogenetic generalized least squares (<i>PGLS</i>) regression using the <i>phylolm</i> package in R (Ho & Ane, 2014). The number of ancient duplication events in the history of each tip taxon (inferred from Landis et al., 2018) was used as the predictor variable with <i>PTGR</i> as the response variable. The relationship between pollen tube growth rate and gametophytic DNA content was
198 199 200 201 202 203	The cumulative effect of ancient polyploid events was explored with phylogenetic generalized least squares (<i>PGLS</i>) regression using the <i>phylolm</i> package in R (Ho & Ane, 2014). The number of ancient duplication events in the history of each tip taxon (inferred from Landis et al., 2018) was used as the predictor variable with <i>PTGR</i> as the response variable. The relationship between pollen tube growth rate and gametophytic DNA content was also assessed with <i>PGLS</i> regression. Gametophytic DNA content was used as the predictor
 198 199 200 201 202 203 204 	The cumulative effect of ancient polyploid events was explored with phylogenetic generalized least squares (<i>PGLS</i>) regression using the <i>phylolm</i> package in R (Ho & Ane, 2014). The number of ancient duplication events in the history of each tip taxon (inferred from Landis et al., 2018) was used as the predictor variable with <i>PTGR</i> as the response variable. The relationship between pollen tube growth rate and gametophytic DNA content was also assessed with <i>PGLS</i> regression. Gametophytic DNA content was used as the predictor variable and <i>PTGR</i> the response variable. BM (Grafen, 1989) and OU (Martins and Hansen,

208	Shifts among convergent PTGR and C-value optima were determined with a maximum
209	likelihood approach to detect multiple optima within seed plants, using SURFACE in R (Ingram
210	and Mahler, 2013). Using an OU model with a global α and σ^2 , a single-optimum model was
211	subdivided into multiple-optima models in a stepwise fashion until adding another optimum
212	decreased the model likelihood by $\Delta AIC > -2$. Separate optima were then collapsed (i.e. two
213	regimes were assigned the same optimum) in a pairwise fashion until further collapses decreased
214	model likelihood. Shifts in PTGR and C-value optima that occurred at the same node, or within
215	two nodes of each other, were identified manually. Nodes with PTGR or C-value regime shifts
216	were also manually compared to the Landis et al. (2018) WGD map to see if a WGD had
217	occurred at that node or up to two nodes <i>prior</i> to the regime shift.
218	
219	RESULTS
219 220	RESULTS PTGR evolution and C-value evolution in angiosperms versus gymnosperms – The PTGR tree
220	PTGR evolution and C-value evolution in angiosperms versus gymnosperms – The PTGR tree
220 221	PTGR evolution and C-value evolution in angiosperms versus gymnosperms – The <i>PTGR</i> tree comprised 451 seed plants, with 28 species from 7 of 8 gymnosperm orders (Christenhusz et al.
220 221 222	<i>PTGR evolution and C-value evolution in angiosperms versus gymnosperms</i> – The <i>PTGR</i> tree comprised 451 seed plants, with 28 species from 7 of 8 gymnosperm orders (Christenhusz et al. 2011) including Cycads, <i>Ginkgo</i> , conifers and Gnetales; and 423 species from 38 of 64 (59%) of
220221222223	<i>PTGR evolution and C-value evolution in angiosperms versus gymnosperms</i> – The <i>PTGR</i> tree comprised 451 seed plants, with 28 species from 7 of 8 gymnosperm orders (Christenhusz et al. 2011) including Cycads, <i>Ginkgo</i> , conifers and Gnetales; and 423 species from 38 of 64 (59%) of angiosperm orders (APG IV 2016), including representatives from all three ANA grade lineages,
 220 221 222 223 224 	<i>PTGR evolution and C-value evolution in angiosperms versus gymnosperms</i> – The <i>PTGR</i> tree comprised 451 seed plants, with 28 species from 7 of 8 gymnosperm orders (Christenhusz et al. 2011) including Cycads, <i>Ginkgo</i> , conifers and Gnetales; and 423 species from 38 of 64 (59%) of angiosperm orders (APG IV 2016), including representatives from all three ANA grade lineages, Chloranthaceae, eumagnoliids, and a broad distribution of both monocots and eudicots (full tree
 220 221 222 223 224 225 	<i>PTGR evolution and C-value evolution in angiosperms versus gymnosperms</i> – The <i>PTGR</i> tree comprised 451 seed plants, with 28 species from 7 of 8 gymnosperm orders (Christenhusz et al. 2011) including Cycads, <i>Ginkgo</i> , conifers and Gnetales; and 423 species from 38 of 64 (59%) of angiosperm orders (APG IV 2016), including representatives from all three ANA grade lineages, Chloranthaceae, eumagnoliids, and a broad distribution of both monocots and eudicots (full tree in Appendix S2). Gymnosperm <i>PTGR</i> s ranged from < 1 to 19 μ m h ⁻¹ (mean \pm <i>SD</i> = 3.29 \pm 4.34,
 220 221 222 223 224 225 226 	<i>PTGR evolution and C-value evolution in angiosperms versus gymnosperms</i> – The <i>PTGR</i> tree comprised 451 seed plants, with 28 species from 7 of 8 gymnosperm orders (Christenhusz et al. 2011) including Cycads, <i>Ginkgo</i> , conifers and Gnetales; and 423 species from 38 of 64 (59%) of angiosperm orders (APG IV 2016), including representatives from all three ANA grade lineages, Chloranthaceae, eumagnoliids, and a broad distribution of both monocots and eudicots (full tree in Appendix S2). Gymnosperm <i>PTGR</i> s ranged from < 1 to 19 µm h ⁻¹ (mean \pm <i>SD</i> = 3.29 \pm 4.34, median = 1.49 µm h ⁻¹), whereas angiosperm <i>PTGR</i> s ranged from < 5 to > 30,000 µm h ⁻¹ (mean \pm

230	Model-based analyses of seed plant PTGRs and C-values favored OU models with
231	separate optima for angiosperms and gymnosperms, accounting for > 99.9 % of the model
232	weight in both analyses (Appendix S5, S6). Log ₁₀ PTGR optima were more than an order of
233	magnitude faster in angiosperms (2.69 \pm 0.048 μm $h^{\text{-1}})$ than in gymnosperms (0.187 \pm 0.123 μm
234	h ⁻¹).

The C-value tree included 183 species from the *PTGR* tree for which DNA content data could be obtained. The resulting log_{10} C-value optimum for angiosperms (0.184 ± 0.051 pg) was more than a magnitude of order smaller than that of gymnosperms (1.231 ± 0.041 pg). Ancestral log_{10} DNA content was also smaller for angiosperms than for gymnosperms, 0.29 pg (95% CI: -0.45-1.04) versus 1.10 pg (95% CI: -0.28-2.47), consistent with larger comparative analyses of DNA content (see Leitch and Leitch, 2013).

241 *Joint evolution of PTGR and ploidy* – In model-based analyses of angiosperms using the 242 empirical error rate, 89% of the model weight favored a separate and higher optimum for neo-243 polyploids (N = 68) than for diploids (N = 138) (model averaged $\log_{10} PTGR = 3.2 \pm 0.23$ vs. 2.8 244 $\pm 0.08 \,\mu\text{m}\,\text{h}^{-1}$; Table 2). In the sensitivity analysis, OU models with separate and faster *PTGR* 245 optima for neo-polyploids than diploids received > 50% of model weight when the error 246 calculated from CVs ranged from 0 to 25 %, but above 25% single-regime and BM models had 247 the majority of the weight (Appendix S4). These are conservative results, since SDs, not SEs, 248 were used to model error on the tree. The gymnosperm-only analysis was not performed due to 249 low sample size (2 of 23 species were polyploid).

A survey of intraspecific cytotypes found autopolyploids had slower *PTGR* than diploids in 9 of 11 pairs and no difference in the remaining two (Binomial test, P = 0.002; Appendix S7b). In the nearest-relative comparisons, within-genus polyploids had slower *PTGR* than

diploids in four pairs, faster *PTGR* in five, and no difference in one (Two-tailed binomial test, P = 0.623)(Appendix S7a).

The historical effect of number of ancient genome duplications on *PTGR* was nonsignificant, whether or not recent (within-genus) WGDs were included (kappa model weight > 99.9%, N = 451; P > 0.3 in both analyses).

258 Joint evolution of PTGR, DNA content and ploidy - For seed plants, ordinary least 259 squares (OLS) regression showed a significant negative correlation between DNA content and 260 *PTGR* (N = 183, P < 0.0001), but that result was clearly driven by the large DNA contents and 261 slow *PTGRs* of gymnosperms relative to angiosperms (Fig. 2), because the *PGLS* regression was 262 non-significant (Table 1). Taking these two clades separately, DNA content was negatively 263 correlated with *PTGR* in gymnosperms in the *PGLS* regression (N = 23; model-averaged slope: -264 $1.09 \pm 0.49 \log_{10} PTGR$; Table 1). In angiosperms, a positive correlation using OLS (N = 161; 265 P=0.0005), was non-significant using PGLS (Table 1). The patterns of PTGR and C-value 266 evolution in seed plants can be visualized in Figure 3. In a smaller phylogenetic ANCOVA 267 analysis, after controlling for C-value, the effect of ploidy on *PTGR* was non-significant in 268 angiosperms (N = 100) and seed plants (N = 118) (non-significant ploidy x C-value interaction 269 removed; Appendix S8).

270 *Coincident regime shifts in PTGR and DNA content* – Maximum likelihood analysis of 271 convergent evolution of *PTGRs* detected 13 distinct optima (N = 451 taxon tree), with 51 shifts 272 (22 to faster and 29 to slower optima). For C-value, there were 9 distinct optima (N = 184 taxon 273 tree), with 4 shifts to larger and 7 shifts to smaller optima. Regime shifts in both traits were 274 coincident at only two nodes: a *PTGR* acceleration (from $\theta = 0.147$ to $\theta = 2.47 \log_{10} \mu m h^{-1}$) and 275 genome downsizing ($\theta = 2.71$ to $\theta = 0.702 \log_{10} pg$) in the CA of extant angiosperms; and a

276	<i>PTGR</i> slowdown ($\theta = 2.78$ to $\theta = 2.47 \log_{10} \mu m h^{-1}$) and genome size decrease ($\theta = 0.209$ to $\theta =$
277	-0.386 log ₁₀ pg) in the CA of rosids and Saxifragales (i.e. superrosids; Fig. 4). When the search
278	was relaxed to include adjacent nodes, an additional coincidence occurred, with shift to higher
279	PTGR followed by a shift to higher C-value near the base of monocots. Ancient WGDs
280	coincided with the shifts in PTGR and C-value at the CA of angiosperms (above) and with a
281	decrease in C-value in the CA of eudicots.
282	
283	DISCUSSION
284	The impact of genome size on <i>PTGR</i> is determined by the magnitudes of conflicting nucleotypic
285	and genotypic effects. Such effects depend on the mechanism of genome size change.
286	Nucleotypic effects decelerate PTGR and are always present irrespective of mode of genome size
287	change, whereas large-scale genetic effects are only possible after WGD. We predicted that
288	angiosperms and gymnosperms should have different patterns of PTGR evolution based on their
289	contrasting patterns of genome size change. Gymnosperm PTGRs should be most susceptible to
290	nucleotypic effects because they have evolved large genomes sizes and WGDs have been rare. In
291	contrast, angiosperms have evolved smaller genome sizes despite recurrent WGDs and
292	widespread present-day polyploidy. Thus, gene duplication and sorting have played a much
293	greater role in the evolution of angiosperm PTGRs, allowing genotypic effects to counterbalance
294	or overwhelm nucleotypic effects. Below we discuss our findings in light of these expected
295	patterns.
296	
297	The evolution of PTGR in angiosperms versus gymnosperms - We found that seed plant
298	PTGRs best fit an OU model, indicating less PTGR variation among lineages than expected

299 under a Brownian motion evolutionary model, with a faster optimum for angiosperms than for 300 gymnosperms. Phylogenetic half-lives were similar (5.6 and 5.7 MY, respectively) and very 301 short (only 3.9% and 2.3% of their respective crown ages), indicating a strong attraction to their 302 optimum values. Such a pattern is consistent with stabilizing selection on *PTGR* imposed by 303 slower evolution of linked sporophytic traits, such as the timing of stigma receptivity relative to 304 egg receptivity, pollen tube pathway length, or maternal provisioning. Gymnosperm PTGRs may 305 have been constrained by a hard boundary such as by biophysical or physiological limitations, or 306 a soft boundary, such as by lack of selection for fast rates. Angiosperms have clearly not been 307 bound by those same limitations, given their much higher *PTGR* optimum, the convergent 308 evolution of extremely fast PTGRs in many unrelated derived lineages of monocots and eudicots, 309 and occasionally large within-genus differences in PTGR.

310 Our results suggest that most of the accelerations of angiosperm *PTGR*, and their higher 311 *PTGR* variance relative to gymnosperms, have largely evolved *after* the origin of angiosperms 312 and their novel pollen tube cell biology. First, estimates of angiosperm ancestral PTGR and 313 ancestral optimum under OU (275 and 295 µm h⁻¹, respectively) are slower than the angiosperm-314 wide OU optimum of 490 μ m h⁻¹ and the angiosperm median of 587 μ m h⁻¹. Secondly, the higher 315 among-lineage variance is due to many transitions to both faster and slower *PTGR* optima within 316 extant angiosperms. Transitions to slower rates within angiosperms are concentrated on lineages 317 that have evolved delayed fertilization, such Fagales, orchids and others, or high selfing rates, 318 which suggests relaxation of directional selection on *PTGR* (Williams and Reese, 2019). In 319 contrast, gymnosperm *PTGRs* were likely ancestrally slow (Figure 4). 320 There are several non-mutually exclusive hypotheses for what triggered the evolution of

321 fast *PTGRs* in angiosperms. First, Mulcahy (1979) invoked a shift to much higher intensity of

322 pollen competition in angiosperms as a driver of the origin and continued evolution of faster 323 growth rates. Notably, no other type of tip-growing cell in land plants (whether gametophytic or 324 sporophytic) has evolved comparably fast tip-growth rates and none of those cell types, including 325 gymnosperm pollen tubes, experience intense competition for resources (Williams et al., 2016). 326 Secondly, gymnosperm *PTGRs* may be slow because they lack novel biophysical or 327 physiological attributes of pollen tubes and/or those attributes enabled faster *PTGRs* to evolve in 328 angiosperms (Hoekstra, 1983; Derksen et al., 1999; Fernando et al., 2005; Williams, 2008, 329 2009). Thirdly, with or without pollen competition, rapid *PTGRs* may have been necessary as 330 angiosperm sporophytes transitioned to a much faster reproductive cycle (Stebbins, 1974; 331 Williams, 2012; Williams and Reese, 2019). Finally, our results suggest a new possibility, that 332 strong differences in genome-level processes have impacted the evolution of angiosperm PTGRs 333 relative to their living and extinct seed plant relatives.

334

335 Mechanisms of genome size change and PTGR evolution within seed plants – A major finding 336 of this study is that angiosperm neo-polyploids evolved around a much faster PTGR optimum 337 (1648 μ m h⁻¹) than diploids (595 μ m h⁻¹), despite several sources of variation in the data. First, 338 neo-polyploids were by definition derived within genera, and their smaller sample size and 339 shorter branch lengths reduced the power to estimate parameters relative to diploids, as reflected 340 by the larger standard error around the neo-polyploid optimum. Nevertheless, the proportion of 341 neo-polyploids in our data set (33% of angiosperms) is almost exactly that found in the full 342 Wood et al. (2009) data set and similar to that in other studies (Mayrose et al., 2011; Barker et 343 al., 2016; Landis et al., 2018).

344 There was also biological variability in our dataset. In our taxon sampling, we were 345 agnostic to variation in mating systems and modes of polyploid origins, since our interest was in 346 how *PTGR* has evolved in natural stabilized polyploids. In retrospect, our sample does seem 347 representative. Of 14 angiosperm polyploids whose mode of origin has been studied, seven were 348 autopolyploid and seven allopolyploid, similar to the nearly-equal proportions found by Barker 349 et al. (2016). Furthermore, among 16 polyploids for which mating system has been studied, eight 350 were fully outcrossing, seven were self-compatible (two autogamous, two mixed mating, and 351 three unknown), and one was apomictic -a not unusual distribution (Goodwillie et al., 2005; 352 Gibbs, 2014; Ashman et al., 2014). Thus, our taxon sampling seems not be have been greatly 353 biased. Even with such information, predicting the magnitude of genetic variation in polyploids 354 is not so simple. For example, autotetraploids originate with a subset of the genetic variation in 355 the diploid progenitor population but they often outcross and hybridize, whereas allopolyploids 356 can be highly heterozygous when they originate, but often are highly selfing (Stebbins, 1974; 357 Soltis and Soltis, 1999; Barringer 2007; Whitney et al., 2010). Hence, despite several sources of 358 heterogeneity, the faster PTGR optimum of neo-polyploids indicates that PTGR acceleration 359 evolves either at the time of WGDs or during the time period in which the descendant species 360 retain a polyploid chromosome number.

The closest approximation of the initial effect of polyploidy on *PTGR* is the comparison of diploids with their intraspecific, autopolyploid cytotypes. In all 11 pairs, *PTGRs* of autopolyploid cytotypes were slower than or equal to those of their intraspecific diploid progenitors. We should re-emphasize that all studies involved in vivo crosses among diploid sporophytes (1x pollen on 2x pistils) compared to crosses among tetraploid sporophytes (2x pollen on 4x pistils), in keeping with our goal of generalizing effects on *PTGR* in stabilized

367 polyploids. Nucleotypic effects acting to slow *PTGR* should be most apparent in autopolyploids 368 at inception, because there is lower potential for heterosis. Thus, the lack of any examples of 369 faster *PTGR* in neo-autotetraploid cytotypes than in their diploid progenitors suggests that 370 increased gene dosage by itself generally does not initially fully offset nucleotypic effects. 371 Nucleotypic effects on PTGR could be substantial. Tube size affects PTGR in a linear 372 fashion, because larger tubes must make more tube wall per unit time, and since tube diameter is 373 constant during growth, the rate of wall production is directly proportional to tip extension rate 374 (Williams et al., 2016). Kostoff & Prokofieva (1935) reported in vivo pollen tubes to be 39% 375 larger in diameter in an allotetraploid *Nicotiana* relative to the mean of its presumed diploid 376 progenitors, and Iyengar (1938) found 8-53% larger tube diameters in tetraploid versus diploid 377 species of Gossypium.

Taken together our results suggest that nucleotypic effects are strong and act as a brake on *PTGR* at inception (intraspecific polyploid analysis), but as neo-polyploids become stabilized and persist over time, nucleotypic effects are more than offset by genotypic effects (within-genus pairs and model-based analyses) which often produce faster *PTGRs* in angiosperms.

382 We found that DNA content has evolved around a significantly lower optimum in 383 angiosperms than in gymnosperms, even though angiosperms have a broad range of DNA C-384 values that encompass the entire range of seed plant genome sizes (Fig. 3; see Leitch and Leitch, 385 2013 for a larger survey). Angiosperms also have great variation in ploidy level, a history of 386 speciation by polyploidy, and much evidence of past genome duplication (Ahuja, 2005; Wood et 387 al., 2009; Husband et al., 2013; Van de Peer et al., 2017; Landis et al., 2018). There were at least 388 1-7 WGDs in the lineages leading from the seed plant root to each of the tips in our *PTGR* tree, 389 and 33% of taxa (68/206 angiosperms versus 2/23 gymnosperms) were identified as neo-

390 polyploids. The often low DNA content and high ploidy levels of angiosperms are not surprising 391 given that genome duplication is commonly followed by rapid loss of DNA sequences, gene 392 fractionation by large-scale deletions, biased retention of genes with beneficial dosage effects, 393 and ultimately a return to an apparent diploid state in sporophytes (Conant and Wolfe, 2008; 394 Conant et al., 2014; Freeling et al., 2015; Dodsworth et al., 2016; Wendel et al., 2018). Thus, one 395 explanation for the much faster PTGRs of angiosperms relative to gymnosperms is that 396 widespread gene duplication by WGDs have often enabled transgressive evolution of faster 397 *PTGRs* leading to the observed pattern of convergent evolution of extremely fast *PTGRs* in many 398 unrelated lineages of monocots and eudicots. 399 WGDs have been rare in gymnosperms (Ahuja, 2005; Leitch et al., 2005; Wood et al., 400 2009; Soltis et al., 2009; Husband et al., 2013; Leitch and Leitch, 2013; Lee and Kim, 2014) and 401 their high DNA contents are thought to be due mainly to high transposon activity without 402 repeated rounds of genome duplication (Leitch & Leitch, 2013; Lee and Kim, 2014). Hence, 403 gymnosperms may have experienced the nucleotypic effects of higher DNA content on pollen 404 tube dimensions, which is predicted to reduce *PTGR*, without the potential for counter-balancing 405 effects, such as initially higher gene dosage and heterozygosity followed by gene sorting during 406 the diploidization process. Our finding of a negative correlation between *PTGR* and DNA 407 content in gymnosperms, but not in angiosperms supports that hypothesis. 408 Though gymnosperm *PTGRs* are likely affected by tube sizes, nucleotypic effects do not 409 account for the magnitude of the difference in their slow *PTGRs* relative to those of angiosperms. 410 Gymnosperm pollen tubes can range up to 300 µm in diameter (Coulter and Chamberlain, 1928;

411 Gifford and Foster, 1989), but many species of siphonogamous conifers and Gnetales have

412 angiosperm-like pollen tube diameters in the 10 to 20 µm range. Yet no gymnosperm has

evolved a *PTGR* faster than 20 μ m h⁻¹. It has been argued that their pecto-cellulosic wall 413 414 structure is a limitation relative to angiosperm pollen tube walls, which use the plasma 415 membrane-bound enzymes callose synthase and pectin-methylesterase in a novel way to more 416 rapidly synthesize a strong and durable tube cell wall and callose plugs (Derksen, 1999, 417 Abercrombie et al., 2012; Wallace and Williams, 2017). However, other types of pecto-cellosic 418 tip-growing cells, such as root hairs, grow faster than gymnosperm pollen tubes (Williams et al., 419 2016). Thus, it seems likely that the extremely slow growth rates of gymnosperm pollen tubes 420 reflect an ancestrally antagonistic relationship between maternal tissues and pollen tubes that 421 functioned as invasively growing rhizoids, coupled with a lack of selection for faster growth rate 422 due to the absence of pollen competition and a long period between pollination and fertilization. 423 Our results also suggest a lack of opportunity for genotypic effects to evolve due to the rarity of 424 WGDs.

425

426 *Conclusions* - Studies across the tree of life have consistently shown that ploidy level and DNA 427 content are correlated with cell size and metabolic rate (Cavalier-Smith, 1978; Gregory, 2001; 428 Cavalier-Smith, 2005). Pollen tube dimensions and energetics affect the amount of cell wall 429 material produced per unit of growth and the rate at which cell wall is produced, which together 430 determine *PTGR*. In gymnosperms, *PTGR* was negatively correlated with genome size, but in 431 angiosperms, where the effects of WGDs are much more prevalent, there was no such 432 correlation, and neo-polyploids evolved around a higher *PTGR* optimum than diploids. These 433 results support the expectation that genome size increases incur nucleotypic effects that act as a 434 brake on growth rate. The degree to which genotypic effects counterbalance nucleotypic effects 435 depends on the historical nature and time since genome size increase in any particular lineage.

436	Understanding causal relationships between genome size, ploidy and PTGR will involve
437	mechanistic studies of tube cell dimensions and wall synthesis rates in haploid and polyploid
438	gametophytes. On the other hand, there appears to be great variation in the tug of war between
439	genotypic and nucleotypic effects, and there are likely to be deeper evolutionary patterns
440	underlying that variation.
441	
442	
443	
444	ACKNOWLEDGEMENTS
445	We thank B. O'Meara and J. Beaulieu for advice on phylogenetic analyses, I. Leitch for data on
446	DNA content, and J. Edwards and M. Rankin for assistance in the lab. We are tremendously
447	grateful to several anonymous reviewers for their perceptive and useful comments. Partial
448	support to J.B.R. was provided by National Science Foundation award IOS 1052291 to J.H.W.
449	
450	
451	Authors Contributions: J.B.R. and J.H.W. jointly conceived of the study and wrote the paper;
452	J.B.R. collected data on genome sizes and ploidy levels, constructed the phylogenetic tree and
453	performed all comparative analyses; J.H.W. collected data on PTGRs and diploid-autopolyploid
454	PTGRs.
455	
456	Data Accessibility Statement: Scripts written during the creation of this manuscript are
457	available on GitHub: https://github.com/jbr1848/PTGR.genome.evolution. The phylogenetic tree
458	created during this study can be found on TreeBase:
459	http://purl.org/phylo/treebase/phylows/study/TB2:S24291.

463	LITERATURE CITED
464	Abercrombie, J. M., B. C. O'Meara, A. R. Moffatt, and J. H. Williams. 2011. Developmental
465	evolution of flowering plant pollen tube cell walls: callose synthase (CalS) gene expression
466	patterns. EvoDevo 2: 14.
467	Ahuja, M. R. 2005. Polyploidy in gymnosperms: revisited. Silvae Genetica 54:2:59-69.
468	
469	Arunkumar, R., E. B. Josephs, R. J. Williamson, and S. I. Wright. 2013. Pollen-specific, but not
470	sperm-specific, genes show stronger purifying selection and higher rates of positive selection
471 472	than sporophytic genes in <i>Capsella grandiflora</i> . <i>Molecular Biology and Evolution</i> 30: 2475–2486.
473	Ashman, T-L., D. Bachtrog, H. Blackmon, E. E. Goldberg, M. W. Hahn, M. Kirkpatrick, J.
474	Kitano, J. E. Mank, et al. 2014. Tree of Sex: A database of sexual systems. Scientific Data 1:
475	140015.
476	Barker, M. S., N. Arrigo, A. E. Baniaga, Z. Li, & D. A. Levin. (2016). On the relative abundance
477	of autopolyploids and allopolyploids. New Phytologist, 210(2), 391-398.
478	
479	Beaulieu, J. M., and B. O'Meara. 2014. OUwie: analysis of evolutionary rates in an OU
480	framework. <i>R package version</i> 1.
481	Bennett, M. D. 1971. The duration of meiosis. Proceedings of the Royal Society of London B:
482	Biological Sciences 178: 277–299.
483	Bennett, M. D. 1972. Nuclear DNA content and minimum generation time in herbaceous plants.
484	Proceedings of the Royal Society of London B: Biological Sciences 181: 109–135.
485	Bennett, M. D., and I. J. Leitch. 2012. Plant DNA C-values Database (Release 6.0).
486	Birchler, J. A., H. Yao, S. Chudalayandi, D. Vaiman, and R. A. Veitia. 2010. Heterosis. Plant
487	<i>Cell</i> : 110.076133.
100	

- 489 Blomberg, S. P., T. Garland Jr., and A. R. Ives. 2003. Testing for phylogenetic signal in
- 490 comparative data: behavioral traits are more labile. *Evolution* 57: 717–745.
- 491 Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference: a
- 492 practical information-theoretic approach. New York. Springer-Verlag.
- 493
- 494 Cavalier-Smith, T. 1978. Nuclear volume control by nucleoskeletal DNA, selection for cell
- volume and cell growth rate, and the solution of the DNA C-value paradox. *Journal of Cell*
- 496 *Science* 34: 247–278.
- 497 Cavalier-Smith, T. 2005. Economy, speed and size matter: evolutionary forces driving nuclear
- 498 genome miniaturization and expansion. *Annals of Botany* 95: 147–175.
- 499 Christenhusz, M. J., J. L. Reveal, A. Farjon, M. F. Gardner, R. R. Mill, and M. W. Chase. 2011.
- 500 A new classification and linear sequence of extant gymnosperms. *Phytotaxa* 19: 55–70.
- 501

502 Comai, L. 2005. The advantages and disadvantages of being polyploid. *Nature Reviews Genetics*503 6: 836.

- 504 Conant, G. C., J. A. Birchler, and J. C. Pires. 2014. Dosage, duplication, and diploidization:
- 505 clarifying the interplay of multiple models for duplicate gene evolution over time. *Current*
- 506 *Opinion in Plant Biology* 19: 91–98.
- 507 Conant, G. C., and K. H. Wolfe. 2008. Turning a hobby into a job: how duplicated genes find
 508 new functions. *Nature Reviews Genetics* 9: 938.
- 509 Coulter, J. M., and C. J. Chamberlain. 1928. *Morphology of Gymnosperms* (4th ed.). University
- 510 of Chicago Press, Chicago.
- 511
- 512 Cosgrove, D. J. 2005. Growth of the plant cell wall. *Nature Reviews Molecular Cell Biology* 6:513 850.

- 514 De Smet, R., K. L. Adams, K. Vandepoele, M. C. Van Montagu, S. Maere, and Y. Van de Peer.
- 515 2013. Convergent gene loss following gene and genome duplications creates single-copy
- families in flowering plants. *Proceedings of the National Academy of Sciences* 110: 2898–2903.
- 517
- 518 Derksen, J., Y. Li, B. Knuiman, and H. Geurts. 1999. The wall of *Pinus sylvestris* L. pollen
- 519 tubes. *Protoplasma* 208: 26–36.
- 520 Dodsworth, S., M. W. Chase, and A. R. Leitch. 2016. Is post-polyploidization diploidization the
- key to the evolutionary success of angiosperms? *Botanical Journal of the Linnean Society* 180:
 1–5.
- 523 Doyle, J. J., and J. E. Coate. 2019. Polyploidy, the Nucleotype, and Novelty: The Impact of
- Genome Doubling on the Biology of the Cell. *International Journal of Plant Sciences* 180: 1–52.
- Eastman, J. M., L. J. Harmon, and D. C. Tank. 2013. Congruification: support for time scaling
- 527 large phylogenetic trees. *Methods in Ecology and Evolution* 4: 688–691.
- 528 Felsenstein, J. 1985. Phylogenies and the comparative method. *American Naturalist* 125: 1–15.
- 529 Fernando, D. D., M. D. Lazzaro, and J. N. Owens. 2005. Growth and development of conifer
- 530 pollen tubes. *Sexual Plant Reproduction* 18: 149–162.
- 531 Freeling, M., M. J. Scanlon, and J. E. Fowler. 2015. Fractionation and subfunctionalization
- 532 following genome duplications: mechanisms that drive gene content and their consequences.
- 533 *Current Opinion in Genetics & Development* 35: 110–118.
- Friedman, W. E. 1993. The evolutionary history of the seed plant male gametophyte. *Trends in Ecology & Evolution* 8: 15–21.
- Gibbs, P. E. 2014. Late-acting self-incompatibility-the pariah breeding system in flowering
 plants. *New Phytologist* 203: 717–734.
- Gifford, E. M., and A. S. Foster. 1989. Morphology and Evolution of Vascular Plants. W. H.
 Freeman, New York.
- 540

- 541 Goodwillie, C., S. Kalisz, and C. G. Eckert. 2005. The evolutionary enigma of mixed mating
- 542 systems in plants: occurrence, theoretical explanations, and empirical evidence. Annual Review
- 543 *of Ecology Evolution and Systematics*. 36: 47–79.
- 544 Grafen, A. 1989. The phylogenetic regression. *Philosophical Transactions of the Royal Society*
- 545 of London. Series B, Biological Sciences 326: 119–157.
- 546 Gregory, T. R. 2001. The bigger the C-value, the larger the cell: genome size and red blood cell
- 547 size in vertebrates. *Blood Cells, Molecules, and Diseases* 27: 830–843.
- 548 Hafidh, S., J. Fíla, and D. Honys. 2016. Male gametophyte development and function in
- angiosperms: a general concept. *Plant Reproduction* 29: 31-51.
- 550 Harmon, L. J., J. T. Weir, C. D. Brock, R. E. Glor, and W. Challenger. 2008. GEIGER:
- 551 investigating evolutionary radiations. *Bioinformatics* 24: 129–131.
- Ho, L. S. T., and C. Anné. 2014. *Phylolm: phylogenetic linear regression. R package version*2.1.
- Hoekstra, F. A. 1983. Physiological evolution in angiosperm pollen: possible role of pollen
- vigour. In: Mulcahy DL, Ottaviano E, eds. Pollen: Biology and Implications for Plant Breeding,
- 556 35–41. Elsevier Science, Amsterdam.
- 557
- 558 Husband, B. C. 2016. Effect of inbreeding on pollen tube growth in diploid and tetraploid
- 559 *Chamerion angustifolium*: Do polyploids mask mutational load in pollen? *American Journal of*
- 560 *Botany* 103: 532–540.
- 561 Husband, B. C., S. J. Baldwin, and J. Suda. 2013. The incidence of polyploidy in natural plant
- 562 populations: major patterns and evolutionary processes. *In* J. Greilhuber, J. Doležel, and J. F.
- 563 Wendel [eds.], Plant Genome Diversity Volume 2, 255–276. Springer.
- 564 Husband, B. C., and D. W. Schemske. 1997. The effect of inbreeding in diploid and tetraploid
- 565 populations of *Epilobium angustifolium* (Onagraceae): implications for the genetic basis of
- 566 inbreeding depression. *Evolution* 51: 737–746.

- 567 Ingram, T., and D. L. Mahler. 2013. SURFACE: detecting convergent evolution from
- 568 comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike Information

569 Criterion. *Methods in Ecology and Evolution* 4: 416–425.

- 570 Iyengar N. K. 1938. Pollen-tube studies in Gossypium. Journal of Genetics 37: 69–106.
- 571 Jörgensen A, and C. Rydin. 2015. Reproductive morphology in the Gnetum cuspidatum group
- 572 (Gnetales) and its implications for pollination biology in the Gnetales. *Plant Ecology and*
- 573 *Evolution* 148: 387–396.
- 574 Kostoff, D., and A. Prokofieva. 1935. Studies on the pollen-tubes. I. The growth potency of the
- 575 pollen-tubes in *Nicotiana* in connection with the length of the styles and some other factors. *Bul.*
- 576 Inst. Genetics, Acad. Sci. Leningrad 10: 65–82.
- 577 Lande, R., and D. W. Schemske. 1985. The evolution of self-fertilization and inbreeding
- 578 depression in plants. I. Genetic models. *Evolution* 39: 24–40.
- 579 Landis, J. B., D. E. Soltis, Z. Li, H. E. Marx, M. S. Barker, D. C. Tank, and P. S. Soltis. 2018.
- 580 Impact of whole-genome duplication events on diversification rates in angiosperms. *American*581 *Journal of Botany*.
- Lee, S-I., and N-S. Kim. 2014. Transposable elements and genome size variations in plants. *Genomics & Informatics* 12: 87–97.
- Leitch, I. J., M. W. Chase, and M. D. Bennett. 1998. Phylogenetic analysis of DNA C-values
 provides evidence for a small ancestral genome size in flowering plants. *Annals of Botany* 82:
 85–94.
- Leitch, A. R., and I. J. Leitch. 2012. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. *New Phytologist* 194: 629–646.
- Leitch, I. J., and A. R. Leitch. 2013. Genome size diversity and evolution in land plants. In J.
- 590 Greilhuber, J. Doležel, and J. F. Wendel [eds.], Plant Genome Diversity Volume 2, 307–322.
- 591 Springer.

- 592 Leitch, I. J., D. E. Soltis, P. S. Soltis, and M. D. Bennett. 2005. Evolution of DNA amounts
- across land plants (Embryophyta). Annals of Botany 95: 207–217.
- 594 Li, Z., A. E. Baniaga, E. B. Sessa, M. Scascitelli, S. W. Graham, L. H. Rieseberg, and M. S.
- Barker 2015. Early genome duplications in conifers and other seed plants. *Science Advances* 1:e1501084.
- 597
- Magallón, S., S. Gómez-Acevedo, L. L. Sánchez-Reyes, and T. Hernández-Hernández. 2015. A
 metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. *New Phytologist* 207: 437–453.
- Martins, E. P., T. F. Hansen. 1997. Phylogenies and the comparative method: a general approach
- to incorporating phylogenetic information into the analysis of interspecific data. *The American Naturalist* 149: 646–667.
- Mayrose, I., Zhan, S. H., Rothfels, C. J., Magnuson-Ford, K., Barker, M. S., Rieseberg, L. H.,
 and S. P. Otto. 2011. Recently formed polyploid plants diversify at lower rates. *Science* 333:
 1257-1257.
- Mulcahy, D.L. 1979. The rise of the angiosperms: a genecological factor. *Science* 206: 20–23.
- 608 Ohri, D., and T. N. Khoshoo. 1986. Genome size in gymnosperms. *Plant Systematics and*609 *Evolution* 153: 119–132.
- 610 Otto, S. P., M. F. Scott, and S. Immler. 2015. Evolution of haploid selection in predominantly
- 611 diploid organisms. *Proceedings of the National Academy of Sciences* 112: 15952–15957.
- 612 Owens, J. N., T. Takaso, and C. J. Runions. 1998. Pollination in conifers. *Trends in Plant*613 *Science* 3: 479–485.
- Pagel, M. 1997. Inferring evolutionary processes from phylogenies. *Zoologica Scripta* 26: 331–
 348.
- 616 Pagel, M. 1999. Inferring the historical patterns of biological evolution. *Nature* 401: 877.

- 617 Panchy, N., M. Lehti-Shiu, and S-H. Shiu. 2016. Evolution of gene duplication in plants. *Plant*
- 618 *Physiology* 171: 2294–2316.
- 619 Paradis, E., J. Claude, and K. Strimmer. 2004. APE: analyses of phylogenetics and evolution in
- 620 R language. *Bioinformatics* 20: 289–290.
- 621 Price, H. 1988. DNA Content Variation Among Higher-Plants. Annals of the Missouri Botanical
- 622 *Garden* 75: 1248–1257.
- Revell, L. J. 2012. Phytools: an R package for phylogenetic comparative biology (and other
 things). *Methods in Ecology and Evolution* 3: 217–223.
- 024 unings). Memous in Leology and Evolution 5, 217–225.
- Rutley, N., and D. Twell. 2015. A decade of pollen transcriptomics. *Plant Reproduction* 28: 73-89.

- Smith, S. A., and M. J. Donoghue. 2008. Rates of molecular evolution are linked to life history
 in flowering plants. *Science* 322: 86–89.
- 630 Smith, S. A., and C. W. Dunn. 2008. Phyutility: a phyloinformatics tool for trees, alignments and
 631 molecular data. *Bioinformatics* 24: 715–716.
- 632 Snodgrass, S. J., J. Jaraczek and J. F. Wendel. 2016. An examination of nucleotypic effects in
- 633 diploid and polyploid cotton. *AoB PLANTS*. 8: plw082.
- 634
- 635 Soltis, D. E., V. A. Albert, J. Leebens-Mack, C. D. Bell, A. H. Paterson, C. Zheng, D. Sankoff et
- al. 2009. Polyploidy and angiosperm diversification. *American Journal of Botany* 96: 336–348.
- 637 Soltis, D. E., and P. S. Soltis. 1999. Polyploidy: recurrent formation and genome evolution.
- 638 *Trends in Ecology & Evolution* 14: 348–352.
- 639 Soltis, P. S., & Soltis, D. E. 2000. The role of genetic and genomic attributes in the success of
- 640 polyploids. *Proceedings of the National Academy of Sciences* 97: 7051-7057.
- 641 Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
- 642 large phylogenies. *Bioinformatics* 30: 1312–1313.

- 643 Stebbins, G. L. 1974. Flowering plants: evolution above the species level. London: Arnold xviii,
- 644 399p. Illustrations. General (KR, 197500089).
- 645 Swift, H. 1950. The constancy of desoxyribose nucleic acid in plant nuclei. *Proceedings of the*
- 646 *National Academy of Sciences* 36: 643–654.
- 647 Tanksley, S. D., D. Zamir, and C. M. Rick. 1981. Evidence for extensive overlap of sporophytic
- and gametophytic gene expression in *Lycopersicon esculentum*. Science 213: 453–455.
- 649 Van de Peer, Y., E. Mizrachi, and K. Marchal. 2017. The evolutionary significance of
- 650 polyploidy. *Nature Reviews Genetics* 18: 411.
- 651 Wallace, S., and J. H. Williams. 2017. Evolutionary origins of pectin methylesterase genes
- associated with novel aspects of angiosperm pollen tube walls. *Biochemical and biophysical*
- 653 *research communications* 487: 509–516.
- Wendel, J. F., D. Lisch, G. Hu, and A. S. Mason. 2018. The long and short of doubling down:
- polyploidy, epigenetics, and the temporal dynamics of genome fractionation. *Current Opinion in Genetics & Development* 49: 1–7.
- 657 Whitney, K. D., E. J. Baack, J. L. Hamrick, M. J. W. Godt, B. C. Barringer, M. D. Bennett, C. G.
- Eckert et al. 2010. A role for nonadaptive processes in plant genome size evolution? *Evolution:*64: 2097–2109.
- 660 Williams, J. H. 2008. Novelties of the flowering plant pollen tube underlie diversification of a
- key life history stage. *Proceedings of the National Academy of Sciences* 105: 11259–11263.
- 662 Williams, J. H. 2009. *Amborella trichopoda* (Amborellaceae) and the evolutionary
- developmental origins of the angiosperm progamic phase. *American Journal of Botany* 96: 144–
 165.
- 665 Williams, J. H. 2012. Pollen tube growth rates and the diversification of flowering plant
- reproductive cycles. *International Journal of Plant Sciences* 173: 649–661.

- 667 Williams, J. H., J. A. Edwards, and A. J. Ramsey. 2016. Economy, efficiency, and the evolution
- of pollen tube growth rates. *American Journal of Botany* 103: 471–483.
- 669 Williams, J. H., and J. B. Reese. 2019. Evolution of development of pollen performance. *In* U.
- 670 Grossinklaus [ed.], Plant Development and Evolution. Current Topics in Developmental
- 671 Biology, Volume 131. Chapter 12. 299-336. Elsevier.
- 672 Williams, J. H., M. L. Taylor, and B. C. O'Meara. 2014. Repeated evolution of tricellular (and
- 673 bicellular) pollen. American Journal of Botany 101: 559–571.
- 674 Wood, T. E., N. Takebayashi, M. S. Barker, I. Mayrose, P. B. Greenspoon, and L. H. Rieseberg.
- 675 2009. The frequency of polyploid speciation in vascular plants. *Proceedings of the National*
- 676 *Academy of Sciences* 106: 13875–13879.

677	Table 1: Phylogenetic generalized least squares regression of log ₁₀ <i>PTGR</i> as a function of log ₁₀
678	C-value. Only models contributing more than 1% of total weight are included. P values are for

679 the slope of the regression. Gymnosperm averaged model: $\text{Log}_{10} PTGR = 1.46 (\pm 0.62) - 1.09 (\pm 0.49)*(\log_{10} \text{C-value}).$

- 681 0.49)^{*}
- 682

Seed plants (N = 183)Angiosperms (N = 161) Gymnosperms (N = 23) P Р Р Model Weight Model Weight Model Weight 0.999 kappa 0.975 OU 0.020 kappa 0.463 0.284 0.265 lambda 0.024 delta 0.006 0.221 0.257 kappa 0.193 0.445 BM 0.121 0.001 lambda 0.119 0.327 EB 0.001 0.044

Table 2: Parameter estimates for angiosperm *PTGR* **analyses under different evolutionary**

models. Note that OU1 is a single optimum model, and the rest specify separate "diploid"

691 (paleo-polyploid) and neo-polyploid optima. BM1 and BMS models contributed <1% model

- 692 weight and were excluded.

Model	Δ AICc	Model	· ·	• •	d Diploid 1	Polyploid	-	Polyploid
		weight	σ^2	σ^2	α	α	optimum	optimum
OUMA	[332.76]	0.373	0.	099	0.077	0.074	2.776	3.285
OUMV	0.23	0.333	0.099	0.057	0.0	077	2.768	3.262
OUM	1.53	0.174	0.	090	0.0	080	2.760	3.263
OU1	2.26	0.120	0.	0.089 0.077		077	2.8	12
	RAGED DEL	~1.0	0.096 ± 0.177	0.082 ± 0.220	0.078 ± 0.213	0.077 ± 0.217	2.775 ± 0.079	3.217 ± 0.231

697	FIGURE LEGENDS
698	Figure 1. Predicted initial effects of large increases in genome size on pollen tube growth
699	rate (PTGR). The dashed line indicates an ancestral haploid (1x) PTGR. Upon transition to a
700	larger (> 1x) genome size, nucleotypic effects should act to decrease PTGR regardless of
701	mechanism of change. Genotypic effects are only present after WGD or large-scale gene
702	duplications and are predicted to increase PTGR via increased gene dosage and heterozygosity.
703	The magnitude of heterosis due to initial increase in heterozygosity is expected to scale with
704	genetic variation in the descendent taxon. The ancestral haploid PTGR can only be conserved
705	when genotypic and nucleotypic effects perfectly offset each other.
706	
707	Figure 2: Relationship between pollen tube growth rate (PTGR) and DNA content (1C-
708	value) in seed plants. The model- averaged slope of the PGLS regression is shown for
709	gymnosperms (green points, $N = 161$), whereas slopes for seed plants (all points, $N = 183$) and
710	angiosperms (purple points, $N = 23$) were non-significant. Optima (with standard error bars) for
711	each group (from model-based analyses in Tables S3, S4) are included for illustrative purposes.
712	
713	Figure 3: Inferred pattern of pollen tube growth rate (PTGR) and genome size changes in
714	seed plants. Contour plot comparing <i>PTGR</i> evolution (left, $\mu m h^{-1}$) and C-value evolution (right,
715	picograms) ($N = 183$). Scale bar at the bottom of each phylogeny indicates 100 million years.
716	GYM = gymnosperms; ANA = Amborellales, Nymphaeales, Austrobaileyales, Chloranthales,
717	eumagnoliids; MONO = monocots.
718	

719	Figure 4: Coincident evolution of pollen tube growth rate (<i>PTGR</i>) and DNA content (C-
720	value). Paired SURFACE plot showing regime shifts in PTGR (left) versus DNA content (right)
721	(N = 183). Nodes which have experienced a regime shift along the stem leading to it are marked
722	with magenta diamonds (not all PTGR shifts are shown, since PTGR tree has been pruned to
723	match C-value tree). Branch colors: $gray$ = seed plant ancestral optimum (<i>PTGR</i> θ = 0.147; C-
724	value $\theta = 2.71$); green = ancestral optimum for angiosperms (<i>PTGR</i> $\theta = 2.47$; C-value $\theta =$
725	0.702); <i>red</i> = derived lineages following a shift to a higher optimum than previously; <i>blue</i> =
726	derived lineages following a shift to a lower optimum than previously. Black arrows indicate
727	instances where shifts in PTGR and C-value coincide. Scale bar at the bottom of each phylogeny
728	indicates 100 million years. GYM = gymnosperms; A = Amborellales, Nymphaeales,
729	Autrobaileyales, Chloranthales, eumagnoliids; MONO = monocots.
730	
731	Additional Supporting Information may be found online in the supporting information
732	section at the end of the article:
732 733	section at the end of the article:
	section at the end of the article: Appendix S1: 119 additional <i>PTGR</i> values and references not reported in Williams 2012.
733	
733 734	
733 734 735	Appendix S1: 119 additional <i>PTGR</i> values and references not reported in Williams 2012.
733 734 735 736	Appendix S1: 119 additional <i>PTGR</i> values and references not reported in Williams 2012.
 733 734 735 736 737 	Appendix S1: 119 additional <i>PTGR</i> values and references not reported in Williams 2012. Appendix S2: Pollen tube growth rate (<i>PTGR</i>) evolution across Spermatophytes.
 733 734 735 736 737 738 	Appendix S1: 119 additional PTGR values and references not reported in Williams 2012.Appendix S2: Pollen tube growth rate (PTGR) evolution across Spermatophytes.Appendix S3: Summary statistics for pollen tube growth rate (PTGR) of Magnolia
 733 734 735 736 737 738 739 	Appendix S1: 119 additional PTGR values and references not reported in Williams 2012.Appendix S2: Pollen tube growth rate (PTGR) evolution across Spermatophytes.Appendix S3: Summary statistics for pollen tube growth rate (PTGR) of Magnolia
 733 734 735 736 737 738 739 740 	Appendix S1: 119 additional <i>PTGR</i> values and references not reported in Williams 2012. Appendix S2: Pollen tube growth rate (<i>PTGR</i>) evolution across Spermatophytes. Appendix S3: Summary statistics for pollen tube growth rate (<i>PTGR</i>) of <i>Magnolia</i> grandiflora.
 733 734 735 736 737 738 739 740 741 	Appendix S1: 119 additional <i>PTGR</i> values and references not reported in Williams 2012. Appendix S2: Pollen tube growth rate (<i>PTGR</i>) evolution across Spermatophytes. Appendix S3: Summary statistics for pollen tube growth rate (<i>PTGR</i>) of <i>Magnolia</i> grandiflora.
 733 734 735 736 737 738 739 740 741 742 	 Appendix S1: 119 additional <i>PTGR</i> values and references not reported in Williams 2012. Appendix S2: Pollen tube growth rate (<i>PTGR</i>) evolution across Spermatophytes. Appendix S3: Summary statistics for pollen tube growth rate (<i>PTGR</i>) of <i>Magnolia grandiflora</i>. Appendix S4: Sensitivity analysis for the magnitude of log10 <i>PTGR</i> error estimates.

746

747 Appendix S7: Closely-related taxon analyses.

748

749 Appendix S8: Phylogenetic ANCOVA results.

Genetic Variation

Reese and Williams 2019 – American Journal of Botany – Appendix S1

Appendix S1: 119 additional *PTGR* values and references not reported in Williams 2012.

Taxon	<i>PTGR</i> (μm h ⁻¹)	Reference
Abelmoschus esculentus	5217	Patil et al 2013
Abutilon x hybridum	1292	Cited in Sears 1937
Acacia mangium	46.5	Ngheim et al 2013
Acacia_auriculiformis	116	Ngheim et al 2013
Acer rubrum	182	van Ryn et al 1988, Radford et al 1968
Aegle marmelos	181	Bhardwaj and Tandon 2013
Albuca canadensis	1000	Johnson et al 2012
Albuca setosa	2477	Johnson et al 2012
Alstroemeria aurea	3091	Aizen and Raffaele 1998, De Jeu et al. 1996
Alstroemeria pelegrina	574	De Jeu et al. 1996
Anathallis	4320	Gontijo et al 2010
Antirrhinum controversum	131	Cario and Guemes 2014
Antirrhinum valentinum	160	Cario and Guemes 2014
Aureolaria pedicularia	15.2	Ramstetter and Mulcahy 1986
Bertholletia excels	800	Moritz and Ludders 1993
Betula papyrifera	11.1	Williams unpbl.
Boswellia serrata	182	Sunnichan et al 2005
Brassica rapa	371	Hiroi et al 2013
Calluna vulgaris	387	Behrend et al 2012, Mahy and Jacquemart 1999
Cambessedesia	587	dos Santos et al 2012
Camellia oleifera	338	Gao et al 2015
Carica papaya	214	Traub and O'Rork 1939
Ceiba pentandra	2500	Gribel et al 1999
Ceratonia siliqua	152	Von Haselberg et al. 2004
Chamaecrista fasciculata	637	Tucker 1996, Fenster and Sork 1988
Citrullus lanatus	1151	Sedgley and Buttrose 1978
Citrus maxima	58.3	Distephano et al 2012
Citrus medica	122	Distefano et al 2012
Citrus reticulata	51.3	Distefano et al 2012
Clarkia xantiana	630	Hove and Mazer 2013
Commiphora wrightii	42.4	Geetha et al 2013
Cornus florida	70.8	Reed 2004
Corylus heterophylla	62.5	Liu et al 2014
Cucumis anguria	774	Matsumoto et al. 2012
Cucumis melo	870	Matsumoto et al. 2012
Cucumis metulifer	1009	Matsumoto et al. 2012
Cybistax antisyphilitica	583	Bittencourt et al 2010

Cyrtandra kauaiensis	261	Johnson et al 2015
Cyrtandra longifolia	221	Johnson et al 2015
Cyrtandra platyphylla	305	Johnson et al 2015
Cytisus multiflorus	4.48	Valtueña et al 2010
Cytisus striatus	19.8	Rodriguez-Riaño et al 1999
Dalzellia zeylanica	1159	Sehgal et al 2011
Dianthus caryophyllus	3002	Larsen et al 1995
Downingia bacigalupii	853	Kaplan 1969
Echium vulgare	590	Melser et al 1997
Eruca vesicaria	275	Cited in Sears 1937
Eucalyptus globulus	58.3	Gore et al 1990
Faramea occidentalis	2183	Travers 1999
Ficus carica	47.6	Beck and Lord 1988
Fumana	273	Carrio and Guemes 2013
Guihaiothamnus acaulis	188	Xie et al 2013
Haberlea rhodopensis	152	Bogacheva-Milkoteva 2013
Handroanthus ochraceus	1617	Oliveira, pers. comm.
Handroanthus serratifolius	1617	Oliveira, pers. comm.
Hedyosmum brasiliense	97.2	Williams and Edwards, unpbl.
Hedyotis acutangula	991	Wu et al 2010
Helleborus foetidus	514	Vesprini and Pacini 2000
Heuchera micrantha	181	Rabe and Soltis 1999
Hippophae rhamnoides	20.9	Mangla et al 2013
Hymenaea	1667	Gibbs et al 1999
Ipomoea purpurea	7450	Shu-Mei Chang, pers. comm. 2014
Ipomopsis aggregata	2409	Sage et al 2006, Wolf et al 2001
Jathropa curcas	915	Abdelgadir et al 2012
Lactoris fernandeziana	40	Bernardello et al 1999
Lactuca sativa	3085	Einset 1944
Lagerstroemia indica	1175	Pounders et al 2006
Lathyrus chloranthus	271	Herrick et al 1993
Lathyrus odoratus	321	Herrick et al 1993
Limnocharis	467	Hall 1902
Linaria	392	Cited in Sears 1937
Lupinus arizonicus	442	Wainwright 1978
Magnolia grandiflora	828	Edwards, Rankin, and Williams, unpbl. 2014
Medicago rigidula	82.2	Sangduen et al 1983
Medicago sativa	192	Barnes and Cleveland 1963
Morinda parvifolia	957	Liu et al 2012
Mussaenda kwangtungensis	963	Luo et al 2015
Mussaenda shikokiana	816	Chen et al 2014
Nemesia strumosa	333	Sears 1937

Nivenia corymbosa	873	Goldblatt and Bernhardt 1990
Nivenia stokeii	1217	Goldblatt and Bernhardt 1990
Nuphar advena	835	Taylor and Williams, unpbl.
Nyctanthes arbor tristis	526	Bhatnagar and Uma 1969
Orchis anthropophora	357	Luca et al 2015
Orchis italica	357	Luca et al 2015
Oreocharis acaulis	1318	Guo et al 2013
Oroxylum indicum	3000	Gautam et al 2009
Paeonia brownii	20.8	Bernhardt et al 2013
Parthenium	1333	Gerstel and Riner 1950
Passiflora edulis	2174	Rego et al 2000
Phalaenopsis	208	Zhang and O-Neill 1993
Phoenix dactylifera	315	Reuveni et al 1986
Platanthera	462	Stickler et al 2013 (poster)
Plumbago zeylanica	12741	Russell 1985
Polypleurum stylosum	153	Khosla et al 2000
Potamogeton intortusifolius	267	Zhang et al 2010
Potamogeton perfoliatus	1585	Zhang et al 2010
Potamogeton wrightii	1483	Zhang et al 2010
Pseudopiptadenia	39	Pires and Freitas 2008
Restrepia	99	Millner et al 2015
Schisandra sphenanthera	88.9	Du et al 2012
Silene vulgaris	2323	Glaeti 2006
Solanum chacoense	396	Liu et al 2012
Solanum laxum	333	Lewis and Crowe 1958
Sorghum bicolor	3638	Heslop-Harrison et al 1984, Hodnett et al 2005
Spathodea campanulata	4028	Bittencourt et al 2003
Sporobolus anglicus	8943	Li et al 2008
Thryptomene calycina	320	Beardsell et al 1993
Ticodendron incognitum	382	Sogo and Tobe 2008
Torenia baillonii	3200	Kikuchi et al 2007
Torenia concolor	1900	Kikuchi et al 2007
Trimezia	2000	Bystedt and Vennigerholz 1991
Vaccinium corybosum	191	Knight and Scott 1964
Vaccinium myrtillus	67.1	Jacquemart and Thompson 1996
Vaccinium uliginosum	54.3	Jacquemart and Thompson 1996
Vaccinium vitis idaea	98.6	Jacquemart and Thompson 1996
Zeyheria montana	2554	Bittencourt and Semir 2004
Zeylanidium lichenoides	354	Chaudhary et al 2014, Sehgal et al 2014

Reese and Williams 2019 – American Journal of Botany – Appendix S1

References

- Abdelgadir, H., S. Johnson, and J. Van Staden. 2012. Pollen viability, pollen germination and pollen tube growth in the biofuel seed crop *Jatropha curcas* (Euphorbiaceae). *South African Journal of Botany* 79:132-139.
- Aizen, M. A., and E. Raffaele. 1998. Flowering-shoot defoliation affects pollen grain size and postpollination pollen performance in *Alstroemeria aurea*. *Ecology* 79:2133-2142.
- Barnes, D., and R. Cleveland. 1963. Genetic evidence for nonrandom fertilization in alfalfa as influenced by differential pollen tube growth 1. *Journal of Crop Science* 3:295-297.
- Beardsell, D., R. Knox, and E. Williams. 1993. Breeding system and reproductive success of *Thryptomene calycina* (Myrtaceae). *Australian Journal of Botany* 41:333-353.
- Beck, N., and E. Lord. 1988. Breeding system in *Ficus carica*, the common fig. II. Pollination events. *American Journal of Botany* 75:1913-1922.
- Behrend, A., T. Borchert, A. Müller, J. Tänzer, and A. Hohe. 2013. Malformation of gynoecia impedes fertilisation in bud-flowering *Calluna vulgaris*. *Plant Biology* 15:226-232.
- Bernardello, G., G. J. Anderson, P. Lopez, M. A. Cleland, T. F. Stuessy, and D. J. Crawford. 1999. Reproductive biology of *Lactoris fernandeziana* (Lactoridaceae). *American Journal Of Botany* 86:829-840.
- Bernhardt, P., R. Meier, and N. Vance. 2013. Pollination ecology and floral function of Brown's peony (*Paeonia brownii*) in the Blue Mountains of northeastern Oregon. *Journal of Pollination* Ecology 2:9-20.
- Bhardwaj, V., and R. Tandon. 2013. Self-incompatibility and post-fertilization maternal regulation cause low fecundity in *Aegle marmelos* (Rutaceae). *Botanical Journal of the Linnean Society* 172:572-585.
- Bhatnagar, S. P., and M. C. Uma. 1969. The structure of style and stigma in some Tubiflorae. *Phytomorphology* 19:99-109.
- Bittencourt Jr, N. S., E. J. Pereira Jr, P. de Souza São-Thiago, and J. Semir. 2011. The reproductive biology of *Cybistax antisyphilitica* (Bignoniaceae), a characteristic tree of the South American savannah-like "Cerrado" vegetation. *Flora-Morphology*, *Distribution, Functional Ecology of Plants* 206:872-886.
- Bittencourt, N. S., and J. Semir. 2004. Pollination biology and breeding system of *Zeyheria montana* (Bignoniaceae). *Plant Systematics and Evolution* 247:241-254.
- Bittencourt, N. S. J., P. E. Gibbs, and J. Semir. 2003. Histological study of post-pollination events in *Spathodea campanulata* Beauv. (Bignoniaceae), a species with late-acting selfincompatibility. *Annals of Botany* 91:827-834.
- Bogacheva-Milkoteva, K., E. Kozuharova, R. Claßen-Bockhoff, and A. Gogala. 2013. Pollination ecology of *Haberlea rhodopensis* Friv. (Gesneriaceae), a Tertiary relict endemic to the Balkan Peninsula. *Journal Comptes rendus de l'Académie bulgare des Sciences* 66.
- Bystedt, P. A., and F. Vennigerholz. 1991. The transmitting tract in *Trimezia fosteriana* (Iridaceae). III. Pollen tube growth in the stigma, style and ovary. *Nordic Journal of Botany* 11:459-464.
- Carrió, E., and J. Güemes. 2013. The role of a mixed mating system in the reproduction of a Mediterranean subshrub (*Fumana hispidula*, Cistaceae). *Journal of Plant Research* 126:33-40.

- Carrió, E., and J. Güemes. 2014. The effectiveness of pre-and post-zygotic barriers in avoiding hybridization between two snapdragons (*Antirrhinum* L.: Plantaginaceae). 176:159-172.
- Chaudhary, A., P. Khanduri, R. Tandon, P. Uniyal, and H. M. Ram. 2014. Central cell degeneration leads to three-celled female gametophyte in *Zeylanidium lichenoides* Engl. (Podostemaceae). *South African Journal of Botany* 91:99-106.
- Chen, S., Z. Luo, and D. Zhang. 2014. Pre-and post-zygotic reproductive isolation between cooccurring *Mussaenda pubescens var. alba* and *M. shikokiana* (Rubiaceae). *Journal of Integrative Plant Biology* 56:411-419.
- de Assis Pires, J. P., and L. Freitas. 2008. Reproductive biology of two tree species of Leguminosae in a Montane Rain Forest in southeastern Brazil. *Flora-Morphology*, *Distribution, Functional Ecology of Plants* 203:491-498.
- de Jeu, M. J., F. G. Caldere, and J. L. van Went. 1996. Sporogenesis, gametogenesis, and progamic phase in *Alstroemeria*. *Canadian Journal of Botany* 74:1354-1361.
- Distefano, G., A. Hedhly, G. Las Casas, S. La Malfa, M. Herrero, and A. Gentile. 2012. Male– female interaction and temperature variation affect pollen performance in *Citrus*. *Scientia Horticulturae* 140:1-7.
- dos Santos, A. P. M., C. M. Fracasso, M. Luciene dos Santos, R. Romero, M. Sazima, and P. E. Oliveira. 2012. Reproductive biology and species geographical distribution in the Melastomataceae: a survey based on New World taxa. *Annals of Botany* 110:667-679.
- Du, W., L. J. Huang, and X. F. Wang. 2012. Deceit pollination and the effect of deforestation on reproduction in dioecious *Schisandra sphenanthera* (Schisandraceae) in central China. *Journal of Systematics and Evolution* 50:36-44.
- Einset, J. 1944. Cytological basis for sterility in induced autotetraploid lettuce (*Lactuca sativa* L.). *American Journal of Botany* :336-342.
- Fenster, C. B., and V. L. Sork. 1988. Effect of crossing distance and male parent on *in vivo* pollen tube growth in *Chamaecrista fasciculata*. *American Journal of Botany* 75:1898-1903.
- Gao, C., D. Yuan, Y. Yang, B. Wang, D. Liu, and F. Zou. 2015. Pollen tube growth and double fertilization in *Camellia oleifera*. *Journal of the American Society for Horticultural Science* 140:12-18.
- Gautam, M., R. Tandon, and H. M. Ram. 2009. Pollination ecology and breeding system of *Oroxylum indicum* (Bignoniaceae) in the foothills of the Western Himalaya. *Journal of Tropical Ecology* 25:93-96.
- Geetha, K., A. Kawane, A. K. Bishoyi, A. Phurailatpam, C. Ankita, S. Malik, R. Srinivasan, and S. Bhat. 2013. Characterization of mode of reproduction in *Commiphora wightii* [(Arnot) Bhandari] reveals novel pollen–pistil interaction and occurrence of obligate sexual female plants. *Trees* 27:567-581.
- Gerstel, D. U., and M. E. Riner. 1950. Self-Incompatibility studies in *Guayule* .1. Pollen-tube behavior. *Journal of Heredity* 41:49-55.
- Gibbs, P. E., P. E. Oliveira, and M. B. Bianchi. 1999. Postzygotic control of selfing in *Hymenaea* stigonocarpa (Leguminosae-Caesalpinioideae), a bat-pollinated tree of the Brazilian Cerrados. *International Journal of Plant Sciences* 160:72-78.
- Glaettli, M., and J. Goudet. 2006. Variation in the intensity of inbreeding depression among successive life-cycle stages and generations in gynodioecious *Silene vulgaris* (Caryophyllaceae). *Journal of Evolutionary Biology* 19:1995-2005.

- Goldblatt, P., and P. Bernhardt. 1990. Pollination biology of *Nivenia* (Iridaceae) and the presence of heterostylous self-compatibility. *Israeli Journal of Plant Sciences* 39:93-111.
- Gontijo, S. L., A. R. Barbosa, M. C. de Melo, and E. L. Borba. 2010. Occurrence of different sites of self-incompatibility reaction in four *Anathallis* (Orchidaceae, Pleurothallidinae) species. *Plant Species Biology* 25:129-135.
- Gore, P. L., B. M. Potts, P. W. Volker, and J. Megalos. 1990. Unilateral cross-incompatibility in *Eucalyptus*: the case of hybridization between *E. globulus* and *E. nitens*. *Australian Journal of Botany* 38:383-394.
- Gribel, R., P. E. Gibbs, and A. L. Queiróz. 1999. Flowering phenology and pollination biology of *Ceiba pentandra* (Bombacaceae) in Central Amazonia. *Journal of Tropical Ecology* 15:247-263.
- Guo, Y.-F., Y.-Q. Wang, and A. Weber. 2013. Floral ecology of *Oreocharis acaulis* (Gesneriaceae): An exceptional case of "preanthetic" protogyny combined with approach herkogamy. *Flora-Morphology*, *Distribution*, *Functional Ecology of Plants* 208:58-67.
- Hall, J. G. 1902. An embryological study of *Limnocharis emarginata*. *Botanical Gazette* 33:214-219.
- Herrick, J., B. Murray, and K. Hammett. 1993. Barriers preventing hybridisation of Lathyrus odoratus with *L. chloranthus* and *L. chrysanthus*. New Zealand Journal of Crop Horticultural Science 21:115-121.
- Heslop-Harrison, Y., B. Reger, and J. Heslop-Harrison. 1984. The pollen-stigma interaction in the grasses. 6. The stigma ('silk') of *Zea mays* L. as host to the pollens of *Sorghum bicolor* (L.) Moench and *Pennisetum americanum* (L.) Leeke. *Acta Botanica Nederlandica* 33:205-227.
- Hiroi, K., M. Sone, S. Sakazono, M. Osaka, H. Masuko-Suzuki, T. Matsuda, G. Suzuki, K. Suwabe, and M. Watanabe. 2013. Time-lapse imaging of self-and cross-pollinations in *Brassica rapa*. Annals of Botany 112:115-122.
- Hodnett, G. L., B. L. Burson, W. L. Rooney, S. L. Dillon, and H. J. Price. 2005. Pollen-pistil interactions result in reproductive isolation between *Sorghum bicolor* and divergent *Sorghum* species. *Crop science* 45:1403-1409.
- Hove, A. A., and S. J. Mazer. 2013. Pollen performance in *Clarkia* taxa with contrasting mating systems: implications for male gametophytic evolution in selfers and outcrossers. *Plants* 2:248-278.
- Jacquemart, A.-L., and J. Thompson. 1996. Floral and pollination biology of three sympatric *Vaccinium* (Ericaceae) species in the Upper Ardennes, Belgium. *Canadian Journal of Botany* 74:210-221.
- Johnson, M. A., D. K. Price, J. P. Price, and E. A. Stacy. 2015. Postzygotic barriers isolate sympatric species of *Cyrtandra* (Gesneriaceae) in Hawaiian montane forest understories. *American Journal Of Botany* 102:1870-1882.
- Johnson, S. D., A. Jürgens, and M. Kuhlmann. 2012. Pollination function transferred: modified tepals of *Albuca* (Hyacinthaceae) serve as secondary stigmas. *Annals of Botany* 110:565-572.
- Kaplan, D. R. 1969. Sporogenesis and gametogenesis in *Dowingia* (Campanulaceae; Loelioideae). *Bulletin of the Torrey Botanical Club* 96:418-434.
- Khosla, C., K. Shivanna, and H. M. Ram. 2000. Reproductive biology of *Polypleurum stylosum* (Podostemaceae). *Journal of Aquatic Botany* 67:143-154.

- Kikuchi, S., H. Kino, H. Tanaka, and H. Tsujimoto. 2007. Pollen tube growth in cross combinations between *Torenia fournieri* and fourteen related species. *Breeding Science* 57:117-122.
- Knight Jr, R., and D. Scott. 1964. Effects of temperatures on self-and cross-pollination and fruiting of four highbush blueberry varieties. *Proceedings of the American Society for Horticultural Science*.
- Larsen, P. B., E. N. Ashworth, M. L. Jones, and W. R. Woodson. 1995. Pollination-induced ethylene in carnation (role of pollen tube growth and sexual compatibility). *Plant Physiology* 108:1405-1412.
- Lewis, D., and L. K. Crowe. 1958. Unilateral interspecific incompatibility in flowering plants. *Heredity* 12:233-256.
- Li, H., S. An, Y. Zhi, C. Yan, L. Zhao, C. Zhou, Z. Deng, W. Su, and Y. Liu. 2008. Protogynous, pollen limitation and low seed production reasoned for the dieback of *Spartina anglica* in coastal China. *Plant Science* 174:299-309.
- Liu, B., N. Boivin, D. Morse, and M. Cappadocia. 2012. A time course of GFP expression and mRNA stability in pollen tubes following compatible and incompatible pollinations in *Solanum chacoense. Sexual Plant Reproduction* 25:205-213.
- Liu, J., H. Zhang, Y. Cheng, S. Kafkas, and M. Güney. 2014. Pistillate flower development and pollen tube growth mode during the delayed fertilization stage in *Corylus heterophylla* Fisch. *Plant Reproduction* 27:145-152.
- Liu, Y., Z. L. Luo, X. Q. Wu, X. F. Bai, and D. X. Zhang. Functional dioecy in Morinda parvifolia (Rubiaceae), a species with stigma-height dimorphism. Plant Systematics and Evolution 298:775-785.
- Luca, A., A. Palermo, F. Bellusci, and G. Pellegrino. 2015. Pollen competition between two sympatric *Orchis* species (Orchidaceae): the overtaking of conspecific of heterospecific pollen as a reproductive barrier. *Plant Biology* 17:219-225.
- Luo, Y., L. Lu, A. H. Wortley, D.-Z. Li, H. Wang, and S. Blackmore. 2015. Evolution of angiosperm pollen. 3. Monocots. Annals of the Missouri Botanical Garden 101:406-455.
- Mahy, G., and A. L. Jacquemart. 1999. Early inbreeding depression and pollen competition in *Calluna vulgaris* (L.) Hull. *Annals of Botany* 83:697-704.
- Mangla, Y., R. Tandon, S. Goel, and S. Raina. 2013. Structural organization of the gynoecium and pollen tube path in Himalayan sea buckthorn, *Hippophae rhamnoides* (Elaeagnaceae). *AoB Plants* 5.
- Matsumoto, Y., M. Miyagi, N. Watanabe, and T. Kuboyama. 2012. Temperature-dependent enhancement of pollen tube growth observed in interspecific crosses between wild *Cucumis spp.* and melon (*C. melo* L.). *Scientia Horticulturae* 138:144-150.
- Melser, C., M. C. Rademaker, and P. G. Klinkhamer. 1997. Selection on pollen donors by *Echium vulgare* (Boraginaceae). *Sexual Plant Reproduction* 10:305-312.
- Millner, H. J., A. R. McCrea, and T. C. Baldwin. 2015. An investigation of self-incompatibility within the genus *Restrepia*. *American Journal Of Botany* 102:487-494.
- Moritz, A., and P. Ludders. 1993. Pollen germination, pollen-tube growth and fertilization behavior of different Brazil nut clones (*Bertholletia excelsa* Humb And Bonpl). *Angewandte Botanik* 67:107-112.
- Nghiem, Q., J. Harbard, C. Harwood, A. Griffin, T. Ha, and A. Koutoulis. 2013. Pollen-pistil interactions between autotetraploid and diploid *Acacia mangium* and diploid *A. auriculiformis. Journal of Tropical Forest Science*:96-110.

- Patil, P., S. K. Malik, K. S. Negi, J. John, S. Yadav, G. Chaudhari, and K. V. Bhat. 2013. Pollen germination characteristics, pollen-pistil interaction and reproductive behaviour in interspecific crosses among *Abelmoschus esculentus* Moench and its wild relatives. *Grana* 52:1-14.
- Pounders, C., S. Reed, and M. Pooler. 2006. Pollination biology of *Lagerstroemia indica* and several interspecific hybrids. *HortScience* 413:575-578.
- Rabe, A. J., and D. E. Soltis. 1999. Pollen tube growth and self-incompatibility in *Heuchera* micrantha var. diversifolia (Saxifragaceae). International Journal of Plant Sciences 160:1157-1162.
- Radford, A. E., H. E. Ahles, and C. R. Bell. 1968. Manual of the vascular flora of the Carolinas. University of North Carolina Press, Chapel Hill, NC:.
- Ramstetter, J., and D. Mulcahy. 1986. Pollen competition in *Aureolaria pedicularia*. Pages 411-416 *Biotechnology and Ecology of Pollen*. Springer.
- Reed, S. M. 2004. Self-incompatibility in Cornus florida. HortScience 39:335-338.
- Rêgo, M., E. Rêgo, C. Bruckner, E. Da Silva, F. Finger, and K. Pereira. 2000. Pollen tube behavior in yellow passion fruit following compatible and incompatible crosses. *Theoretical and Applied Genetics* 101:685-689.
- Reuveni, O., S. Abu, and S. Golobovitz. 1985. Date palm pollen germination and tube elongation on pistillate flowers cultured at different temperatures. Pages 91-96 *in* Symposium on Physiology of Productivity of Subtropical and Tropical Tree Fruits 175.
- Rodríguez-Riaño, T., A. Ortega-Olivencia, and J. A. Devesa. 1999. Reproductive biology in two Genisteae (Papilionoideae) endemic of the western Mediterranean region: *Cytisus striatus* and *Retama sphaerocarpa*. *Canadian Journal of Botany* 77:809-820.
- Russell, S. D. 1985. Preferential fertilization in Plumbago Ultrastrucural evidencefor gametelevel recognition in an angiosperm. *Proceedings Of The National Academy Of Sciences Of The United States Of America* 82:6129-6132.
- Sage, T. L., M. V. Price, and N. M. Waser. 2006. Self-sterility in *Ipomopsis aggregata* (Polemoniaceae) is due to prezygotic ovule degeneration. *American Journal Of Botany* 93:254-262.
- Sangduen, N., E. L. Sorensen, and G. H. Liang. 1983. Pollen germination and pollen tube growth following self-pollination and intra- and interspecific pollination of *Medicago* species. *Euphytica* 32:527-534.
- Sears, E. R. 1937. Cytological phenomena connected with self-sterility in the flowering plants. *Genetics* 22:130.
- Sedgley, M., and M. Buttrose. 1978. Some effects of light intensity, daylength and temperature on flowering and pollen tube growth in the watermelon (*Citrullus lanatus*). Annals of botany 42:609-616.
- Sehgal, A., J. P. Khurana, M. Sethi, and H. Ara. 2011. Occurrence of unique three-celled megagametophyte and single fertilization in an aquatic angiosperm-*Dalzellia zeylanica* (Podostemaceae-Tristichoideae). *Sexual Plant Reproduction* 24:199-210.
- Sehgal, A., N. Mann, and H. M. Ram. 2014. Structural and developmental variability in the female gametophyte of *Griffithella hookeriana*, *Polypleurum stylosum*, and *Zeylanidium lichenoides* and its bearing on the occurrence of single fertilization in Podostemaceae. *Plant reproduction* 27:205-223.

- Sogo, A., and H. Tobe. 2008. Mode of pollen tube growth in pistils of *Ticodendron incognitum* (Ticodendraceae, Fagales) and the evolution of chalazogamy. *Botanical Journal of the Linnean Society* 157:621-631.
- Sunnichan, V. G., H. Y. M. Ram, and K. R. Shivanna. 2005. Reproductive biology of Boswellia serrata, the source of salai guggul, an important gum-resin. *Botanical Journal of the Linnean Society* 147:73-82.
- Traub, H. P., and C. T. O'Rork. 1939. Course of pollen tube growth in *Carica papaya* and *Cucurbita spp. Nature* 143:562-562.
- Travers, S. E. 1999. Environmental effects on components of pollen performance in *Faramea* occidentalis (L.) A. Rich.(Rubiaceae) 1. *Biotropica* 31:159-166.
- Tucker, S. C. 1996. Trends in evolution of floral ontogeny in *Cassia sensu stricto*, *Senna*, and *Chamaecrista* (Leguminosae: Caesalpinioideae: Cassieae: Cassiinae); a study in convergence. *American Journal Of Botany* 83:687-711.
- Valtueña, F. J., T. Rodríguez-Riaño, F. Espinosa, and A. Ortega-Olivencia. 2010. Self-sterility in two *Cytisus* species (Leguminosae, Papilionoideae) due to early-acting inbreeding depression. *American Journal Of Botany* 97:123-135.
- van Ryn, D., J. Lassoie, and J. Jacobson. 1988. Effects of acid mist on in vivo pollen tube growth in red maple. *Canadian Journal of Forest Research* 18:1049-1052.
- Vesprini, J. L., and E. Pacini. 2000. Breeding systems in two species of the genus *Helleborus* (Ranunculaceae). *Plant Biosystems* 134:193-197.
- von Haselberg, C., P. Ludders, and R. Stosser. 2004. Pollen tube growth, fertilization and ovule longevity in the carob tree (*Ceratonia siliqua* L.). Angew. Bot 78:32-40.
- Wainwright, C. M. 1978. Floral biology and pollination ecology of two desert Lupines. *Bulletin* of the Torrey Botanical Club 105:24-38.
- Williams, J. H. 2012. Pollen tube growth rates and the diversification of flowering plant reproductive cycles. *International Journal of Plant Sciences* 173:649-661.
- Wolf, P. G., D. R. Campbell, N. M. Waser, S. D. Sipes, T. R. Toler, and J. K. Archibald. 2001. Tests of pre- and postpollination barriers to hybridization between sympatric species of Ipomopsis (Polemoniaceae). *American Journal Of Botany* 88:213-219.
- Wu, X., A. Li, and D. Zhang. 2010. Cryptic self-incompatibility and distyly in *Hedyotis* acutangula Champ.(Rubiaceae). Journal of Plant Biology 12:484-494.
- Xie, P. W., Z. L. Luo, and D. X. Zhang. 2013. Syrphid fly pollination of *Guihaiothamnus acaulis* (Rubiaceae), a species with "butterfly" flowers. *Journal of Systematics and Evolution* 51:86-93.
- Zhang, X. L., R. W. Gituru, C. F. Yang, and Y. H. Guo. 2010. Exposure to water increased pollen longevity of pondweed (*Potamogeton* spp.) indicates different mechanisms ensuring pollination success of angiosperms in aquatic habitat. *Evolutionary Ecology* 24:939-953.
- Zhang, X. S., and S. D. O'Neill. 1993. Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. *Plant Cell* 5:403-418.

Reese and Williams 2019 – American Journal of Botany – Appendix S2

Appendix S2: Pollen tube growth rate (*PTGR***) evolution across Spermatophytes.** Contour plot showing reconstructed history of *PTGR*. Cool colors indicate *PTGRs* closer to the minimum value in seed plants while warm colors indicate *PTGRs* closer to the maximum value in seed plants. Scale bar indicates millions of years before present.

Reese and Williams 2019 – American Journal of Botany – Appendix S3

Statistic	PTGR
raw mean ($N = 25$ crosses)	827.6 μm h ⁻¹
raw SD ($N = 25$)	141.3 μm h ⁻¹
raw CV	0.1708
Log(10) mean	$2.912 \ \mu m \ h^{-1}$
transformed SD	$0.0689 \ \mu m \ h^{-1}$
transformed CV	0.0237

grandiflora.

Appendix S3: Summary statistics for pollen tube growth rate (PTGR) of Magnolia

Reese and Williams 2019 – American Journal of Botany – Appendix S4

Appendix S4: Sensitivity analysis for the magnitude of log10 PTGR error estimates. Values

in each column represent model weights from separate analyses of angiosperm diploids (N = 138) vs. polyploids (N = 68). Column headings indicate the coefficient of variation (CV), ranging from zero to 0.50, used to calculate estimated species-specific standard deviations around *PTGRs* in each analysis. The best-fitting model at each CV is indicated in bold. ^a, Empirically-determined CV of *Magnolia grandiflora*.

	Coefficient of Variation					
Model	0.00	0.0237 ^a	0.05	0.10	0.25	0.50
OUMV	0.376	0.373	0.459	0.461	0.119	0.045
OUMA	0.363	0.333	0.307	N/A	0.172	0.070
OUM	0.157	0.174	0.137	0.309	0.212	0.080
OU1	0.104	0.120	0.097	0.230	0.390	0.188
BM1	1.74E-31	1.77E-25	3.20E-20	4.58E-14	0.089	0.528
BMS	5.45E-32	5.52E-26	4.81E-24	1.30E-12	0.017	0.089

Reese and Williams 2019 – American Journal of Botany – Appendix S5

Appendix S5: PTGR evolution in gymnosperms vs. angiosperms. Selective regime 1

represents gymnosperms (N = 28) and selective regime 2 represents angiosperms (N = 423). Models representing <1% of the model weight are excluded.

model	ΔAICe	model weight	sigma sq1	alpha1	sigma sq2	alpha2	optimum1	se1	optimum2	se2
OUMV	(822.1)	0.338	0.091	0.122	0.139	0.122	0.187	0.123	2.690	0.048
OUM	0.040	0.332	0.137	0.124	0.137	0.124	0.188	0.150	2.690	0.047
OUMA	0.051	0.330	0.091	0.120	0.091	0.123	0.187	0.123	2.690	0.048
AVERA MOI		~1	0.106	0.122	0.122	0.123	0.187	0.132	2.690	0.048

Reese and Williams 2019 – American Journal of Botany – Appendix S6

Appendix S6: C-value evolution in gymnosperms vs. angiosperms. Selective regime 1

represents gymnosperms (N = 23) and selective regime 2 represents angiosperms (N = 161).

Models representing <1% of the model weight are excluded.

model	∆AICc	model weight	sigma sq1	alpha1	sigma sq2	alpha2	optimum1	se1	optimum2	se2
OUMV	(172.4)	0.502	0.007	0.095	0.005	0.095	1.231	0.041	0.184	0.051
OUMA	0.02	0.498	0.006	0.085	0.006	0.096	1.231	0.042	0.184	0.051
AVERA MOD		~1	0.007	0.09	0.005	0.095	1.231	0.041	0.184	0.051

Reese and Williams 2019 – American Journal of Botany – Appendix S7

Appendix S7: Closely-related taxon analyses.

Appendix S7a. Closely-related species pairs extracted from ploidy dataset. *PTGRs* in μ m h⁻¹. Binomial test (*P* = 0.623; *N* = 10).

DIPLOID	POLYPLOID	DIPLOID	POLYPLOID	FASTER
TAXON	TAXON	PTGR	PTGR	TAXON
Anagallis arvensis	Anagallis monelli	233.33	105.56	diploid
Hemerocallis thunbergii	Hemerocallis fulva	4166.67	6266.67	polyploid
Ipomoea purpurea	Ipomoea batatas	7450	4625	diploid
Iris mandshurica	Iris pseudacorus	278.65	4255.50	polyploid
Lythrum junceum	Lythrum salicaria	722.22	493.60	diploid
Medicago rigidula	Medicago sativa	82.23	192.17	polyploid
Prunus avium	Prunus domestica	260.88	177.5	diploid
Tabebuia rosea	Tabebuia chrysotricha	1111.11	1342.45	polyploid
Trifolium pratense	Trifolium polymorphum	103.89	444.44	polyploid
Ulmus pumila	Ulmus americana	56.25	56.25	equivocal

Reese and Williams 2019 – American Journal of Botany – Appendix S7

Appendix S7b. Intraspecific diploid-polyploid cytotypes taken from the literature. All are

autopolyploids. Binomial test, N = 11, P = 0.0020. Percent difference is calculated relative to the diploid.

REF.	TAXON	DIPLOID	POLYPLOID	POLYPLOID
		PTGR	PTGR	+/- (% DIFF)
1	Beta vulgaris	241.2 µm/h	142.7 µm/h	slower (-69%)
	2x,4x			
2	Cucumis melo	"no dif	ference"	equivocal
	2x,4x			
3	Datura	2953.7 µm/h	2812.5 μm/h	slower (-4.8%)
	<i>stramonium</i> 2x,4x			
4	Lactuca sativa	"faster"	"slower"	slower
	2x,4x			
5	Malus domestica	3.8 units/96 h	3.1 units/96 h	slower (-18.4%)
	2x,4x			
6	Malus domestica	682 µm/h	465 µm/h	slower (-31.8%)
	2x,3x			
7	Secale cereale	12.24 units/h	12.08 units/h	slower (-1.3%)
	2x,4x			
8	Solanum sp. 2x,4x	"faster"	"slower"	slower
9	Trifolium pratense	2322 µm/h	1950 µm/h	slower (-16%)
	2x,4x			
10,11	Zea mays 2x,4x	Slower pollen	germination and	slower
		pollen tube gr	owth rate in 4x	

References

- 1. Matsumura S, Mochizuki A. 1953. Improvement of sugar beet by means of induced triploidy. *The Japanese Journal of Genetics* 28(2): 47-56.
- 2. Susin I, Álvarez JM. 1997. Fertility and pollen tube growth in polyploid melons (*Cucumis melo* L.). *Euphytica* 93(3): 369-373.
- **3.** Buchholz JT, Blakeslee AF. 1929. Pollen-tube growth in crosses between balanced chromosomal types of *Datura stramonium*. *Genetics* 14: 538-568.

- **4.** Einset J. 1944. Cytological basis for sterility in induced autotetraploid lettuce (*Lactuca sativa* L.). *American Journal of Botany*: 336-342.
- **5.** Adachi Y, Komori S, Hoshikawa Y, Tanaka N, Abe K, Bessho H, Watanabe M, Suzuki A. 2009. Characteristics of fruiting and pollen tube growth of apple autotetraploid cultivars showing self-compatibility. *Journal of the Japanese Society for Horticultural Science* **78**(4): 402-409.
- **6.** Modlibowska I. 1945. *Pollen tube growth and embryo-sac development in apples and pears*. Ph.D. dissertation, University of London, London.
- 7. Chin T. 1943. Cytology of the autotetraploid rye. *Botanical Gazette* 104(4): 627-632.
- **8.** Modlibowska I. 1945. *Pollen tube growth and embryo-sac development in apples and pears*. Ph.D. dissertation, University of London, London.
- **9.** Evans AM. 1962. Species hybridization in *Trifolium*. 2. Investigating pre-fertilization barriers to compatibility. *Euphytica* 11(3): 256-262.
- 10. Randolph L. 1935. Cytogenetics of tetraploid maize. J. agric. Res 50: 591-605.
- **11. Green JM. 1946.** Comparative rates of pollen tube establishment in diploid and tetraploid maize. *Journal of Heredity* **37**(4): 117-121.

Reese and Williams 2019 – American Journal of Botany – Appendix S8

Appendix S8: Phylogenetic ANCOVA results. Models comprising <1% of the model weight are excluded.

Appendix S8a: Angiosperms only (N = 100).

		Full model		
Model	<u>Weight</u>	<u>P</u> C-value	<u> Pploidy</u>	<u>Pinteraction</u>
kappa	0.688	0.028	0.565	0.334
OU	0.287	0.005	0.679	0.414
lambda	0.025	0.076	0.867	0.626

Model averaged slope for C-value: 0.399 ± 0.167

		No interaction		
Model	<u>Weight</u>	PC-value	<u>Pploidy</u>	
kappa	0.652	0.046	0.748	
OU	0.313	0.006	0.895	
lambda	0.035	0.083	0.979	
36.1.1	1 0 0 1	0.044 0.450		

Model averaged slope for C-value: 0.344 ± 0.153

C-value only				
Model	<u>Weight</u>	<u>PC-value</u>		
kappa	0.642	0.045		
OU	0.322	0.005		
lambda	0.036	0.079		
Madal arranged	alama fam C vialius	0.244 ± 0.152		

Model averaged slope for C-value: 0.344 ± 0.153

Appendix S8b: All seed plants (N = 118).

Full model							
<u>P</u> interaction	<u>P</u> ploidy	<u>P</u> C-value	<u>Weight</u>	Model			
0.624	0.486	0.080	0.998	kappa			
				kappa			

Slope for C-value: 0.288 ± 0.163

		No interaction		
Model	<u>Weight</u>	<u>PC-value</u>	<u> Pploidy</u>	
kappa	0.997	0.092	0.562	
Slope for C-valu	e: 0.263 <u>+</u> 0.155			

C-value only				
Model	<u>Weight</u>	<u>P</u> C-value		
kappa	0.997	0.090		
Slope for C-valu	$e 0.264 \pm 0.154$			

Slope for C-value: 0.264 ± 0.154