1	Title
+	I IUIC

2

3 Drift and directional selection are the evolutionary forces driving gene exp	ression
--	---------

- 4 divergence in eye and brain tissue of *Heliconius* butterflies.
- 5
- 6 Ana Catalán^{1,3}, Adriana Briscoe², Sebastian Höhna^{3,4}.
- ⁷ ¹ Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala
- 8 University, Norbyvägen 14-18 75236, Uppsala, Sweden.
- 9 ² Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
- 10 92697, USA.
- ³ Division of Evolutionary Biology, Ludwig-Maximilians-Universität München,
- 12 Grosshaderner Straße 2, Planegg-Martinsried 82152, Germany.
- 13 ⁴ GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10,
- 14 80333 Munich, Germany
- 15
- 16 Corresponding author: ana.catalan@gmail.com
- 17

18 Key words: Brownian motion, natural selection, stabilizing selection, Ornstein-

- 19 Uhlenbeck, RevBayes.
- 20
- 21
- 22
- 23

24 Abstract

25	Investigating gene expression evolution over micro- and macroevolutionary
26	timescales will expand our understanding of the role of gene expression in
27	adaptation and speciation. In this study, we characterized which evolutionary forces
28	are acting on gene expression levels in eye and brain tissue of five Heliconius
29	butterflies with divergence times of ~5-12 MYA. We developed and applied
30	Brownian motion and Ornstein-Uhlenbeck models to identify genes whose
31	expression levels are evolving through drift, stabilizing selection, or a lineage-
32	specific shift. We find that 81% of the genes evolve under genetic drift. When testing for
33	branch-specific shifts in gene expression, we detected 368 (16%) shift events. Genes
34	showing a shift towards up-regulation have significantly lower gene expression variance
35	than those genes showing a shift leading towards down-regulation. We hypothesize that
36	directional selection is acting in shifts causing up-regulation, since transcription is costly.
37	We further uncover through simulations that parameter estimation of Ornstein-Uhlenbeck
38	models is biased when using small phylogenies and only becomes reliable with
39	phylogenies having at least 50 taxa. Therefore, we developed a new statistical test based
40	on Brownian motion to identify highly conserved genes (i.e., evolving under strong
41	stabilizing selection), which comprised 3% of the orthoclusters. In conclusion, we found
42	that drift is the dominant evolutionary force driving gene expression evolution in eye and
43	brain tissue in Heliconius. Nevertheless, the higher proportion of genes evolving under
44	directional than under stabilizing selection might reflect species-specific selective
45	pressures on vision and brain necessary to fulfill species-specific requirements.
10	

46

47 Introduction

48	Species and populations diverge through the accumulation of genetic changes that
49	affect coding or non-coding genomic regions. Genetic variation affecting gene expression
50	has the potential of changing gene expression patterns in a spatiotemporal manner, by
51	changing gene expression profiles in specific organs and cell types at particular
52	developmental stages (Carroll 2005; Signor and Nuzhdin 2018). This spatiotemporal
53	attribute of gene expression might enable evolutionary change in a compartmentalized
54	way, allowing for change where it is required but also allowing for the needed processes
55	to remain conserved. Phenotypic diversity caused by changes in gene expression
56	encompasses a great variety of traits, including changes affecting an organism's
57	coloration (Nadeau 2016), size and shape (Ahi et al. 2017), as well as sensory perception
58	and behavior, amongst other phenotypes (Lee et al. 2000; Wanner et al. 2007). Even
59	though major advances have been made in linking gene expression variation to a
60	phenotype (Catalán et al. 2016; Glaser-Schmitt and Parsch 2018), discerning the
61	evolutionary forces shaping gene expression level variation among closely related species
62	is an area that needs further research.
63	To understand the evolutionary forces acting on gene expression it is necessary to
64	model within and between species gene expression variance. Neutral gene expression

divergence between species leads to gene expression difference through divergence
alone. Thus, neutral changes in gene expression modeled by random drift provides a null
hypothesis to detect deviations from the expected neutral gene expression divergence. A
linear relationship between divergence time and gene expression variance difference has
been proposed for closely related species, assuming a clock-like (i.e., constant through

70	time) rate of gene expression divergence (Khaitovich et al. 2004; Khaitovich 2005).
71	Another approach to studying the evolutionary forces shaping gene expression evolution,
72	which is motivated by statistical phylogenetics, is fitting Brownian motion (BM) models.
73	BM-models are often used to describe changes in continuous trait through time using
74	random drift with rate σ^2 and taking into account the known phylogeny of the taxa of
75	interest (Felsenstein 1985). Thus, in a BM context, σ^2 can also be described as the
76	volatility parameter that determines the rate at which a trait's value diffuses away from its
77	current state (Bedford and Hartl 2009). Fitting BM models to investigate gene expression
78	evolution has shown that stabilizing selection and evolution through genetic drift can be
79	readily characterized (Kalinka et al. 2010; Wong et al. 2015).
80	Ornstein-Uhlenbeck (OU) models have also been used to study continuous trait
81	evolution in a phylogenetic context (Hansen 1997; Butler and King 2004). Ornstein-
82	Uhlenbeck models, an extension to BM-models, include two extra parameters, α and θ ,
83	for modeling the strength of stabilizing (α) selection towards a phenotypic optimum (θ).
84	As in a BM context, σ^2 is the rate at which a trait changes through time, and α is the
85	force pulling back the diffused trait to an optimum state. This is analogous to stabilizing
86	selection pulling back a trait to its optimum value after having experienced a departure
87	from it. Theta (θ) is described as the trait's optimum state at a particular time point
88	toward which the pull of α is aimed (Hansen 1997; Butler and King 2004). OU-models
89	offer a useful framework to generate hypothesis about the evolutionary forces acting on
90	transcriptome levels, whether it is drift, stabilizing selection or directional selection
91	(Bedford and Hartl 2009; Rohlfs and Nielsen 2015; Wong et al. 2015; Chen et al. 2017;
92	Stern and Crandall 2018).

93	In this study, we used five closely-related species of Heliconius butterflies to
94	explore the evolutionary forces shaping gene expression variation in eye and brain tissue.
95	Heliconius charithonia, H. sara, H. erato, H. melpomene and H. doris (Figure 1) belong
96	to four of the seven distinct Heliconius phylogenetic clades with divergence times
97	ranging from 5.5 to 11.8 MYA. Beside showing a great diversity in wing color patterns
98	(Kronforst and Papa 2015), Heliconius butterflies also show a diversity of life history
99	traits (Salcedo 2010; Merrill et al. 2015), mating systems (Beltrán et al. 2007; Walters et
100	al. 2012) and behavior (Mendoza-Cuenca and Macías-Ordóñez 2005). Since Heliconius
101	butterflies are diurnal species, visual stimuli provide key sources of information about the
102	environment. For example, flowers and oviposition sites, potential mates or predators are
103	all targets of interest to butterflies in which the first line of perception is visual
104	(Finkbeiner et al. 2014; Finkbeiner et al. 2017). After visual cues are detected by the
105	visual system, the detected information travels to the brain, where it is processed and its
106	output can result in a specific behavior or physiological response. Thus, the brain's
107	processing and output together with the visual system have the potential of being finely
108	tuned according to a species' life history. In the case of Heliconius butterflies, a high
109	diversity of adult compound eye retinal mosaics (between sexes and species) has been
110	discovered (McCulloch et al. 2017), as well as species-specific differences in brain
111	morphology (Montgomery et al. 2016). Which evolutionary forces are shaping adult eye
112	and brain expression in Heliconius is one question we seek to investigate, and in that
113	way, gain an understanding into the potential role of inter-species gene expression
114	differences in speciation and adaptation.

115	Therefore, in this study we investigated which evolutionary forces are driving
116	gene expression variation in eye and brain tissue. More specifically, we aimed to identify
117	if expression variation in individual genes is evolving, for example, through drift,
118	stabilizing selection or directional selection. To this end, we generated a set of
119	orthoclusters shared among our five butterfly species together with expression data for
120	each gene in each orthocluster. We characterized the selective forces acting on gene
121	expression levels thereby revealing the fraction of the transcriptome evolving under drift,
122	directional selection, as well stabilizing selection.
123	
124	Methods
125	Data set
126	The data set used in this study was published in (Catalán et al. 2018) and retrieved
127	from ArrayExpress: E-MTAB-6810 and Dryad data identifier: DOI: doi: 10.5061/
128	dryad.ds21fv5. In Catalán et al (2018), whole transcriptomes were generated from eye
129	and brain tissue combined for Heliconius charitonia, H. sara, H. erato, H. doris and H.
130	melpomene. De novo transcriptome assemblies were generated for each species and the
131	corresponding reads were mapped back to their matching transcriptome using Bowtie
132	(version 1.0.0). Raw read counts and FPKM values were calculated for each species and
133	used for downstream analysis. TransDecoder (version 5.0.2) was used to identify
134	candidate coding regions from each de novo Trinity transcriptome. The predicted coding
135	sequences were utilized to annotate each transcriptome by identifying orthologous hits in
136	UniProt, Flybase and Pfam databases using blastp (2.2.30) and keeping only hits with an
137	e-value < 10 ⁻³ (Altschul et al. 1990; Chintapalli et al. 2007; Punta et al. 2012).

138 Orthology assessment

139	The set of orthoclusters used to assess gene expression evolution across
140	Heliconius was retrieved from supplementary table S15 published in Catalán et. al. 2018.
141	Briefly, the Unrooted Phylogenetic Orthology (UPhO) pipeline and model was used to
142	assess orthologous relationships between the five Heliconius species (Ballesteros and
143	Hormiga 2016). UPhO uses an all species pairwise blastp search and a Markov clustering
144	algorithm (MCL) (version 1.0.0) (Enright et al. 2002) to cluster sequences according to
145	sequence similarity. Clustered sequences were aligned with MAFFT (version 7.3.05)
146	(Katoh and Toh 2008) and curated after alignment with trimAl (version 1.3) (Capella-
147	Gutiérrez et al. 2009). Phylogenetic inference for each sequence cluster was done using
148	RAxML (version 8.2.10) (Stamatakis 2006) and orthology was assessed for each
149	generated tree using the UPhO algorithm. A matrix with log ₂ FPKM values was
150	generated for each orthoclusters which was used to analyze gene expression variance.
151	

152 Modelling Gene Expression Evolution

Table 1. Summary of the models implemented in this work

Model	Description	Parameters
Equal species means	All species have the same mean gene expression level.	μ – global mean gene expression level
Unequal species means	All species have their own independent mean gene expression level.	μ_i – mean gene expression level per species
Brownian motion (BM)	Random drift of the species mean gene expression level along the phylogeny.	σ^2 - rate of drift
Brownian motion (BM) with shift	Random drift with one branch having a different rate (directional selection).	σ^2_B - rate of drift background branch

		σ^2_F - rate of drift foreground branch
Ornstein-Uhlenbeck (OU)	Stabilizing selection of the species mean gene expression level evolving along the phylogeny.	σ^2 - rate of drift α - strength of selection θ - optimal gene expression level
Ornstein-Uhlenbeck (OU) with shift	Directional selection due to a shift in optimal gene expression level.	σ^2_B - rate of drift background branch σ^2_F - rate of drift foreground branch. θ_B - optimal gene expression level background branch θ_F - optimal gene expression level foreground branch α - strength of selection

154

155

156 To study the forces driving gene expression evolution, we implemented a set of 157 six different statistical models (Table 1). Each model models the mean species gene 158 expression level (between-species variance) and the gene expression levels of individual 159 samples per species (within-species variance). How these mean species gene expression 160 levels evolve, or not, along the phylogeny and over time, is specific and central to each 161 model. We estimated the parameters of each model and performed Bayesian model 162 selection using Bayes factors to establish which model describes the observed data best 163 and thus which process is most likely to drive gene expression evolution in the five 164 Heliconius species of our study (see below). 165 The simplest model of gene expression assumes that all species have the exact 166 same mean gene expression level. In this case, we only have one parameter μ which 167 defines the mean gene expression level of all species. The expression level X_{ii} of individual *i* from species *j* is modeled using a normal distribution with $X_{ij} \sim \text{Norm}(\mu, \delta^2_i)$. 168

169 We chose a uniform prior distribution between -20 and 20 for the mean gene expression 170 parameter μ . Note that we assume that every species has its own gene expression variance 171 parameter δ_{i}^{2} (see below). This model assumes there is no evolution of gene expression 172 levels, i.e., gene expression levels are completely conserved among species. 173 The second model that we implemented was a model where each species has its 174 own gene expression mean μ_i . Thus, we model the gene expression level X_{ii} of gene *i* from 175 species *j* using a normal distribution with $X_{ij} \sim \text{Norm}(\mu_i, \delta^2_i)$. In this model, each species 176 has a different mean gene expression level, but these gene expression levels do not 177 evolve under an evolutionary model; they are intrinsically different without any 178 mechanistic reason (no phylogenetic signal). As with the first model, we assumed a 179 uniform prior distribution between -20 and 20 for each mean gene expression level μ . 180 The third model that we implemented was a phylogenetic Brownian motion 181 model (Felsenstein 1985). We assume that any gene expression value at the root of the 182 phylogeny is equally probable. Then, the mean gene expression levels μ evolve along the 183 lineages of the phylogeny. The Brownian motion model specifies that the focal variable, 184 μ in our case, is drawn from a normal distribution centered around the value of the 185 ancestor, μ_A . The amount of change, i.e., rate of random drift, is defined by the parameter 186 σ^2 . We assumed a log-uniform prior distribution between 10E-5 and 10E5 for the drift 187 parameter σ^2 . Thus, the mean gene expression levels μ_i for the species of the phylogeny 188 are distributed according to a multivariate normal distribution where the covariance 189 structure is defined by the phylogeny (Felsenstein 1985). This means that more closely-190 related species are expected to have a more similar mean gene expression level because 191 they share more evolutionary history (i.e., they are more recently diverged), which is

192	modeled by the covariance structure. Such a phylogenetic model of gene expression
193	evolution has been applied previously by (Bedford and Hartl 2009). Importantly, the BM
194	model only defines how the mean gene expression levels evolve but does not allow for
195	any sample variance of the individuals of a species. Therefore, we extended the standard
196	phylogenetic BM model to allow for within-species sample variance where again the
197	expression level X_{ij} of individual <i>i</i> from species <i>j</i> is normally distributed with $X_{ij} \sim$
198	Norm(μ_i , δ^2_i) where δ^2_i is the within-species variance parameter (Ives et al. 2007; Rohlfs
199	and Nielsen 2015). This extension to allow for within-species variance was developed for
200	all phylogenetic models (BM, BM with shift, OU and OU with shift).
201	The fourth model that we implemented was a phylogenetic BM model with
202	branch-specific rates of evolution, thus detecting directional selection. The mean gene
203	expression level evolves under a BM model (i.e., random drift) where the rate of
204	evolution for branch k is given by σ^{2}_{k} (O'Meara et al. 2006; Eastman et al. 2011). Thus,
205	a branch with a higher rate of evolution σ^{2_k} signifies more change in gene expression
206	levels than under a constant rate random drift model (the BM model). Directional
207	selection can therefore be detected by inferring an elevated estimate of $\sigma^{2_{k}}$ compared
208	with the background rate of drift σ^2 . Specifically, we applied a background rate of drift
209	σ^{2}_{B} to all branches except the chosen foreground branch which received its own rate of
210	drift σ^{2}_{F} .
211	The fifth model we implemented was a phylogenetic Ornstein-Uhlenbeck process
212	(Hansen 1997). The Ornstein-Uhlenbeck (OU) process models, similar to BM, the
213	evolution of the mean gene expression level per species along a phylogenetic tree.

214 However, unlike BM, the mean expression level diffuses with rate σ^2 and is attracted

215	with strength α to an optimum level θ . Thus, the OU process has an expected variance of
216	$\sigma^2/2\alpha$ which is independent of time, i.e., does not increase with increasing time but
217	instead stabilizes (c.f. Figure 10). The variance becomes small if either the strength of
218	selection is large or the rate of drift is small. This is, in fact, a major problem for OU
219	models which cannot distinguish if attraction (or selection) is strong or diffusion is weak
220	(Ho and Ané 2014; Cooper et al. 2016).
221	The sixth model we implemented was an Ornstein-Uhlenbeck process with a
222	branch-specific shift in both the rate of drift σ^2 and the optimum gene expression level θ
223	(Rohlfs et al. 2014; Uyeda and Harmon 2014). Thus, this branch-specific OU model is
224	analogous to the branch-specific BM model, allowing for directional selection in an OU
225	framework. Specifically, we tested if there was a significant support for the chosen
226	foreground branch which received its own rate of drift σ^{2}_{F} and optimum θ_{B} to be different
227	from the background rate of drift σ^{2}_{B} and optimum θ_{B} . We used the same prior
228	distributions as before and assumed that both parameters for the background and
229	foreground branches are drawn from the identical prior distribution. This model has in
230	total five free additional parameters along with the five nuisance parameters (the within-
231	species variances). Thus, we expect that this model is more prone to be over-
232	parameterized for our dataset with five species. Nevertheless, our Bayesian approach for
233	parameter estimation and model selection integrates over parameter uncertainty and
234	penalizes extra parameters by integrating over the prior distribution.
235	
236	
005	

238 Parameter Estimation and Model Selection

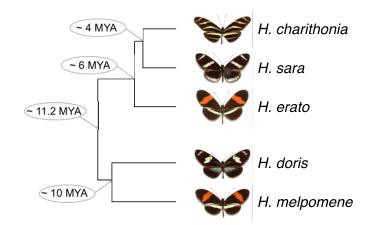
239 We estimated parameters for our different models in a Bayesian statistical 240 framework. Thus, we approximated the posterior distribution of the model parameters 241 using Markov chain Monte Carlo sampling (Metropolis et al. 1953; Hastings 1970). We 242 ran a separate MCMC analysis for each model and gene, 2393 analysis per model. Every 243 model parameter was updated twice per MCMC iteration where the order of parameter 244 updates was chosen randomly. We applied the same settings of the MCMC algorithm for 245 each model. First, a burn-in phase of the MCMC algorithm was run for 2,000 iterations 246 with auto-tuning every 100 iterations. Then, the actual MCMC simulation was run for 247 50,000 iterations with sampling 10 iterations, yielding 5,000 samples from the posterior 248 distribution (Höhna et al. 2017). 249 Model selection was performed using marginal likelihoods. Marginal likelihoods 250 are the probability of the data for a specific model integrated over all possible parameter 251 values. From the marginal likelihood we can then compute Bayes factors and model 252 probabilities (i.e., weights of a model being the true model generating the data given a set 253 of candidate models). We approximated the marginal likelihoods using stepping stone 254 sampling (Fan et al. 2011). The stepping stone algorithm implemented in RevBayes 255 consisted of 128 MCMC runs where each MCMC ran had the likelihood function raised 256 to the power of β computed by the quantiles of a beta probability distribution (Höhna et 257 al. 2017). 258

259

260

261 Data availability

262	The five different models that we used in our study are implemented in Bayesian					
263	phylogenetic inference software RevBayes v1.0.8 (Höhna et al. 2016). For efficient					
264	computations, we implemented the restricted maximum likelihood (REML) algorithm for					
265	BM models (Felsenstein 1985) and OU models (Fitzjohn 2012; Freckleton 2012). The					
266	source code and compiled executables of RevBayes are available from					
267	https://github.com/revbayes/revbayes and tutorials about the analyses are available from					
268	https://revbayes.github.io/tutorials/.					
269						
270	Results					
271	To assess the evolutionary forces acting on gene expression levels in H .					
272	charithonia, H. sara, H. erato, H. doris and H. melpomene (Figure 1), we used the gene					
273	orthology dataset, composed of 2373 orthologous genes, published before (Catalán et al.					
274	2018). From this previous work, we also obtained FPKM (Fragments per Kilobase per					
275	<u>M</u> illion mapped read) values for each gene and sample. The log_2 transformed FPKM					
276	values were used to build an expression matrix and to model gene expression evolution.					
277						
278						



279

Figure 1 Phylogenetic relationship of the *Heliconius* species used in this study showing
divergence times at each node (Kozak et al. 2015).

282

283 Testing for equality of within-species variance in gene expression levels

284 Equality of variances among populations or samples drawn from a normal 285 distribution is usually assumed when testing for differences in mean values obtain from 286 continuous data or gene expression data as in our case (Warnefors and Eyre-Walker 287 2012; Rohlfs et al. 2014). Assuming equality of variances when it is not the case can lead 288 to high Type I error rates (Gastwirth et al. 2009). To avoid assuming equality of 289 variances, we computed the within-species variances for each orthocluster and checked 290 for the presence of a correlation across species. From a pairwise assessment of within-291 species variance we found no significant correlation among all possible pairs, with 292 Pearsons's rho values ranging from 0.07 to 0.2 (Figure 2). Since gene expression variance 293 across species is heterogeneous, hence not correlated among species, we treated within-294 species variance as a random variable when fitting BM and OU models. 295

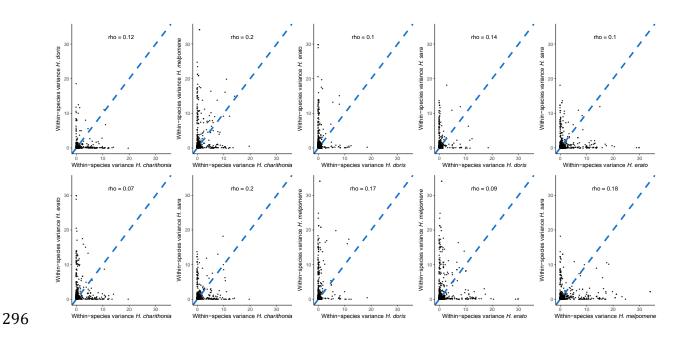
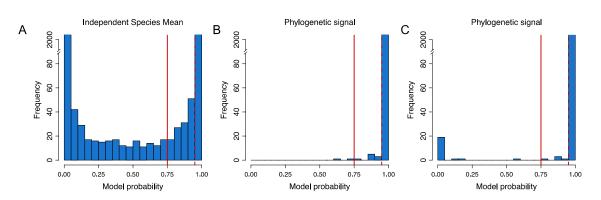


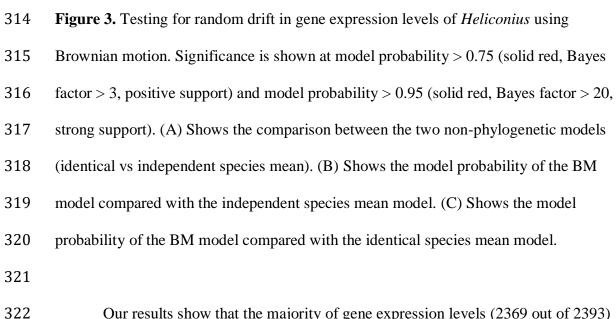
Figure 2 Pairwise correlation between five *Heliconius* species and their gene expression
within-species variance. The correlation strength between within-species variances was
estimated by calculating Pearson's correlation coefficient, rho ranging from 0.07 to 0.2.

301 Testing for gene expression evolution through drift using Brownian motion models

302 We applied BM models to describe changes in gene expression levels through 303 random drift. As the alternative hypotheses, we used two non-phylogenetic models where 304 either all species had identical mean gene expression levels (Model 1) or all species had 305 their own independent mean gene expression levels (Model 2). For each gene we 306 computed the probability of the BM model having produced the observed data, i.e., a 307 high probability means that it is more probable that the gene expression levels evolved 308 under a BM model whereas a low probability means that it is more probable that the gene 309 expression levels evolved under a non-phylogenetic model (Model 1 and Model 2). A 310 model probability of >0.75 corresponds to a Bayes factor of >3 (positive support) and a 311 model probability of >0.95 corresponds to a Bayes factor of >20 (strong support).

313

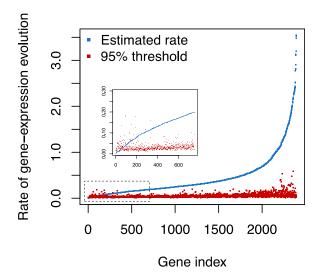




are evolving as expected given the known *Heliconius* species phylogeny, i.e., that there is
a strong phylogenetic signal (Figure 3). These results indicate that drift is the dominating
evolutionary force driving transcriptome change. Only a small fraction of the
orthoclusters did not show a phylogenetic signal, opening the question of the putative
genetic forces shaping gene expression levels of these genes.

331 Testing for conserved gene expression level

332 The next question we explored was how prevalent conserved gene expression 333 levels are in eye and brain tissue of *Heliconius*. This question could be answered with our 334 previous results by computing how often Model 1, with identical species means, was 335 recovered (Figure 2C). However, our model selection procedure relied on computing 336 marginal likelihoods which are intrinsically sensitive to the choice of prior distribution 337 (Berger 1990; Kass and Raftery 1995; Sinharay and Stern 2002). Therefore, we 338 additionally performed a sensitivity analysis of $\sigma^2 = 0$ using Monte Carlo simulation as 339 follows (Goldman 1993). We estimated the posterior distribution of all parameters under 340 the identical species mean model (the only parameters were the within-species variances), 341 then we used 1,000 parameter samples from the posterior distribution to simulate gene 342 expression datasets (e.g., a dataset consisting of a single gene with five species and 6-12 343 individuals per species) under the identical species mean model, yielding 1,000 simulated 344 datasets per gene in total. Then, for every gene of the 2393 genes, we estimated σ^2 for 345 each simulated dataset as well as the original dataset, which amounted to a total of 346 2,395,393 MCMC analyses. Finally, we calculated if the mean posterior estimate of the 347 empirical dataset was larger than 95% of the mean posterior estimates of the simulated 348 datasets. In the cases when the mean posterior estimate of σ^2 was not larger than the 349 mean estimate of 95% of the simulated datasets we concluded that these genes are highly 350 conserved (Figure 4).



352

Figure 4. Posterior mean estimates of the drift rate σ^2 (blue) and the 95% threshold computed (red) using Monte Carlo simulations. The genes were sorted by an ascending estimate of σ^2 . Inset: close-up of genes whose σ^2 is not significantly bigger than zero.

356

By using the described approach, we uncover a set of 83 orthoclusters whose gene
expression variance across species is highly conserved (Figure 4 and Figure S1). A sigma
squared not significantly different from zero, can be caused by stabilizing selection
hindering gene expression divergence, resulting in more similar gene expression patterns
across different *Heliconius* species.

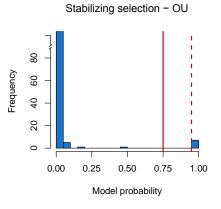
363 Testing for stabilizing selection acting on gene expression levels

364 Subsequently, we moved forward into implementing an Ornstein-Uhlenbeck
365 model (OU) to investigate the strength of stabilizing selection (Bedford and Hartl 2009;

- Rohlfs et al. 2014). OU-models are an extension of BM-models, in which they include
- 367 two extra parameters, α and θ . In a BM context, if σ^2 is the rate at which a trait changes

368 through time, α is then described as a force pulling back the diffused trait to an optimum 369 state (θ).

- We estimated the marginal likelihood for each gene under a BM model and an
- 371 OU model. Then, we computed the probability (i.e., support) of an OU model over a BM
- 372 model using the marginal likelihoods. Our results show a very low support for stabilizing
- selection (Figure 5). When the marginal likelihoods were examined, in 99.7% of the
- area a BM model explained our expression data better than an OU-model.



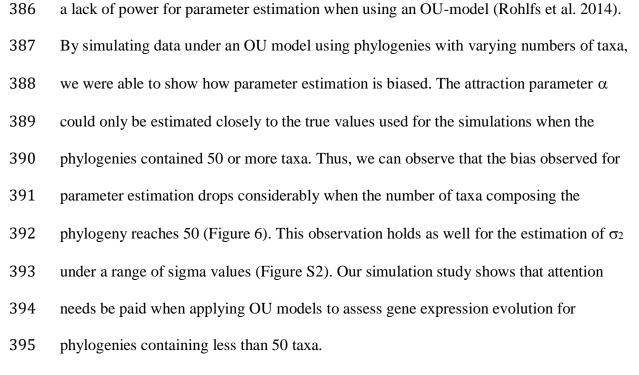
375

Figure 5. Model probability when testing the strength of alpha when fitting an OU model
for the assessment of stabilizing selection. Significance is shown at model probability >
0.75 (solid red, Bayes factor > 3, positive support) and model probability > 0.95 (solid red,
Bayes factor > 20, strong support). There are only 7 genes with a significant support for
stabilizing selection.

381

382 *Testing the power to estimate stabilizing selection*

383 Our results indicating that very few genes evolved under stabilizing selection 384 conflict with previous findings (Bedford and Hartl 2009). However, it has previously 385 been discussed that when working with small phylogenies (less than ten species) there is



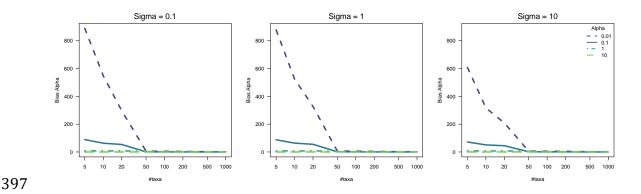
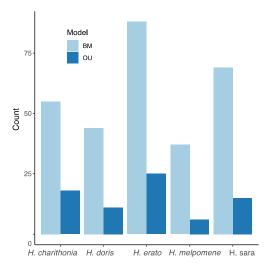


Figure 6. Simulation study for the assessment of parameter estimation bias under an OUmodel. The relative bias in estimates of the attraction/selection parameter (α) through
1000 simulations under sigma values ranging from 0.1 – 10 and alpha values ranging
from 0.01 – 10. Simulations were performed for phylogenies with sizes ranging from 5 to
1000 taxa.

405 Detection of branch specific shifts in gene expression

406	To reveal genes whose gene expression patterns have putatively been shaped by
407	directional selection, we tested for branch-specific shifts in evolutionary rates along the
408	Heliconius tree. To explore branch-specific shifts in gene expression, firstly we used a
409	BM model to test for the evolutionary rate (σ^2) of a focal branch being different from the
410	background rate (i.e., the rest of the branches in the phylogenetic tree) and assessed
411	significance by applying Bayes factors (Figure S3 and Figure 7). Secondly, we also tested
412	branch-specific shifts through an OU model and tested for a branch-specific shift in gene
413	expression level optimum (θ_F) vs the rest of the tree's θ_B (Figure S4).
414	With a BM approach, we were able to detect a total of 322 branch specific shifts,
415	when considering only tip branches (Figure 7). We found 112 branch specific shifts in the
416	HER linage, 70 in HAS, 67 in HCH, 44 in HDO and 29 in HME (Figure 7 and Figure
417	S4). HCH, HAS and HDO had more shifts towards a down-regulation, although only in
418	HCH and HAS was this difference significant (sign test, HCH: P-value 6.738e-05 and
419	HAS: P-value 1.653e-06). In HER and HME more up-regulated genes were causing a
420	branch specific shift, although no significant difference was found.
421	When implementing an OU model we recover a total of 75 genes showing a
422	branch specific shift in gene expression optimum (Figure 7 and Figure S4). From these
423	genes, 55 also show a branch specific shift when implementing a BM model and 20 genes
424	show uniquely a gene expression level shift in optimum when using an OU model (Figure
425	S4).
426	

426



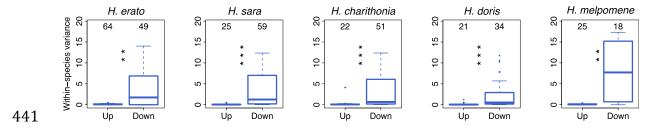
427

Figure 7. Barplot showing branch-specific shifts on gene expression levels in *Heliconius*.
Bars in light blue show branch shifts identified by BM and dark blue bars show branch-

- 430 shifts identified by OU models.
- 431

Next, we assessed within-species gene expression variance of all the genes
identified as having a branch-specific shift in gene expression through BM and OU
models. When we plotted the distribution of the within-species variance we found that
up-regulated genes have a significantly lower variance when compared to genes with a
gene expression shift towards a down-regulation (Figure 8). Different evolutionary forces
acting on shifts causing up- or down-regulation have the potential of maintaining
different levels of gene expression variation within species.

bioRxiv preprint doi: https://doi.org/10.1101/463174; this version posted November 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



442 **Figure 8**. Boxplot showing the distribution of the within-species variance of gene

expression levels identified as having a shift towards up-regulation and shifts towards down-regulation. Numbers above the boxplots show the total number of genes identified with a BM and an OU model. Wilcoxon-test: * P < 0.05, ** P < 0.01, *** P < 0.001.

446

447 Discussion

448 Gene expression evolution through genetic drift

449 Our study of the evolutionary forces acting on gene expression in eye and brain 450 tissue of *Heliconius* butterflies revealed that most transcriptome levels (81%) are 451 evolving under drift. According to neutral expectations, phenotypic changes are expected 452 to accumulate as a function of time, by drift and mutation alone (Lande 1976). As a 453 consequence, the change of transcriptomic levels through drift should reflect the 454 divergence history of the taxa of interest. From our BM analysis, we conclude that in 455 most of the gene expression levels on eye and brain a phylogenetic signal can be 456 recovered (Figure 3). 457 Consequently, we hypothesize that gene expression variation influencing phenotypic variation across species mainly arises through random drift. Evolutionary 458 459 rates of gene expression evolution have been investigated at the population and at the 460 species level and it has been found that the proportion of the type of evolutionary force 461 acting on transcriptomic levels is not constant across taxa (Whitehead and Crawford

462 2006a; Nourmohammad et al. 2017; Stern and Crandall 2018). For example, when 463 examining the evolutionary forces acting on gene expression levels in several fish 464 populations, the authors reported that the dominant force driving expression changes was 465 genetic drift (Whitehead and Crawford 2006b). Comparably, in a study concerning 466 primates, genetic drift was the main force driving gene expression evolution (Khaitovich 467 et al. 2005). The proportion of gene expression levels evolving by drift depends on the 468 strength of natural selection acting on the interrogated transcriptome. For example, in a 469 comparison between different organ types in mammals, gonad gene expression showed 470 the lowest phylogenetic signal when compared to other organs like cerebellum or heart 471 (Brawand et al. 2011). In *Heliconius* butterflies, other organs would need to be tested in 472 order to get a more global understanding on how gene expression is evolving in the 473 whole organism.

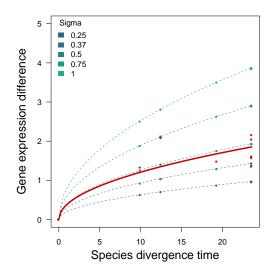
474 We explored the gene expression data further by comparing the expected gene 475 expression divergence under a BM model to the observed data. Consequently, we 476 simulated expression levels for 10,000 genes along the known *Heliconius* phylogeny and 477 computed the mean of the pairwise species difference. Similarly, we computed the mean 478 pairwise difference of the observed gene expression data. Alternatively, we can also 479 derive the expected divergence in gene expression levels between two species over time 480 under Brownian motion. Both species evolve under random drift and, thus, their gene 481 expression values are normally distributed with variance $\sigma^2 \ge T$ where T is the time since 482 the most recent common ancestor of the two species. Therefore, the difference in gene 483 expression levels between the two species is normally distributed with variance 2 x σ^2 x 484 T. Since we are only interested in the absolute value of the gene expression difference,

485 we use a truncated normal distribution instead. From this truncated normal distribution

486 with mean zero and variance $2 \ge \sigma^2 \ge T$ we compute the expected gene expression

- 487 difference through time (Figure 9). For the empirical data, we estimate σ^2 using a sum of
- 488 squares approach. We find that our observed gene expression data has a close fit to the
- 489 simulated data (Figure 9).

490



491

492Figure 9. Between species gene expression variance plotted as a function of divergence493time according to the *Heliconius* phylogeny. Red: σ^2 from gene expression levels494observed in *Heliconius*. Blue: simulated gene expression difference under random drift495with different values of sigma.

496

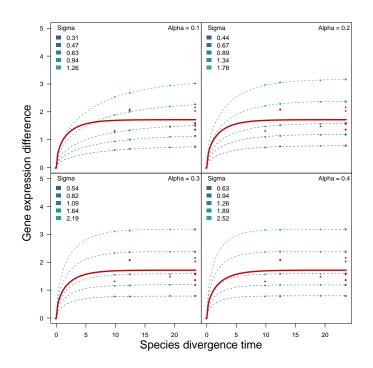
497 Gene expression evolution through genetic stabilizing selection

498 Studies done in *Drosophila* and mammals have shown that stabilizing selection is

- the evolutionary force dominating gene expression evolution (Rifkin et al. 2003; Rohlfs
- and Nielsen 2015). In contrast to these studies, in *Heliconius* we uncovered that only 3%

501	of gene expression are either highly conserved (Figure 4) or evolving through stabilizing						
502	selection (Figure 5). Factors like tissue type, gene functionality turnover or epistatic						
503	levels, have the potential to influence the degree of stabilizing selection acting on the						
504	transcriptome (Larracuente et al. 2008; Kalinka et al. 2010; Romero et al. 2012).						
505	Additionally, in groups that have experienced an adaptive radiation, like in Heliconius						
506	(Kozak et al. 2015), and thus have recently experienced an elevated rate of trait						
507	evolution, directional selection might be more recurrent than stabilizing selection.						
508	OU models are suitable models to study the force of stabilizing selection acting						
509	on a phenotype since the α parameter simulates the strength of selection keeping a trait						
510	close to an optimum (Beaulieu et al. 2012), as several studies exemplify (Kalinka et al.						
511	2010; Brawand et al. 2011; Stern and Crandall 2018). When we applied an OU model to						
512	identify stabilizing selection on gene expression, we detected parameter estimation biases						
513	as shown by our simulation study (Figure 6). For small phylogenies, accurate parameter						
514	estimation is challenging since statistical power is weak with small sample sizes (Rohlfs						
515	et al. 2014). Specifically, it is very challenging with small phylogenies to distinguish						
516	between conserved gene expression levels due to low values of drift (i.e., no change) and						
517	high values of selection (i.e., drift is removed due to selection). Not only the number of						
518	taxa, but also the depth of the phylogeny can influence the suitability of OU-models to						
519	infer stabilizing selection (Fay and Wittkopp 2008; Bedford and Hartl 2009). Therefore,						
520	we propose that for small phylogenies, testing for $\sigma^2 = 0$ under a BM framework and						
521	assessing for significance by applying Monte Carlo simulations is a better model choice						
522	to uncover stabilizing selection. When using this approach, we identified 83 genes with						
523	conserved gene expression levels across species. These genes might be involved in						

524	maintaining conserved processes that are essential for the function of eye and brain tissue					
525	in Heliconius. For example, from the top ten genes with the most conserved gene					
526	expression levels, we found the transcription factor <i>bobby sox</i> (<i>bbx</i>) (Group_674,					
527	Appendix 1). BBX, belongs to the high mobility box domain superfamily, which are					
528	involved in transcription, replication and chromatin remodeling (Chintapalli et al. 2007).					
529	BBX has also been found to have orthologues in flies, human and mice (Nitta et al. 2015)					
530	suggesting a high essentiality of bbx expression. Another highly conserved orthocluster					
531	(Group 977, Appendix 1) was annotated as glaikit (Chintapalli et al. 2007), which is					
532	known to be essential for the formation of epithelial polarity and nervous system					
533	development (Dunlop et al. 2004).					
534	We repeated our previous data exploration by simulating 10,000 genes under an					
535	OU-model under a range of σ^2 and α values and computed the mean differences between					
536	pairs of species. We observed a reasonably good fit to our data (Figure 10). Most					
537	importantly, in Figure 10 we observed a steeper change in gene expression difference					
538	between closely related species (low evolutionary distance). Consequently, adding more					
539	species, including closely related species, to our model could not only improve OU					
540	parameter estimation but could also help in disentangling the evolutionary forces acting					
541	on gene expression divergence, specially between closely related species. Interestingly,					
542	the observed differences (red dots) in gene expression levels (which are averaged over all					
543	2393 genes) show a clear departure from the expected difference predicted by both a BM					
544	and OU model (red lines in Figure 9 and Figure 10). This could be a strong indication of					
545	gene expression divergence under different evolutionary forces (drift, stabilizing					
546	selection or directional selection).					



548

549 **Figure 10**. Between species gene expression variance plotted as a function of divergence 550 time according to the *Heliconius* phylogeny. Red: σ^2 from gene expression levels 551 observed in *Heliconius*. Blue: simulated gene expression variance under different values 552 of sigma. Each panel shows estimates for a different value of alpha (α).

553

554 Gene expression evolution through genetic directional selection

555 To reveal branch-specific shifts in gene expression levels we applied BM and OU

models, allowing for branch-specific shifts in the rest of the phylogeny. Using this

- approach, we found that 16% of the genes show a branch-specific shift, towards either
- 558 up- or down-regulation, with increased expression levels showing lower variance than
- expected (Figure 8). The direction of gene expression shifts might be influenced by its
- 560 mode of regulation. For example, in yeast it was found that regulatory mutations

561 affecting *trans*-regulatory factors were more likely to cause an increase in gene 562 expression. Conversely, mutations on *cis*-regulatory elements were found to be skewed 563 towards a decrease in expression (Metzger et al. 2016). On the other hand, in primates, a 564 higher proportion of species-specific gene expression shifts were found to be towards 565 down-regulation (Khaitovich et al. 2005). If directional selection is causing a branch-566 specific shift in gene expression one would expect to see a low within-species variance, 567 whereas if the shift is caused by a relaxation of purifying selection or perhaps balancing 568 selection, a higher within-species variance would be expected. 569 When we looked at the degree of variability between genes showing a shift 570 towards a higher or a lower expression level, we observed that down-regulated genes 571 have a significantly higher variance than genes showing up-regulation (Figure 8). From 572 this observation, we hypothesize that relaxation of purifying selection might be driving 573 the shifts causing down-regulation on gene expression, a pattern which could eventually 574 lead to a loss of expression. However, balancing selection or experimental noise could 575 also lead to an elevated within-species variance. Because of the cost of gene expression, 576 it is expected that only those genes that are essential and have fitness effects will continue 577 to be expressed, whereas genes that are not will eventually stop being transcribed (Stern 578 and Crandall 2018). However, a shift towards down-regulation does not always have to 579 be a consequence of relaxed purifying selection. For example, in the orthocluster with id 580 Group_449_clean_0, a 7-fold lower expression shift was detected in the branch leading to 581 H. doris (Figure S5), and a significantly smaller variance than expected transcriptome-582 wide (Fisher's exact test, P-value < 0.001). Directional selection favoring down-583 regulation of gene expression can occur in a scenario where fine tuning of expression

levels are necessary for optimal cell or tissue function (Cayirlioglu et al. 2008; Catalán etal. 2016).

586 On the other hand, genes showing a branch-specific shift towards up-regulation 587 have significantly lower variance when compared to expression level shifts towards 588 down-regulation (Figure 8). This observed pattern could be a result of directional 589 selection acting on gene expression levels leading to a reduction of the variation observed 590 in gene expression. It is possible that in order to achieve an increase in gene expression 591 levels, the selective forces leading to up-regulation would have to be sufficiently strong 592 to result in a greater investment in energy allocated to transcription costs (Wagner 2005; 593 Lang et al. 2009). Some of the genes having the most extreme branch shifts in expression, 594 either toward a higher or a lower expression, are involved in enzymatic activity 595 (Appendix I). Enzymes support biochemical and physiological processes helping in the 596 optimization of tissue function (Wagner and Altenberg 1996; Feller and Gerday 1997). 597 Thus, optimal enzymatic activity might be a key factor for species-specific brain and eye 598 function, which in turn might be optimized for the species-specific life history and 599 ecological environment.

A factor possibly influencing the proportion of transcriptome levels found to be evolving through drift, stabilizing or directional selection is the methodology used for orthology assessment. In our analysis of gene expression variation, we assessed variation in orthoclusters where an orthologous hit was found for each of our five *Heliconius* species. Genes with fast-evolving protein rates—to the point that orthology assessment becomes challenging—might also show gene expression shifts, which would not be detectable in our experimental design. For example, orthology assessment for genes

607 showing sex-biased gene expression might require an alternative method. In fact, from 608 the ortholclusters that we identified in this study, only two included genes with sex-609 biased expression (Catalán et al. 2018). Additionally, gene expression shifts due to 610 duplication events need to be explored by applying an appropriate statistical approach, as 611 expression of genes where a duplication event has happened could contribute to the 612 fraction of the transcriptome evolving by directional selection. 613 With this work, we have generated a set of candidate genes that are putatively 614 evolving through directional selection and that have the potential of being involved in the 615 processes of adaptation and speciation. To test the role of these genes in such processes, 616 functional validation will be necessary to gain a deeper insight in the evolutionary 617 consequences of gene expression shifts. Techniques like in situ hybridization, RNAi and 618 CRISPR/Cas9 are adequate tools that can be used in shedding light into the functionality 619 of these genes. Particularly interesting could be those genes whose gene expression levels 620 have shifted to the degree of showing absence of expression (Figure S6). The evolution 621 of gain and loss of gene expression across a phylogeny requires a suitable theoretical 622 framework that should be explored particularly since such events have the potential to 623 accelerate evolution.

624

625 Acknowledgements

626 Thanks to Aline Rangel Olguin for technical assistance with the orthocluster analysis.

627 This work was partially supported by National Science Foundation grant IOS-1656260 to

628 A.D.B and by the Knut & Alice Wallenberg Foundation to Jochen Wolf.

629

630 References

- 631 Ahi EP, Richter F, Sefc KM. 2017. A gene expression study of ornamental fin shape in
- 632 *Neolamprologus brichardi*, an African cichlid species. Sci Rep 7:1–14.
- 633 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment
- 634 search tool. J Mol Biol 215:403–410.
- Ballesteros JA, Hormiga G. 2016. A new orthology assessment method for phylogenomic
- data: Unrooted Phylogenetic Orthology. Mol Biol Evol 33:1–18.
- 637 Beaulieu JM, Jhwueng DC, Boettiger C, O'Meara BC. 2012. Modeling stabilizing
- 638 selection: Expanding the Ornstein-Uhlenbeck model of adaptive evolution.
- 639 Evolution (N Y) 66:2369–2383.
- 640 Bedford T, Hartl DL. 2009. Optimization of gene expression by natural selection. Proc
- 641 Natl Acad Sci U S A 106:1133–1138.
- 642 Beltrán M, Jiggins C, Brower A, Bermingham E, Mallet J. 2007. Do pollen feeding and
- 643 pupal-mating have a single origin in *Heliconius*? Inferences from multilocus
- 644 sequence data. Biol J Linn Soc 92:221–239.
- 645 Berger JO. 1990. Robust bayesian. J Stat Plan Inference 25:303–328.
- 646 Brawand D, Soumillon M, Necsulea A, Julien P, Csárdi G, Harrigan P, Weier M, Liechti
- 647 A, Aximu-Petri A, Kircher M, et al. 2011. The evolution of gene expression levels
- 648 in mammalian organs. Nature 478:343–348.
- 649 Butler MA, King AA. 2004. Phylogenetic Comparative Analysis: A Modeling Approach
- 650 for Adaptive Evolution. Am Nat 164:683–695.
- 651 Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: A tool for automated
- alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–

- 654 Carroll SB. 2005. Evolution at two levels: on genes and form. PLoS Biol 3:e245.
- 655 Catalán A, Glaser-Schmitt A, Argyridou E, Duchen P, Parsch J. 2016. An Indel
- 656 Polymorphism in the *MtnA* 3' Untranslated Region Is Associated with Gene
- 657 Expression Variation and Local Adaptation in *Drosophila melanogaster*. PLOS
- 658 Genet 12:1–24.
- 659 Catalán A, Macias-Muñoz A, Briscoe AD. 2018. Evolution of Sex-Biased Gene
- 660 Expression and Dosage Compensation in the Eye and Brain of *Heliconius*
- 661 Butterflies. Mol Biol Evol 35:2120–2134.
- 662 Cayirlioglu P, Kadow IG, Zhan X, Okamura K, Suh GSB, Gunning D, Lai EC, Zipursky
- 663 SL. 2008. Hybrid neurons in a microRNA mutant are putative evolutionary
- 664 intermediates in insect CO₂ sensory systems. Science (80-) 510:3–8.
- 665 Chen J, Swofford R, Johnson J, Cummings BB, Rogel N, Lindblad-Toh K, Haerty W,
- Palma F di, Regev A. 2017. A quantitative model for characterizing the evolutionary
 history of mammalian gene expression. bioRxiv:229096.
- 668 Chintapalli VR, Wang J, Dow JAT. 2007. Using FlyAtlas to identify better Drosophila
- 669 *melanogaster* models of human disease. Nat Genet 39:715–720.
- 670 Cooper N, Thomas GH, Venditti C, Meade A, Freckleton RP. 2016. A cautionary note on
- the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biol J Linn Soc118:64–77.
- 673 Dunlop J, Morin X, Corominas M, Serras F, Tear G. 2004. glaikit is essential for the
- 674 formation of epithelial polarity and neuronal development. Curr Biol 14:2039–2045.
- Eastman JM, Alfaro ME, Joyce P, Hipp AL, Harmon LJ. 2011. A Novel comparative

- 676 method for identifying shifts in the rate of character evolution on trees. Evolution (N
- 677 Y) 65:3578–3589.
- 678 Enright AJ, Van Dongen S, Ouzounis CA. 2002. An efficient algorithm for large-scale
- detection of protein families. Nucleic Acids Res 30:1575–1584.
- 680 Fan Y, Wu R, Chen MH, Kuo L, Lewis PO. 2011. Choosing among partition models in
- 681 Bayesian phylogenetics. Mol Biol Evol 28:523–532.
- Fay JC, Wittkopp PJ. 2008. Evaluating the role of natural selection in the evolution of
- 683 gene regulation. Heredity (Edinb) 100:191–199.
- 684 Feller G, Gerday C. 1997. Psychrophilic enzymes: Molecular basis of cold adaptation.
- 685 Cell Mol Life Sci 53:830–841.
- 686 Felsenstein J. 1985. Phylogenies and the comparative method. Am Nat 125:1–15.
- 687 Finkbeiner SD, Briscoe AD, Reed RD. 2014. Warning signals are seductive: relative
- 688 contributions of color and pattern to predator avoidance and mate attraction in
- 689 Heliconius butterflies. Evolution 68:3410–3420.
- 690 Finkbeiner SD, Fishman DA, Osorio D, Briscoe AD. 2017. Ultraviolet and yellow
- 691 reflectance but not fluorescence is important for visual discrimination of
- 692 conspecifics by *Heliconius erato*. J Exp Biol:jeb.153593.
- Fitzjohn RG. 2012. Diversitree: Comparative phylogenetic analyses of diversification in
 R. Methods Ecol Evol 3:1084–1092.
- 695 Freckleton RP. 2012. Fast likelihood calculations for comparative analyses. Methods
- 696 Ecol Evol 3:940–947.
- 697 Gastwirth JL, Gel YR, Miao W. 2009. The Impact of Levene's Test of Equality of
- 698 Variances on Statistical Theory and Practice. Stat Sci 24:343–360.

- 699 Glaser-Schmitt A, Parsch J. 2018. Functional characterization of adaptive variation
- 700 within a *cis*-regulatory element influencing *Drosophila melanogaster* growth. PLoS
- 701 Biol 16:1–28.
- 702 Goldman N. 1993. Simple diagnostic statistcal tests of models for DNA substitution. J
- 703 Mol Evol 36:182–198.
- Hansen TF. 1997. Stabilizing Selection and the Comparative Analysis of Adaptation.
- 705 Evolution (N Y) 51:1341.
- 706 Hastings WK. 1970. Monte Carlo simulation methods using Markov Chains and their
- 707 applications. Biometrika 57:97–109.
- 708 Ho LST, Ané C. 2014. Intrinsic inference difficulties for trait evolution with Ornstein-
- 709 Uhlenbeck models. Methods Ecol Evol 5:1133–1146.
- 710 Höhna S, Landis MJ, Heath TA. 2017. Phylogenetic inference using RevBayes. Curr
- 711 Protoc Bioinforma 2017:6.16.1-6.16.34.
- 712 Höhna S, Landis MJ, Heath TA, Boussau B, Lartillot N, Moore BR, Huelsenbeck JP,
- 713 Ronquist F. 2016. RevBayes: Bayesian phylogenetic inference using graphical
- models and an interactive model-specification language. Syst Biol 65:726–736.
- 715 Ives AR, Midford PE, Garland T. 2007. Within-species variation and measurement error
- in phylogenetic comparative methods. Syst Biol 56:252–270.
- 717 Kalinka AT, Varga KM, Gerrard DT, Preibisch S, Corcoran DL, Jarrells J, Ohler U,
- 718 Bergman CM, Tomancak P. 2010. Gene expression divergence recapitulates the
- developmental hourglass model. Nature 468:811–814.
- 720 Kass KE, Raftery AE. 1995. Bayes Factors. J Am Stat Assoc 90:773–795.
- 721 Katoh K, Toh H. 2008. Recent developments in the MAFFT multiple sequence alignment

- 722 program. Brief Bioinform 9:286–298.
- 723 Khaitovich P. 2005. Parallel patterns of evolution in the genomes and transcriptomes of
- humans and chimpanzees. Science (80-) 309:1850–1854.
- 725 Khaitovich P, Pääbo S, Weiss G. 2005. Toward a neutral evolutionary model of gene
- expression. Genetics 170:929–939.
- 727 Khaitovich P, Weiss G, Lachmann M, Hellmann I, Enard W, Muetzel B, Wirkner U,
- Ansorge W, Pääbo S. 2004. A neutral model of transcriptome evolution. PLoS Biol
- 729

2.

- 730 Kozak KM, Wahlberg N, Neild AFE, Dasmahapatra KK, Mallet J, Jiggins CD. 2015.
- 731 Multilocus species trees show the recent adaptive radiation of the mimetic
- 732 *Heliconius*. butterflies. Syst Biol 64:505–524.
- 733 Kronforst MR, Papa R. 2015. The functional basis of wing patterning in Heliconius

butterflies: The molecules behind mimicry. Genetics 200:1–19.

- 735 Lande R. 1976. Natural Selection and Random Genetic Drift in Phenotypic Evolution.
- 736 Evolution (N Y) 30:314–334.
- Lang GI, Murray AW, Botstein D. 2009. The cost of gene expression underlies a fitness
 trade-off in yeast. Proc Natl Acad Sci 106:5755–5760.
- 739 Larracuente AM, Sackton TB, Greenberg AJ, Wong A, Singh ND, Sturgill D, Zhang Y,
- Oliver B, Clark AG. 2008. Evolution of protein-coding genes in Drosophila. Trends
 Genet 24:114–123.
- 742 Lee G, Foss M, Goodwin SF, Carlo T, Taylor BJ, Hall JC. 2000. Spatial, temporal, and
- sexually dimorphic expression patterns of the fruitless gene in the *Drosophila*
- central nervous system. J Neurobiol 43:404–426.

745	McCulloch KJ, Yuan F, Zhen Y, Aardema ML, Smith G, Llorente-Bousquets J,
746	Andolfatto P, Briscoe AD. 2017. Sexual Dimorphism and Retinal Mosaic
747	Diversification Following the Evolution of a Violet Receptor in Butterflies. Mol
748	Biol Evol 34:1–14.
749	Mendoza-Cuenca L, Macías-Ordóñez R. 2005. Foraging polymorphism in Heliconius
750	charitonia (Lepidoptera: Nymphalidae): morphological constraints and behavioural
751	compensation. J Trop Ecol 21:407–415.
752	Merrill RM, Dasmahapatra KK, Davey JW, Dell'Aglio DD, Hanly JJ, Huber B, Jiggins
753	CD, Joron M, Kozak KM, Llaurens V, et al. 2015. The diversification of Heliconius
754	butterflies: What have we learned in 150 years? J Evol Biol 28:1417–1438.
755	Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. 1953. Equation of
756	state calculations by fast computing machines. J Chem Phys 21:1087–1092.
757	Metzger BPH, Duveau F, Yuan DC, Tryban S, Yang B, Wittkopp PJ. 2016. Contrasting
758	Frequencies and Effects of cis- and trans-Regulatory Mutations Affecting Gene
759	Expression. Mol Biol Evol 33:1131–1146.
760	Montgomery SH, Merrill RM, Ott SR. 2016. Brain composition in Heliconius butterflies,
761	posteclosion growth and experience-dependent neuropil plasticity. J Comp Neurol
762	524:1747–1769.
763	Nadeau NJ. 2016. Genes controlling mimetic colour pattern variation in butterflies. Curr
764	Opin Insect Sci 17:24–31.
765	Nitta KR, Jolma A, Yin Y, Morgunova E, Kivioja T, Akhtar J, Hens K, Toivonen J,
766	Deplancke B, Furlong EEM, et al. 2015. Conservation of transcription factor
767	binding specificities across 600 million years of bilateria evolution. Elife 2015:1–20.

768	Nourmohammad A,	Rambeau L I	Held T	Kovacova V	Berg I	Lässig M.	2017	Adaptive

- evolution of gene expression in *Drosophila*. Cell Rep 20:1385–1395.
- 770 O'Meara BC, Ané C, Sanderson MJ, Wainwright PC. 2006. Testing for different rates of
- continuous trait evolution using likelihood. Evolution (N Y) 60:922–933.
- Punta M, Coggill P, Eberhardt R, Mistry J, Tate J, Boursnell C, Pang N, Forslund K,
- 773 Ceric G, Clements J, et al. 2012. The Pfam protein families databases. Nucleic Acids
 774 Res 30:1–12.
- Rifkin SA, Kim J, White KP. 2003. Evolution of gene expression in the Drosophila

melanogaster subgroup. Nat Genet 33:138–144.

- 777 Rohlfs R V., Harrigan P, Nielsen R. 2014. Modeling gene expression evolution with an
- extended Ornstein-Uhlenbeck process accounting for within-species variation. Mol
 Biol Evol 31:201–211.
- 780 Rohlfs R V., Nielsen R. 2015. Phylogenetic ANOVA: The expression variance and

evolution model for quantitative trait evolution. Syst Biol 64:695–708.

782 Romero IG, Ruvinsky I, Gilad Y. 2012. Comparative studies of gene expression and the

evolution of gene regulation. Nat Rev Genet 13:505–516.

- Salcedo C. 2010. Environmental Elements Involved in Communal Roosting in *Heliconius*Butterflies (Lepidoptera: Nymphalidae). Environ Entomol 39:907–911.
- Signor SA, Nuzhdin S V. 2018. The evolution of gene expression in *cis* and *trans*. Trends
 Genet:1–13.
- Sinharay S, Stern HS. 2002. On the sensitivity of Bayes factors to the prior distributions.

789 Am Stat 56:196–201.

790 Stamatakis A. 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic

- analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690.
- 792 Stern DB, Crandall KA. 2018. The Evolution of Gene Expression Underlying Vision
- Loss in Cave Animals. Mol Biol Evol 35:2005–2014.
- 794 Uyeda JC, Harmon LJ. 2014. A novel Bayesian method for inferring and interpreting the
- dynamics of adaptive landscapes from phylogenetic comparative data. Syst Biol
- 79663:902–918.
- Wagner A. 2005. Energy constraints on the evolution of gene expression. Mol Biol Evol
 22:1365–1374.
- Wagner GP, Altenberg L. 1996. Complex Adaptations and the Evoluation of
- 800 Evolvability. Evolution (N Y) 50:967–976.
- 801 Walters JR, Stafford C, Hardcastle TJ, Jiggins CD. 2012. Evaluating female remating
- rates in light of spermatophore degradation in *Heliconius* butterflies: Pupal-mating

803 monandry versus adult-mating polyandry. Ecol Entomol 37:257–268.

- 804 Wanner KW, Anderson AR, Trowell SC, Theilmann DA, Robertson HM, Newcomb RD.
- 805 2007. Female-biased expression of odourant receptor genes in the adult antennae of
- the silkworm, *Bombyx mori*. Insect Mol Biol 16:107–119.
- 807 Warnefors M, Eyre-Walker A. 2012. A selection index for gene expression evolution and
- its application to the divergence between humans and chimpanzees. PLoS One 7.
- 809 Whitehead A, Crawford DL. 2006a. Variation within and among species in gene
- 810 expression: Raw material for evolution. Mol Ecol 15:1197–1211.
- 811 Whitehead A, Crawford DL. 2006b. Neutral and adaptive variation in gene expression.
- 812 Proc Natl Acad Sci 103:5425–5430.
- 813 Wong ES, Thybert D, Schmitt BM, Stefflova K, Odom DT, Flicek P. 2015. Decoupling

- 814 of evolutionary changes in transcription factor binding and gene expression in
- 815 mammals. Genome Res 25:167–178.