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Abstract

Identifying a protein’s subcellular location is of great interest for understanding

its function and behavior within the cell. In the last decade, many computa-

tional approaches have been proposed as a surrogate for expensive and inefficient

wet-lab methods that are used for protein subcellular localization. Yet, there is

still much room for improving the prediction accuracy of these methods.

PSL-Recommender (Protein subcellular location recommender) is a method

that employs neighborhood regularized logistic matrix factorization to build

a recommender system for protein subcellular localization. The effectiveness of

PSL-Recommender method is benchmarked on one human and three animals

datasets. The results indicate that the PSL-Recommender significantly outper-

forms state-of-the-art methods, improving the previous best method up to 31%

in F1−mean, up to 28% in ACC, and up to 47% in AVG. The source of datasets

and codes are available at: https://github.com/RJamali/PSL-Recommender
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1. Introduction

Proteins are responsible for a wide range of functions within cells. The

functionality of a protein is entangled with its subcellular location. Therefore,

identifying Protein Subcellular Localization (PSL) is of great importance for

both biologists and pharmacists, helping them inferring a protein’s function5

and identifying drug-target interactions [1]. Recent advances in genomics and

proteomics provide massive amount of protein sequence data extending the gap

between sequence and annotation data. Although PSLs can be identified by

experimental methods, these methods are laborious and time-consuming ex-

plaining why only a narrow range of PSL information in Swiss-Prot database10

has been verified in this manner [2]. This problem augments the demand for

accurate computational prediction methods. Developments of computational

and machine learning techniques have provided fast and effective methods for

PSL prediction [2–5, 5–23].

The desired PSL prediction can be reached typically by relying on sequence-15

derived features, taking into consideration that using annotation-derived fea-

tures can lead up to better performance. Different types of sequence-derived

features have been used for PSL prediction. For example, PSORT [24], WoLF

PSORT [4] and TargetP [25] employ sequence sorting signals [9] while Cell-Ploc

[10] and LOCSVMPSI [11] use position specific scoring matrix [26]. Addition-20

ally, amino/psudo-amino acid composition information [12, 27] is utilized by

ngLOC [13]. There are also some methods that employ combinations of sequence

based features [3, 4]. Alongside, there are different types of annotation derived

features such as protein-protein interaction, Gene Ontology (GO) terms and

functional domain and motifs which are used by different methods [2, 7, 8, 17–25

20]. Moreover, text-based features derived by literature mining have also been

employed beside other features for protein subcellular localization [14–16].

Parallel to the importance of features, selecting a suitable algorithm definitely

leads to a higher accuracy in prediction. Many machine learning methods or

statistical inferences are applied for the protein subcellular localization prob-30
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lem, such as support vector machine [2, 3], K-nearest neighbors [21, 22], and

Bayesian methods [6, 23].

In this paper, we have modeled the PSL prediction problem as a recommen-

dation task that aims to suggest a list of subcellular locations to a new pro-

tein. In general, Recommendation systems are methods and techniques that35

suggest users a preferred list of items (e.g. suggesting a movie to watch or

suggesting an item to purchase) based on a previous knowledge about relations

within and between items and users [28]. As of late framework strategies, rec-

ommendation systems have been utilized to predict associations in challenging

bioinformatics problems [29–32]. Well-known PSL prediction methods assign40

equal importance to all proteins information in both constructing model and

prediction tasks [2, 5, 6, 33], but utilization prioritized information from simi-

lar proteins in model construction step is likely more meaningful. Additionally,

due to large number of protein features, dimension reduction methods which

capture dependencies among proteins and subcellular locations could be useful45

to construct a PSL prediction model. In order to considering these concepts,

our method, ”PSL-Recommender” employs a probabilistic recommender system

to predict the presence probability of a protein in a subcellular location. PSL-

Recommender utilized both prioritized information to elucidate the importance

of sharing similarity information over proteins, and low-dimensional latent space50

projection of protein features during PSL prediction process.

PSL-Recommender employs logistic matrix factorization technique [34] inte-

grated with a neighborhood regularization method to capture the information

from a set of previously known protein-subcellular location relations. Then, it

utilizes this information to predict the presence probability of a new protein in55

a subcellular location using a logistic function. Logistic Matrix factorization

has shown promising results for problems such as music recommendation [35],

drug-target interaction prediction [29, 36], and lncRNA-protein interaction pre-

diction [30]. However, to the best of our knowledge, it has not been used in PSL

prediction problem.60

By evaluating on different benchmark datasets, we have shown that PSL-Recommender
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significantly outperforms the results of current state-of-art methods.

2. Materials and Method

2.1. Method

To recommend a subcellular position to a protein, PSL-Recommender em-65

ploys two matrices; a matrix of currently known protein-subcellular location

assignments(PSL interactions) and a similarity matrix between proteins. The

proteins similarity matrix is the weighted average of similarity measures such

as GO terms [37] similarities, PSSM [38] similarity and STRING [39] similarity.

The main idea is to model the localization probability of a protein in a location70

as a logistic function of two latent matrices. The latent matrices are acquired by

matrix factorization of the protein-subcellular location matrix with respect to

the similarity matrices. Construction pipeline of PSL-Recommender predictor

has been demonstrated in Fig 1. The details of similarity measures and the

recommender system are as follows.75

2.1.1. PSSM similarity

The PSSM similarity matrix, SPSSM = [sPSSMi,j ]
n×n, contains the pairwise

global alignment scores of proteins that are calculated using the position specific

scoring matrices (PSSM). Accordingly, to compute the sPSSMi,j of proteins i and

j, first for each protein, PSI-BLAST [40] with e-value 0.001 is used to search the80

Swiss-Prot database to obtain each protein’s PSSM. Then i and j are globally

aligned twice, once using the PSSM of i and once using the PSSM of j. Finally,

sPSSMi,j is obtained by the mean of reciprocal alignment scores. The PSSM

similarity matrix is normalized using unity based normalization.

2.1.2. STRING similarity85

It has been shown that two interacting proteins have a higher chance to

be in the same subcellular location [8, 18, 41]. Accordingly, we extracted the

interaction score of all pairs of proteins from STRING (Ver. 10.5) to construct

the proteins interaction scoring matrix. If no interaction was available for a pair

4
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Figure 1: Construction pipeline of PSL-Recommender

of proteins, we set their interaction score to zero. Since the STRING protein-90

protein interaction scores are in the range of [0, 999], we normalized the scores

with unity-base normalization.

2.1.3. Semantic similarity of GO terms

Gene Ontology terms are valuable sources of information for predicting sub-

cellular localization [2, 42]. To exploit GO terms similarities, we first extracted95

GO molecular function, biological process and cellular component terms from

Swiss-Prot database. Then we used A-DaGO-Fun to extract the BMA-based
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Resnik GO terms semantic similarities [43]. Similarities were normalized using

unity-based normalization.

2.1.4. PSL-Recommender100

Let proteins and subcellular locations sets be denoted by X and Y, respec-

tively and |X| = m and |Y | = n. Moreover, let Sp =
[
spi,k

]
m×m

represent the

similarity of proteins. The presence of proteins in subcellular locations is also

denoted by a binary matrix L = [lij ]m×n , where, lij = 1 if proteins i has been

experimentally observed in subcellular location j and lij = 0 otherwise.

The localization probability of the protein i in subcellular location j can be

modeled as a logistic function as follows:

pij =
exp

(
uiv

T
j + βpi + βlj

)
1 + exp

(
uivTj + βpi + βlj

) . (1)

In Eq.(1), ui ∈ IR1×d and vj ∈ IR1×d are two latent vectors that reflect the

properties of protein i and subcellular location j in a shared latent space of size

d < min (m,n). However, in our case matrix L is biased toward some proteins

and subcellular locations, meaning that some proteins tend to localize in many

locations and some subcellular locations include many proteins. Accordingly,

for each protein and subcellular location we introduce a latent term to capture

this bias. In Eq.(1), βpi represent the bias factor for protein i and βlj represent

the bias factor for subcellular location j.

Now the goal is to acquire the latent factors for a given L. Suppose U ∈ IRm×d,

V ∈ IRn×d, βp ∈ IRm×1 and βl ∈ IRn×1 denote the latent matrices and bias

vectors for proteins and subcellular locations. According to the Bayes’ theorem

and the independence of U and V we have:

p(U, V, βp, βl|L) ∝ p(L|U, V, βp, βl)× p (U)× p (V ) (2)

On the other hand, by assuming that all entries of L are independent, we have:

p
(
L|U, V, βp, βl

)
=

m∏
i=1

n∏
j=1

pij
clij (1− pij)(1−lij), (3)
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where c is weighting factor on positive observations, since we have more confi-

dence on positive observations than negative ones. Also, by placing a zero-mean

spherical Gaussian prior on latent vectors of proteins and subcellular locations

we have:

p
(
U |σ2

p

)
=

m∏
i=1

N
(
ui|0, σ2

pI
)
, p
(
V |σ2

l

)
=

n∏
j=1

N
(
vj |0, σ2

l I
)
, (4)

where σ2
p and σ2

l are parameters controlling the variances of prior distributions

and I denotes the identity matrix. According to the above equations, the log of

the posterior is yielded as follows:

log p
(
U, V, β|L, σ2

p, σ
2
l

)
=

m∑
i=1

n∑
j=1

[clij
(
uiv

T
j + βi + βj

)
− (1 + clij − lij) log

[
1 + exp

(
uiv

T
j + βi + βj

)]
]

− λp
2

m∑
i=1

‖ui‖22 −
λl
2

n∑
j=1

‖vj‖22 + C,

(5)

where λp = 1
σ2
p
, λl = 1

σ2
l

and c is a constant term independent of the model

parameters. Our goal is to learn U , V , βp and βl that maximize the log posterior

above, which is equal to minimizing the following objective function:

min
U,V,βp,βl

m∑
i=1

n∑
j=1

(1 + clij − lij) log
[
1 + exp

(
uiv

T
j + βi + βj

)]
−clij

(
uiv

T
j + βi + βj

)
+
λp
2

m∑
i=1

‖ui‖2F −
λl
2

n∑
j=1

‖vj‖2F ,
(6)

where ‖.‖F denotes the Frobenius norm of a matrix. By minimizing the above

function U , V and β can effectively capture the information of protein local-

izations. However, we can further improve the model by incorporating protein

similarities as suggested by [29]. This process is known as neighborhood regu-

larization. This is done by regularizing the latent vectors of proteins such that

the distance between a protein and its similar proteins is minimized in the latent

space.

Accordingly, suppose that the set of k1 most similar neighbors to protein xi is

7
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denoted by Nk1 (xi) ⊆ X − xi. We constructed adjacency matrix A = [aij ]m×m

that represents proteins neighborhood information as follows:

aij =

 spij if xj ∈ N (xi)

0 otherwise
(7)

To minimize the distance between proteins and their k most similar proteins we

minimize the following objective function:

α

2

m∑
i=1

m∑
j=1

aij‖ui − uj‖2F =
α

2
tr
(
UTHpU

)
, (8)

where Hp =
(
Bp + B̃p

)
−
(
A+AT

)
and tr (.) is the trace of matrix. In this

equation, Bp and B̃p are two diagonal matrices, that their diagonal elements

are Bpii =
m∑
j=1

aij and B̃pjj =
m∑
i=1

aij , respectively.

Finally by plugging Eq.(8) into Eq.(6) we will have the following:

min
U,V,βp,βl

m∑
i=1

n∑
j=1

clij
(
uiv

T
j + βi + βj

)
− (1 + clij − lij) log

[
1 + exp

(
uiv

T
j + βi + βj

)]
− 1

2
tr
[
U t (λpI + αHp)U

]
− λl

2

n∑
j=1

‖vj‖2F .

(9)

A local minimum of above function can be found by employing the alternating

gradient descent method. In each iteration of the gradient descent, first U and105

βi are fixed to compute V and βj and then V and βj are fixed to compute U

and βi. To accelerate the convergence, we have employed the AdaGrad [44]

algorithm to choose the gradient step size in each iteration adaptively. The

8
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partial gradients of latent vectors and biases are given by:

∂F

∂ui
=

n∑
j=1

clijv
T
j −

vTj (1 + clij − lij) exp
(
uiv

T
j + βi + βj

)
1 + exp

(
uivTj + βi + βj

) − (λpui + αHp
ijui),

∂F

∂βi
=

n∑
j=1

clij −
(1 + clij − lij) exp

(
uiv

T
j + βi + βj

)
1 + exp

(
uivTj + βi + βj

) ,

∂F

∂vj
=

m∑
i=1

clijui −
ui (1 + clij − lij) exp

(
uiv

T
j + βi + βj

)
1 + exp

(
uivTj + βi + βj

) − λlvj ,

∂F

∂βj
=

m∑
i=1

clij −
(1 + clij − lij) exp

(
uiv

T
j + βi + βj

)
1 + exp

(
uivTj + βi + βj

) .

(10)

Once the latent matrices U , V , βi and βj are calculated, the presence probability

of a protein i in a subcellular location can be estimated by the logistic function in

formula 1. However for a new protein the latent factors u and b are not available.

Hence, for a new protein the presence probability in subcellular location j is

estimated as follows:

pij =
exp

(
ũiv

T
j + βpi + βlj

)
1 + exp

(
ũivTj + βpi + βlj

) , (11)

where ũi is the weighted average of the latent vectors of k2 nearest neighbors of

i, as follows:

ũi =

∑
k∈N(xi)

spi,kuk∑
k∈N(xi)

spi,k
. (12)

Eventually a threshold can be applied on probabilities to assign the subcellular110

locations to proteins.

2.2. Datasets and evaluation criteria

Evaluating the protein subcellular prediction methods is a challenging task.

In one hand, the standalone version of state-of-the-art methods are not available

and on the other hand, the protein databases are updated quickly. Hence, to115

achieve a fair evaluation and comparison we have employed the same datasets

and evaluation criteria as used in previous studies [2, 5, 6]. These datasets are

summarized in Table ??. The Hum-mploc3.0, the BaCelLo IDS animals[45], and

9
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the Höglund IDS[33] datasets consist of two non-overlapping subsets for training

and testing purposes while for DBMloc we have performed 5-fold cross valida-120

tion. The training set of Hum-mploc 3.0, HumB, is constructed from Swiss-Prot

database release 2012 01 (January 2012) and consists of 3122 proteins of which

1023 proteins are labeled with more than one subcellular locations and the rest

are single location proteins. Alongside HumB, HumT is used as the testing set

to evaluate the method’s performance. HumT is also constructed from Swiss-125

Prot database release 2015 05 (May 2015 release) and consists of 379 proteins of

which 120 proteins are labeled with more than one subcellular locations and the

rest are single location proteins. Each protein in Hum-mploc 3.0 is assigned to

at least one of 12 subcellular locations (Centrosome, Cytoplasm, Cytoskeleton,

Endoplasmic reticulum, Endosome, Extracellular, Golgi apparatus, Lysosome,130

Mitochondrion, Nucleus, Peroxisome, and Plasma membrane).

The training set of BaCelLo IDS animals dataset is extracted from Swiss-Prot

release 48 (September 2005 release) containing 2597 single label proteins, while

the testing set consists of 576 single label proteins extracted from Swiss-Prot

between relese 49 and 54 (February 2006 and July 2007 releases). Each pro-135

tein in BaCelLo IDS animal dataset is assigned one of four subcellular locations

(Cytoplasm, Mitochondrion, Nucleus, and Secreted).

In the Höglund IDS dataset, the training set contains 5959 single label proteins

extracted from Swiss-Prot release 42 and includes nine subcellular locations

(Nucleus, Cytoplasm, Mitochondrion, Endoplasmic reticulum, Golgi apparatus,140

Peroxisome, Plasma membrane, Extracellular space, Lysosome, and Vacuole)

Hum-mPLoc 3.0 BaCelLo Höglund DBMloc

Train Test Train Test Train Test All

Proteins count 3129 379 2597 576 5959 158 3056

Labels count 4229 541 2597 576 5959 158 6112

Locations count 12 4 6 6

Table 1: Datasets summary

10
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while the testing set contains 158 single label proteins extracted from Swiss-Prot

release 55.3 including six subcellular locations (Endoplasmic reticulum, Golgi

apparatus, Peroxisome, Plasma membrane, Extracellular space, and Lysosome).

Accordingly, to train PSL-Recommender we only used 2682 proteins of training145

set that their subcellular location existed in the test set.

Unlike the previous datasets, the DBMLoc dataset does not have a separate

training and testing dataset. This dataset contains 3054 double locational pro-

teins with paired subcellular locations: (cytoplasm and nucleus), (extracellular

and plasma membrane), (cytoplasm and plasma membrane), (cytoplasm and150

mitochondrion), (nucleus and mitochondrion), (endoplasmic reticulum and ex-

tracellular) and (extracellular and nucleus). We have performed 5-fold cross

validation technique to produce training and testing sets on this dataset.

We assessed PSL-Recommender performance against other methods by using

customized ACC and F1−mean over subcellular locations for evaluation of

multi-label classification performance methods which is introduced by [46] and

used by other state-of-the-art methods for this problem. ACC is the average of

ACCxi of all proteins in the test set, calculated for each protein as follows:

ACCxi
=

TPxi

TPxi
+ FPxi

+ FNxi

, (13)

where, TPxi
, FPxi

, and FNxi
are number of true positive prediction, number of

false positive predictions, and number of false negative predictions for protein

xi, respectively.

The F1−mean is the average of F1yj of all subcellular locations, where F1 of

subcellular location yj is the harmonic mean of Precisionyj
and Recallyj

, defined

as follows:

Precisionyj
=

∑
{xi∈Rj}

TPxi

TPxi
+FPxi

|Rj |
,

Recallyj
=

∑
{xi∈Tj}

TPxi

TPxi
+FNxi

|Tj |
,

F1yj =
2× Precisionyj

× Recallyj

Precisionyj + Recallyj

,

(14)

11
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where, Rj and Tj are sets of predicted proteins for location yj and true proteins

for location yj , respectively.

Alongside, SherLoc2 [5] applied two other evaluation criterias, named ACC2

(ratio of correctly predicted proteins) and AVG (average fraction of called in-

stances) which are defined as follow:

ACC2 =
tp+ tn

tp+ tn+ fp+ fn
,

AVG =
1

d

d∑
i=1

tpi
tpi + fni

,

(15)

where, d denotes the number of subcellular locations and tp, tn, fp, and fn indi-

cate the number of true positive, true negative, false positive, and false negative155

instances, respectively.

2.2.1. Learning Hyperparameters

For all datasets, to prevent overfitting in tuning hyperparameters, they were

learned from a comprehensive dataset, HumB, which is not considered in testing

stage. It means that these hyperparameters are considered for all datasets. Since160

HumB -among the four mentioned datasets- contains both the single label and

multi label PSL data, this dataset has been used for tuning task. Following 5-

fold cross validation procedure is applied on HumB and hyperparameters were

chosen empirically by maximizing the F1−mean: HumB is devided into 5 equal

subsets and PSL-Recommender is trained on union of 4 subsets and one other165

subset was hold for test the F1−mean. This process is repeated 5 times, such

that each time one of the 5 subsets is used as validation set and other 4 subsets

are put together to form a training set.

For each set of hyperparameters, whole 5-fold process is repeated for 20 times

and average of F1−mean has been calculated. Due to the large search space,170

a grid-search procedure is applied for selecting the hyperparameters.

The weight of similarity measures used to build the protein similarity matrix

was picked from 1 to 10 by step of 1. The dimension of latent space, r, was

selected between 1 and the number of subcellular locations by step of 1. The

12
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weighting factor for positive observations, c, was chosen between 5 and 80 by175

step of 1. The number of nearest neighbors for constructing Nk1(xi) in equation

7, k1, was selected from 1 to 60 by step of 1. Similarly, The number of nearest

neighbors for constructing Nk2(xi), in equation 12, k2, was selected from 1 to

60 by step of 1. The variance controlling parameters, λp and λl, were chosen

form {2−5, 2−4, ..., 21}. Impact factor of nearest neighbors in equation 8, α, was180

picked from {2−5, 2−4, ..., 22}. Finally, The learning rate of the gradient descent

criteria, θ, was selected from {2−5, 2−4, ..., 20}.

Table 2 represents the learned hyperparameters using HumB dataset. For all

datasets, these learned hyperparameters are considered to construct the models.

r c k1 k2 λp λl α θ

Value 10 11 4 10 0.25 0.5 2 1

Table 2: Learned hyperparameters based on HumB dataset. (r is latent space dimension,

c is weighting factor for positive observations, k1 is the number of nearest neighbors for

constructing Nk1
(xi), k2 is the number of nearest neighbors for constructing Nk2

(xi), λp

variance controlling parameterof proteins, λl variance controlling parameter of subcellular

locations, α is the impact factor of nearest neighbors, and θ is the learning rate of the gradient

descent criteria)

185

3. Results and discussion

PSL-Recommender can be employed to predict the subcellular protein local-

ization in different species. Accordingly, we evaluated the performance of PSL-

Recommender on different datasets and compared it to other state-of-the-arts

methods. We further investigated the role of each protein similarity measures190

that are employed by the PSL-Recommender.

3.1. Comparison with the State-of-art method

We have first employed the Hum-mPLoc 3.0 [2] human protein dataset to

compare the performance of PSL-Recommender to six methods that were in-
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troduced for protein localization in human. The methods include YLoc+ [6],195

iLoc-Hum [47], WegoLoc [48], mLASSO-Hum [49] and Hum-mPloc 3.0. The

F1− score for each location and the ACC and F1−mean of all methods on

Hum-mploc 3.0 dataset is depicted in Table 3.

As seen in Table 3, PSL-Recommender significantly outperforms the F1−mean

and ACC of all other methods improving the best method by 12% in both200

F1−mean and ACC. Also, in 10 out of 12 subcellular locations, PSL-Recommender

has the best performance amongst all methods while in the other two locations

it has the second best performance. The most significant improvements have

been observed in Centrosome, ER (Endoplasmic Reticulum) and Plasma Mem-

brane showing 17%, 21% and 18% improvement respectively over the second205

best method.

It is only in Endosome that PSL-Recommender shows unsatisfactory results

(41% F1− score). This is while other methods also fail to provide good results

for this location such that the best method (Hum-mPLOC 3.0) only achieves

52% F1− score. Moreover, for Extracellular, WegoLoc slightly (3%) outper-210

forms PSL-Recommender.

To show the performance of PSL-Recommender on other species we have em-

Location Yloc+ iLoc-Human WegoLoc mLASSO-Hum Hum-mPLoc3.0 PSL-Recommender

pre re F1 pre re F1 pre re F1 pre re F1 pre re F1 pre re F1

Centrosome - - - 0 0 0 0.75 0.14 0.23 0.59 0.59 0.59 0.75 0.55 0.63 0.94 0.69 0.80

Cytoplasm 0.55 0.85 0.67 0.5 0.54 0.52 0.69 0.53 0.60 0.93 0.51 0.66 0.76 0.73 0.74 0.81 0.78 0.79

Cytoskeleton - - - 0 0 0 0.32 0.34 0.33 0.9 0.22 0.35 0.8 0.68 0.74 0.97 0.70 0.82

ER 0.71 0.12 0.21 0 0 0 0.73 0.2 0.31 0.74 0.49 0.59 0.83 0.37 0.51 0.91 0.72 0.80

Endosome - - - 0 0 0 0.25 0.07 0.11 0.38 0.2 0.26 0.58 0.47 0.52 0.63 0.31 0.41

Extracellular 0.39 0.85 0.54 0.62 0.62 0.62 0.67 0.77 0.71 0.16 0.69 0.26 0.5 0.46 0.48 0.66 0.71 0.68

Golgi apparatus 0.1 0.05 0.07 0.6 0.3 0.4 0.6 0.15 0.24 0.72 0.65 0.68 0.69 0.45 0.55 0.86 0.59 0.70

Lysosome 0 0 0 0.5 0.13 0.2 0.2 0.13 0.15 0.55 0.75 0.63 0.71 0.63 0.67 1 0.55 0.71

Mitochondrion 0.65 0.43 0.52 0.95 0.33 0.49 0.79 0.73 0.76 0.83 0.88 0.85 0.78 0.75 0.76 0.93 0.86 0.90

Nucleus 0.41 0.57 0.48 0.54 0.7 0.61 0.65 0.64 0.64 0.85 0.7 0.76 0.75 0.71 0.73 0.83 0.91 0.87

Peroxisome 0.07 0.5 0.13 1 0.5 0.67 0.5 1 0.67 0.29 1 0.44 1 1 1 1 1 1

Plasma membrane 0.41 0.44 0.42 0.42 0.33 0.37 0.44 0.53 0.48 0.58 0.56 0.57 0.65 0.44 0.52 0.77 0.73 0.75

ACC 0.45 0.41 0.50 0.65 0.63 0.77

F1-mean 0.34 0.32 0.44 0.56 0.65 0.77

Table 3: Comparison of PSL-Recommender on Human proteins dataset(Hum-mPloc 3.0) with

other methods.
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ployed previously introduced datasets that include proteins from animals and

eukaryotes. We then compared the results to five state-of-the-art methods in-

cluding [2, 6, 8, 33, 50]. The results are depicted in Table 4.215

BaCelLo Höglund DBMloc

YLoc-LowRes 0.79/0.75 - -

YLoc-HighRes 0.74/0.69 0.56/0.34 -

YLoc+ 0.58/0.67 0.53/0.37 0.64/0.68

MultiLoc2-LowRes 0.73/0.76 - -

MultiLoc2-HighRes 0.68/0.71 0.57/0.41 -

BaCelLo 0.64/0.66 - -

PMLPR - 0.64/0.38 0.72/0.67

Hum-mPloc 3.0 0.86/0.84 0.64/0.59 0.87/0.84

PSL-Recommender 0.93/0.92 0.91/0.88 0.88/0.85

Table 4: Comparison of PSL-Recommender ACC/F1 − mean on other species proteins

datasets with state-of-the-art methods.

As seen in Table 4, PSL-Recommender outperforms all methods in all datasets

by both F1−mean and ACC. In Höglund IDS animals dataset, PSL-Recommender

significantly outperforms the second best method by 27% and 29% in F1−mean

and ACC respectively. In BaCelLo IDS animals dataset, the improvement over220

the second best method is 7% in F1−mean and 8% in ACC, while in DBMloc

dataset, PSL-Recommender slightly improves the second best method by 1% in

both F1−mean and ACC.

In order to compare PSL-Recommender performance with some other promi-

nent works like SherLoc2 [5], WoLF PSORT [4], and Euk-mPloc [17], we have225

investigated AVG and ACC2 of PSL-Recommender results over two data set

BaCelLo IDS animals and Höglund IDS animals and compared them with re-

ported results in SherLoc2 paper which is represented in Table 5.

Table 6 is also demonstrate great performance of PSL-Recommender with re-
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spect to AVG and ACC2. PSL-Recommender shown great improvement by 16%230

in AVG and 25% in ACC2 over BaCelLo IDS dataset and also outperforming

results over Höglund IDS dataset with 47% and 40% improvement over AVG

and ACC2 respectively.

It also worth mentioning that, for PSL prediction problem, to the best of

our knowledge, PMLPR [8] is the only recommender system based method235

that employs the well-known network-based inference(NBI) [51] approach. As

seen in Table 4, PSL-Recommender outperforms PMLPR by 50% and 18% in

F1−mean, and also 27% and 16% in ACC on Höglund and DBMloc datasets,

repectively.

Method BaCelLo Höglund

PSL-Recommender 0.92/0.96 0.86/0.97

SherLoc2 0.76/0.71 0.39/0.54

MultiLoc2 0.75/0.68 0.38/0.57

WoLF PSORT 0.69/0.71 0.24/0.56

Euk-mPloc 0.48/0.58 0.18/0.22

Table 5: Comparisons of PSL-RecommendeR, SherLoc2, MultiLoc2, WoLF PSORT, and Euk-

mPloc performance with respect to AVG/ACC2.

Features BaCelLo Höglund DBMLoc Hum-mPloc 3.0

PSSM 0.69/0.53 0.63/0.26 0.81/0.77 0.33/0.17

STRING - - - 0.44/0.40

GO 0.93/0.91 0.90/0.87 0.86/0.84 0.76/0.75

PSSM+STRING - - - 0.46/0.37

GO +PSSM 0.93/0.92 0.91/0.88 0.88/0.85 0.77/0.76

GO+STRING - - - 0.78/0.77

All 0.93/0.92 0.91/0.88 0.88/0.85 0.77/0.77

Table 6: PSL-Recommender ACC/F1 − mean comparisons by using different features.
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3.2. Impact of each similarity matrix240

The proteins similarity matrix is used for neighborhood regularization and

also the prediction step. To acquire this matrix PSL-Recommender combines

three sources of protein similarity measures (PSSM similarity, String-DB inter-

actions similarity and GO terms semantic similarity) using weighted averaging.

The weights are acquired through the learning process.245

To investigate the impact of different similarity measures, we repeated previous

experiments using different combination of similarity measures. Table 6. shows

the result of each combination on all datasets. As can be seen in Table 6., those

combinations excluding the GO terms semantic similarities do not provide reli-

able predictions showing that GO terms semantic similarities play an important250

role in protein subcellular localization.

It should be noted that GO terms are not available for all proteins. In the

absence of GO terms semantic similarities, PLS-Recommender is still able to

provide acceptable results for DBMLoc and BacelLo datasets but its perfor-

mance significantly drops for Höglund and Hum-mPloc 3.0.255

Moreover, the usage of String protein-protein interaction scores is only limited

to datasets that contain proteins from single species. Since DBMLoc, BacelLo,

and Höglund datasets contain proteins from multiple species we were unable to

use String interaction scores in these datasets.

3.3. Stability of the PSL-Recommender260

Choosing appropriate hyperparameters plays a vital role in the performance

of a model. As mentioned in section 2.2.1, the models for all of the datasets

constructed by same set of hyperparameters based on HumB dataset (Table 2).

The results of using these hyperparameters represented on Table 3, Table 4, and

Table 5 for all datasets.265

In order to investigate the stability of the models, for each datasets, the hyper-

parametrs are selected according to their training set by applying 5-fold cross

validation with similar procedure which is explained in section 2.2.1. By consid-

ering different hyperparameters, F1−mean reached to 0.92, 0.90, and 0.89 and
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ACC get to 0.94, 0.92, and 0.89 for BaCelLo IDS, Höglund IDS, and DBMloc,270

respectively.

For each datasets, by applying selected hyperparameters with respect to their

training set, the F1−mean and ACC can be increased only by 2 percent. It can

be concluded that, despite large number of hyperparameters PSL-Recommender

is a stable method for PSL prediction.275

4. Conculusion

In the absence of efficient experimental methods, computational tools play

an important role for predicting protein subcellular localizations. Yet, there

is still much room for improving the prediction accuracy of these methods.

In this paper, we introduced PSL-Recommender, a recommender system that280

employs logistic matrix factorization for efficient prediction of protein subcel-

lular localization. By evaluating on human and animals datasets it was shown

that PSL-Recommender significantly outperforms other state-of-the-art meth-

ods. However, we believe that the performance of PSL-Recommender can be

improved further by employing a better approach for searching the parameter285

space. The standalone version of PSL-Recommender and all the datasets are

available online at: https://github.com/RJamali/PSL-Recommender
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