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Abstract: There is a pressing need for new computational tools to 
integrate data from diverse experimental approaches in structural 
biology. We present a strategy that combines sparse paramagnetic 
solid-state NMR restraints with physics-based atomistic simulations. 
Our approach explicitly accounts for uncertainty in the interpretation 
of experimental data through the use of a semi-quantitative mapping 
between the data and the restraint energy that is calibrated by 
extensive simulations. We apply our approach to solid-state NMR 
data for the model protein GB1 labeled with Cu2+-EDTA at six different 
sites. We are able to determine the structure to ca. 1 Å accuracy within 
a single day of computation on a modest GPU cluster. We further 
show that in 4 of 6 cases, the data from only a single paramagnetic 
tag are sufficient to fold the protein to high accuracy. 

Magic-angle spinning solid-state nuclear magnetic resonance 
(NMR) has emerged as a viable tool for analysis of the structure 
and dynamics of large biomacromolecular complexes and 
assemblies including membrane proteins, amyloids, viral capsids 
and chromatin[1–5]. In spite of the latest advances[6,7], high-
throughput protein structure elucidation by conventional solid-
state NMR methods continues to be challenging due to inherent 
difficulties in obtaining critical non-local contacts. During the past 
decade, solid-state NMR measurements of nuclear paramagnetic 
relaxation enhancements (PREs) have been explored for 
structural studies of native metalloproteins[8,9] and proteins 
modified with covalent paramagnetic tags, including nitroxide spin 
labels[10] and metal chelates[11–13]. These paramagnetic methods 
are capable of providing information about electron-nucleus 
distances up to ~20 Å, providing valuable information for structure 
determination.  

Notably, de novo solid-state NMR three-dimensional structure 
determination based on paramagnetic tagging in absence of 
internuclear distance restraints has been successfully 
demonstrated for the model 56-residue B1 immunoglobulin 
binding domain of protein G (GB1) in the microcrystalline 
phase[11,14,15]. Collectively, these studies highlight the 
considerable promise of such approaches. At the same time, they 
underscore the urgent need for more effective approaches toward 
generating accurate structural models based on paramagnetic 
restraints, as such approaches are expected to be key for future 
applications of this methodology to larger systems[16,17].      

Several challenges are present when modeling biomolecular 
structures based on PRE data for proteins modified with covalent 
tags. First, these measurements provide a limited number of 
independent experimental restraints—less than one per amino 
acid per paramagnetic mutant, as many of the measured 
distances are highly correlated. Second, it is desirable to limit the 
number of paramagnetic tagged protein variants in order to 
minimize the associated time, labor, and expense of sample 
preparation and data acquisition. Third, some of the distances 
derived from PRE measurements can be imprecise due to the 
presence of confounding effects, including intermolecular 
interactions, secondary metal binding sites, and diamagnetic 
contamination[18,19]. Finally, relaxation is affected by 
conformational heterogeneity, exacerbated by the inverse sixth 
power relationship between the PRE and the electron-nucleus 
distance[19]. While the last issue can in principle be addressed by 
ensemble refinement[20], this comes at the expense of 
considerable complexity and computational cost. 

Here, we employ a physics-based Bayesian approach called 
Modelling Employing Limited Data (MELD)[21], which makes 
statistically consistent inferences about conformational 
ensembles by combining prior information (physical models of 
protein energetics and probe heterogeneity) with experimental 
data, enabling correct protein folding on timescales far faster than 
naïve molecular dynamics simulations would produce[22]. The 
approach is illustrated for the model protein GB1, for which 
extensive solid-state NMR PRE measurements are available for 
six EDTA-Cu2+ analogs[11]. We demonstrate that, for this protein, 
data from even a single paramagnetic label are often sufficient for 
accurate structure determination, compared to other approaches 
that require more data to achieve acceptable results. 

We first developed a calibrated semi-quantitative mapping 
(Fig. 1) that turns ensemble averaged solid-state NMR PRE 
measurements into allowed distance ranges, which avoids the 
need for ensemble refinement. We performed molecular 
dynamics simulations (see Supporting Information) on a 
benchmark set of six small proteins, each labeled at ten different 
sites with a cysteine-EDTA-Cu2+ sidechain. From these 
simulations, we can predict the 15N longitudinal PRE, Γ"

($) =
'〈)$*+〉, where the angle brackets denote the ensemble average, 
ri is the distance between the Cu2+ ion and the backbone amide 
nitrogen of residue i, and C=1.268x10-54 m6s-1 for the 
experimental conditions of this study. Based on experimental 
considerations, we divided the PREs into three strengths: strong 
( Γ"

($) > 0.3	s*" ), medium ( 0.3	s*" > Γ"
($) > 0.1	s*" ), and weak 

(0.1	s*" > Γ"
($) ). We then correlated the predicted Γ"

($)  values to 
the corresponding distance between the C4 of the residue 
containing the EDTA-Cu2+ sidechain and the amide nitrogen of 
residue i (Fig. 1).  
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Figure 1. Semi-quantitative mapping from backbone amide 15N 

longitudinal PRE values (Γ1) to allowed distance ranges from ensemble 

average data. Upper: simulations were performed for a series of six small 
benchmark proteins each with ten different EDTA-Cu2+ tag locations. Lower: 
each point correlates the simulated Γ1 value to the corresponding C4-N distance. 
The computed Γ1 values were divided into strong, medium, and weak, and for 
each category, we identified allowable distance ranges encompassing 50, 75, 
or 90% of the C4-N distances (see Supporting Information). 

This map explicitly accounts for tag flexibility, leading to wide 
distance distributions (Fig. 1). Allowed distance ranges that 
encompass all observed distances would be overly broad, 
resulting in poor structures. However, making the allowed 
distance ranges too narrow would incorrectly penalize some 
structures, biasing the ensemble. To overcome this, we leverage 
the fact that MELD has the unique ability to handle unreliable 
restraints, where only a specified percentage of the restraints 
need be correct[21,22]. This allows us to specify that most distances 
must fall within a relatively narrow range, while a smaller number 
of distances can fall within a wider range (Table S1, see 
Supporting Information for details). The effects of the possible 
conformational heterogeneity are explicitly incorporated into the 
distance ranges, trading a loss of precision for the elimination of 
ensemble refinement. 

We assessed the utility of this approach by structure 
determination of the protein GB1 (not used to derive the mapping), 
for which an extensive set (Fig. 2A) of solid-state NMR 
longitudinal backbone amide 15N PREs is available[11]. The 
measured Γ"

($)	values were turned into allowed distance ranges 
and the protein secondary structure was predicted based on the 
GB1 backbone 13C and 15N chemical shifts using TALOS+[23] (see 
Supporting Information).  

To systematically assess how much PRE data is needed to 
generate accurate structures, we performed simulations with 
either all the available restraints (“Full”) or using PRE data for one 
mutant at a time, and compared these simulations to the case 

where no PRE data were used (“None”; still includes secondary 
structure restraints). Simulations were carried out in triplicate for 
0.5 µs (< 24 hours each on 24 NVIDIA GTX 1080 Ti GPUs). 

As expected, the Full dataset produces the narrowest 
ensembles (Fig. 2C), with over 70% of the sampled structures 
within 2 Å backbone RMSD of the crystallographic structure (PDB 
ID: 2gb1). The introduction of PRE data has a strong funneling 
effect (Fig. 2B), where structures disagreeing with the data have 
large energetic penalties. Clustering of the Full dataset results in 
a dominant cluster with protein conformations that have ~1 Å 
RMSD from the GB1 crystal structure. Remarkably, the resulting 
protein structures display excellent sidechain packing (Fig. 3), 
even though the experimental data report only on distances 
between the paramagnetic tag and backbone amide nitrogen 
atoms. The restraint energy is flat within about 2.5 Å of the crystal 
structure (Fig. 2B), so the accuracy of the structural model to 
within 1 Å and the correct packing of the core sidechains can be 
attributed to the accuracy of the physical model. 

 

Figure 2. Accurate protein fold determination using MELD and sparse 

paramagnetic solid-state NMR restraints. (A) Location of the six EDTA-Cu2+ 
tag sites on the native structure of GB1. (B) Inclusion of the Full dataset results 
in an energy landscape that favours native-like structures. The restraint energy 
(from the Full dataset) and RMSD of all structures sampled in any of the 
simulations (blue dots) are shown, along with a LOESS regression (orange line). 
(C) RMSD distributions for all data sets explored in this work. Some data sets 
sample structures less than 2 Å backbone RMSD from the X-ray structure more 
than 70% of the time (blue) indicating that data for even a single paramagnetic 
mutant can be sufficient for accurate folding with MELD, whereas other datasets 
spend less than 30% of the time in near-native conformations (red). 
 

The individual datasets for most EDTA-Cu2+ locations (E42C, 
D46C, N8C, E19C) also lead to tight ensembles around the native 
state with more than 70% of the sampled conformations within 2 
Å backbone RMSD from the X-ray structure. In contrast, K28C 
and T53C produce ensembles that are only somewhat improved 
over None. For comparison, standard unbiased MD simulations 
using a closely-related force-field and solvation model did not 
sample any near-native structures within 50 µs, which is 100 times 
longer than the current simulations[24]. 
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Figure 3. Most conformations exhibit accurate sidechain packing, even 

though the experimental data report only on backbone distances. A 
representative structure from the dominant cluster of the Full dataset (green) is 
shown superimposed on the GB1 crystal structure (white), with the core 
sidechains shown as sticks. The backbone RMSD is ~0.9 Å. 
 

The E42C dataset is representative of the four datasets that 
have strongly funneled restraint energy landscapes and produce 
accurate models (Fig. 4). These datasets feature strong, non-
local PREs that restrain residues that are far apart in the 
sequence, greatly reducing the available conformational 
entropy[25]. Although the restraint energy landscape is flat within 
~5 Å of the crystal structure, nearly all models are within 2 Å of 
the crystal structure, which we attribute to the quality of the 
physical modeling and sampling approach. 

The K28C dataset produces a uniformly flat restraint energy 
landscape (Fig. 4). This dataset provides scant non-local 
information regarding the proximity of different secondary 
structure elements. Instead, it yields primarily redundant 
information about contacts within the 4-helix that provide little 
additional information beyond the TALOS+ secondary structure 
predictions. 

We anticipated that T53C would be highly informative, as 
residues 5–7 are directly adjacent to residue 53, and we thus 
expected strong PREs that would serve to restrain the terminal β-
strands. However, the measured PREs were somewhat weaker  
(~0.1–0.2 s-1) than expected, falling into the medium category, 
possibly due to diamagnetic contamination of the sample, where 
the EDTA tags are not completely saturated with Cu2+, although 
we have not established this definitively. These weaker than 
expected PREs lead to an energy landscape that disfavors some 
near-native conformations, contributing to the broad ensemble 
observed. This result highlights the need for caution in over-
interpreting PRE data, given the complications from 
intermolecular interactions, secondary metal binding sites, 
conformational heterogeneity, and diamagnetic contamination, 
and underscores the need for modeling approaches, such as 
MELD[21,22] and analogous methods[14,26–28], which are able to deal 
with sparse and imprecise experimental data. 

In the absence of a reference protein structure would it be 
possible to predict which calculations are accurate and which are 
not? Observation of the same dominant conformation from 
multiple datasets, as observed here, provides a strong indication 
of reliability. We also observed that simulations with tight 
ensembles were more likely to be accurate (Figure S1). 
 

  
Figure 4. Probe locations that give strong, non-local PREs are more 

informative and give more funnelled energy landscapes. Top row: each 
panel shows the strong (red), medium (pink), or weak (white) PREs mapped 
onto the structure. Lower left: the restraint energy for the current dataset and 
RMSD are shown for all structures sampled in any of the simulations in this 
study (blue dots), along with a LOESS regression (orange line). Lower right: The 
native contacts (C4-C4 distance < 10 Å, grey), and strong (red) and medium 
(pink) PRE restraints mapped onto the protein sequence. Grey segments along 
the perimeter denote secondary structural elements. 

 

Previous studies have assessed the utility of solid-state NMR 
PRE restraints for structure determination on the same system 
(GB1), which enables direct comparison. Sengupta et al.[11] used 
Xplor-NIH[29] in combination with the same dataset as the present 
study. Using all six EDTA-Cu2+ sites, totaling ~230 measurements, 
they were able to produce a model with a backbone RMSD of 1.8 
Å relative to the crystal structure. Even when using the complete 
set of PREs, the convergence properties of the Xplor-NIH based 
approach were relatively poor, requiring the calculation of many 
hundreds of protein structures within a two-stage refinement 
procedure to generate the final ensemble of low energy models. 
Combining our semi-quantitative MELD approach with the same 
dataset results in a much tighter structural ensemble (Fig. 2, 
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“Full”), and a representative model that is 0.9 Å from native with 
excellent sidechain packing (Fig. 3). Furthermore, for GB1, MELD 
is able to produce similarly accurate models using data from only 
a single EDTA-Cu2+ mutant corresponding to a total of ~30-40 
PRE restraints (Fig. 2). Following a closely related experimental 
approach, Tamaki et al.[15] used a CS-Rosetta[30] based protocol 
to fold GB1 to within 1.5 Å of the native structure using three 
paramagnetic mutants. The use of PRE data from single EDTA-
Mn2+ analogs resulted in structural models with RMSDs in the 
4.5–8 Å regime, which is substantially worse than MELD’s 
performance. 

In summary, MELD can be used to generate highly accurate 
protein structural models based on sparse solid-state NMR PRE 
restraints, while successfully overcoming several challenges 
related to heterogeneity. MELD is able to produce accurate 
results using only a small fraction of the experimental data, which 
translates to substantial potential time and cost savings, 
promising to considerably increase the throughput of solid-state 
NMR structural studies of proteins. These results further highlight 
the increasing power and utility of integrative methods in 
biomacromolecular structure determination, even in the limit of 
small amounts of information. We expect that such approaches 
will continue to gain popularity, particularly in cases where sparse 
structural data can be obtained for systems that are not amenable 
to analysis by the traditional structural biology techniques. 

Experimental Section 
Residue-specific solid-state NMR longitudinal 15N PRE data were recorded 
for six isostructural cysteine-EDTA-Cu2+ mutants of GB1 as described 
previously[11]. Simulations were carried out using the MELD[21] software 
package. Full computational details can be found in the Supporting 
Information. 
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1 Development of Semi-Quantitative Map 

1.1 Calibration Simulations 

To derive the semi-quantitative mapping as described in the main text, benchmark simulations of six small proteins (1cqg, 
1d3z, 1erc, 1nkl, 1ubq, 6lyz) [1–6] were carried out. Ten simulations of each protein were performed, each with a different 
surface-exposed residue mutated to a Cys-EDTA-metal sidechain. The Cys-EDTA sites were chosen to encompass a mixture 
of helices, strands, and loops, all at surface exposed positions that would not be expected to cause major perturbation to the 
structure. Simulations were 100 ns long with a 2 fs timestep. All bonds involving hydrogen were constrained to their ideal 
lengths.  The temperature was maintained at 300 K. Proteins were modelled using the Amber ff14SB force field[7];  the Cys-
EDTA sidechain was modelled using the General Amber Force Field[8]; and the solvent was modelled using the GBneck2 
implicit model[9]. 

A few simulations displayed some instability, where the conformation occasionally drifted away from the crystal structure, likely 
due to limitations of the combination of force field and solvation model[10]. To mitigate this, any conformations that were more 
than 3 Å from the crystal structure were excluded from the analysis. 

 

1.2 Prediction of Relaxation Enhancement 

Metal–nitrogen distance distributions were converted into simulated longitudinal 15N PRE values (Γ1) through the Solomon-
Bloembergen equations: 

Γ1 ≈ 〈%−6〉
2
15

+
,0
4/

0
2
12
234

254
2(7 + 1)7 :

3<14
1 +=22<14

2 +
7<14

1 + =42<14
2 ? 

where r is the electron-nucleus distance, ,0 is the permeativity of free space, 12 is the nuclear gyromagnetic ratio, 34is the 
electronic g-factor, 54 is the Bohr magneton, S is the electron spin quantum number of the paramagnetic ion, =2is the Larmor 
frequency of the nucleus, =4 is the Larmor frequency of the electron, and <14 is the effective longitudinal relaxation time 
constant. 

This can be simplified to 

Γ1 = A〈%−6〉 

where C=1.268x10-54 m6s-1 under the experimental conditions here (external magnetic field of 11.7 T, effective electron 
longitudinal relaxation time constant for Cu2+ of 2.5 ns).  

Statistical analysis of the experimental ΓB measurements showed noise levels of approximately 10 percent of the measured 
ΓB values due to instrumental noise and data processing artifacts. To simulate this, we generated 10 samples of each ΓB value 
by adding zero-mean Gaussian noise with a coefficient of variation of 0.1. 

We then correlated the predicted ΓB
(C) values to the corresponding distance between the CD of the residue containing the 

EDTA-Cu2+ sidechain and the amide nitrogen of residue i (Fig. 1).  

 

1.2 Extraction of Distance Ranges 

Based on experimental considerations, we divided the PREs into three strengths: Strong (ΓB
(C) > 0.3	sIB), Medium (0.3	sIB >

ΓB
(C) > 0.1	sIB), and Weak (0.1	sIB > ΓB

(C)). 

 
We extracted unreliable distance ranges from the benchmark simulations with different degrees of reliability. For each PRE 
strength and each EDTA-Cu2+ tag/protein combination, we derived a lower bound that encompasses all observed CD-N 
distances. We derived a set of upper bounds that encompass various percentages (strong: 50, 75, and 90, medium: 75 and 
90, weak: 100) of the observed distances. We then took the broadest distance ranges for each strength across all protein and 
tag location combinations, establishing the worst-case distance bounds for each PRE strength and percentage (Table S1). 
These are the tightest distance ranges that have zero energy for every tag location in all of our benchmark simulations. 

 
Table S1. Distance bounds derived from benchmark simulations of 6 small proteins at 10 different tag locations each. 
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Strength[a] Percentage 
Reliability[b] 

Lower Bound 
(Å) 

Upper 
Bound (Å)[c] 

Strong 50 0.0 15.7 

 75 0.0 18.9 

 90 0.0 20.0 

Medium 75 5.2 21.5 

 90 5.2 23.0 

Weak 100 7.6 ∞ 

[a] Strong: (ΓB > 0.3	sIB), Medium: (0.3	sIB > ΓB > 0.1	sIB), Weak: (0.1	sIB > ΓB). [b] Fraction of restraints that are enforced 
during MELD simulation. 

 

2 Structure Determination Calculations 

2.1 Treatment of Experimental PRE Data 

The relaxation enhancement was quantified by fitting Γ1 to experimental relaxation measurements as described previously[11]. 
Allowed distance ranges between the CD	of	the	labelled	residue	and	the	measured	amide	nitrogen	were	calculated	based	on	the	
magnitude of Γ1 (Table S1). 

For each spin label location: 

• All of the residue pairs corresponding to Strong restraints were placed into a “collection”. 

• 50, 75, and 90% of the distances were restrained to fall within the ranges given in Table S1 

• The same process was repeated for Medium and Weak restraints 

 

We note that the collections for each paramagnetic probe are independent, so that the specified percentage of distance bounds 
must be satisfied for each probe individually. 

 

2.2 Treatment of Experimental Backbone Chemical Shift Data 

Secondary structure information was incorporated through TALOS+ derived restraints based on backbone 13C and 15N 
chemical shifts for GB1[12] (BMRB entry 15156). The protocol for secondary structure restraints in MELD was as descried 
previously[13]. 

 

2.3 Setup of MELD Simulations 

The MELD algorithm[13], based upon the open-source GPU-accelerated OpenMM simulation engine[14],  was used to generate 
structural models from the collected NMR data. All simulations were 500 ns long and were repeated in triplicate with different 
random seeds. Proteins were modeled using the ff14SB force field[7] plus AMAP torsion potential correction[15] with the 
GBneck2 implicit solvation model[15]. A combined Hamiltonian and temperature replica exchange approach was used[13] with 
24 replicas. The force constants for PRE restraints were “turned on” from zero to 250 kJ mol-1 nm-2 from replica 24 to 12, with 
Strong PREs turned on from 24–17 and Medium and Weak PREs turned on from 17–12. The temperature was held constant 
at 550 K in this region. The force constants remained at full strength in replicas 1–12, whereas the temperature was 
geometrically decreased from 550 K at replica 12 to 300 K at replica 1. Replica exchanges were attempted every 50 ps. 

 

3 Analysis 

3.1 More Accurate Calculations Display Tighter Ensembles 
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Our physics-based approach was able to produce highly accurate structural models even when using PRE data from only a 
single mutant for four of the six EDTA-Cu2+ mutants of GB1 (except K28C and T53C). This finding raises a question of whether 
in the absence of a reference protein structure it is possible to predict which calculations are accurate and which are not? 
There are a number of possible strategies to address this. 

As described in the main text, one possibility is to assess the consistency of models produced using different datasets. In this 
work, the dominant conformers produced in the Full, N8C, E19C, E42C, and D46C datasets are highly similar. These 
conformations are even present in the other datasets, although far less frequently (Fig. 2). This is a form of cross-validation, 
and the observation of the same dominant conformation across a range of datasets lends confidence to the accuracy of the 
models. 

Another possibility is to examine the “width” of the ensembles (Fig. S1), quantified as the mean pairwise RMSD between 
ensemble members, compared to the accuracy of the ensemble (quantified by the average RMSD to native). There is a clear 
correlation between ensemble width and model accuracy. When the ensemble is broad, it means that MELD is uncertain about 
what the structure is. Assuming the data is for a well-structured protein, it is unlikely that the predictions are accurate under 
these circumstances. On the other hand, when the ensemble is narrow, it means that MELD is quite certain about what the 
structure is. While this does not guarantee that the structure is accurate, it at least provides some indication of MELD’s 
confidence in the prediction. These observations are consistent with previous experiences[13,16,17], where we generally find a 
correlation between the “tightness” and accuracy of the ensemble. 

 

Figure S1: Mean pairwise RMSD within the simulated ensemble predicts model accuracy. Data set are colored depending on if they spend more 

(>70%, blue) or less (<30%; red) time in near-native (<2 Å backbone RMSD from X-ray) conformations. Data sets with broad ensembles (further to the 

right) contain lower quality models with higher RMSD to the native structure. 
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