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Abstract

Single-cell technologies have seen widespread adoption in recent years. The datasets gen-
erated by these technologies provide information on up to millions or more individual cells;
however, the identities of the cells are often only determined computationally. Single-cell com-
putational pipelines involve two critical steps: organizing the cells in a biologically meaningful
way (clustering) and identifying the markers driving this organization (di↵erential expression
analysis). Because clustering algorithms force separation, performing di↵erential expression
analysis after clustering on the same dataset will generate artificially low p-values, potentially
resulting in false discoveries. In this work, we introduce the truncated normal (TN) test, a
test based on the truncated normal distribution that significantly corrects for this problem.
We present a data-splitting-based framework that leverages the TN test to return reasonable p-
values for arbitrary clustering schemes. We demonstrate the e�cacy of our solution on simulated
and real datasets, and we provide our code at https://github.com/jessemzhang/tn_test.

1 Introduction

In recent years, single-cell technologies have accelerated basic biology research, shedding light on
a wide variety of biological phenomena. Modern advances in single-cell technologies can cheaply
generate genomic profiles of up to millions of individual cells [1, 2, 3, 4, 5]. Depending on the type
of assay, these profiles can describe cell features such as RNA expression, transcript compatability
counts [6], epigenetic features [7], or nuclear RNA expression [8]. Because the cell types of individual
cells often cannot be known prior to the computational step, a key step in single-cell computational
pipelines [9, 10, 11, 12, 13] is clustering: organizing individual cells into biologically meaningful
populations. Furthermore, computational pipelines use di↵erential expression analysis to identify
the key features that distinguish a population from other populations, for example a gene based on
its relative expression level.

Existing computational workflows often perform clustering and di↵erential expression analysis
on the same dataset. This reusing of the same dataset is more colloquially known as “data snoop-
ing.” Because clustering algorithms force separation regardless of the underlying truth, running
di↵erential expression on the resulting clusters will yield artificially low p-values. While several
di↵erential expression methods exist [14, 12, 15, 16, 17, 18], as a motivating example we consider
the classic Student’s t-test introduced in 1908 [19]. We note that none of these tests correct for

⇤Corresponding Author. Email: dntse@stanford.edu

1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/463265doi: bioRxiv preprint 

https://doi.org/10.1101/463265
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Artificially low p-values due to clustering. Although the 500 samples are drawn from the
same N (µ, 1) distribution, our simple clustering approach will always generate two clusters that
seem significantly di↵erent under the t-test. In this work, we explore an approach for correcting
the selection bias due to clustering. In other words, we attempt to close the gap between the blue
and green curves in the rightmost plot. We introduce the TN test, which generates significantly
more reasonable p-values.

the data snooping problem as they were not designed to account for the clustering process. The
t-test was devised for controlled experiments where the hypothesis to be tested was defined before
the experiments were carried out. For example, to test the e�cacy of a drug, the researcher would
randomly assign individuals to case and control groups, administer the placebo or the drug, and
take a set of measurements. Because the populations were clearly defined a priori, so was the null
hypothesis. Therefore, a t-test would yield valid p-values. In other words, under the null hypothesis
where no e↵ect exists, the mean measurement should be the same across the two populations, and
the p-value should be uniformly distributed between 0 and 1.

For single-cell analysis, however, the populations are often obtained after the measurements are
taken, via clustering, and therefore we can expect the t-test to return significant p-values even if
the null hypothesis was true. Figure 1 shows how a measurement, such as expression of a gene, is
deemed significantly di↵erent between two clusters even though all samples came from the same
normal distribution. The clustering introduces a selection bias that would result in several false
discoveries if uncorrected.

In this work, we introduce the truncated normal (TN) test, an approximate test based on the
truncated normal distribution that corrects for a significant portion of the selection bias generated
by clustering. We condition on the clustering event using the hyperplane that separates the clusters.
By incorporating this hyperplane into our null model, we can obtain a uniformly distributed p-value
even in the presence of clustering. To our knowledge, the TN test is the first test to correct for
clustering bias while addressing the di↵erential expression question: is this feature significantly
di↵erent between the two clusters? For the rest of this work, we assume that the feature of interest
is some gene expression level.

We then proceed to provide a data-splitting based framework that allows us to generate valid
p-values for di↵erential expression of genes for clusters obtained from any clustering algorithm.

The TN test was motivated by existing theory in selective inference [20, 21]. Additionally, the
TN test can be used to determine whether or not a clustering is significant, an area where existing
tests [22, 23] have also demonstrated promising results.
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2 Methods

2.1 Clustering model

To motivate our approach, we consider the simplest model of clustering: samples are drawn from
one of two clusters, and the clusters can be separated using a linear separator. As we later show,
the linear separability assumption is often true for high-dimensional datasets such as single-cell
datasets. For the rest of this section, we assume that the hyperplane a is given and independent
from the data we are using for di↵erential expression analysis. For example, we can assume that
in a dataset of n independent and identically distributed samples and d genes, we had set aside
n1 samples to generate the two clusters and identify a, thus allowing us to classify future samples
without having to rerun our clustering algorithm. We run di↵erential expression analysis using the
remaining n2 = n�n1 samples while conditioning on the selection event. More specifically, our test
accounts for the fact that a particular a was chosen to govern clustering. We will later demonstrate
empirically that the resulting test we develop su↵ers from significantly less selection bias.

For pedagogical simplicity, we start by assuming that our samples are 1-dimensional (d = 1)
and our clustering algorithm divides our samples into two clusters based on the sign of the (mean-
centered) observed expressions. Let Y represent the negative samples and Z represent the positive
samples. We assume that our samples come from normal distributions with known variance 1 prior
to clustering, and we condition on our clustering event by introducing truncations into our model.
Therefore Y and Z have truncated normal distributions due to clustering:

fY (y;µL) =
1p
2⇡

exp

✓
�1

2
(y � µL)

2

◆
I(y  0)

�(�µL)

fZ(z;µR) =
1p
2⇡

exp

✓
�1

2
(z � µR)

2

◆
I(z > 0)

�(µR)
.

Here, the I terms are indicator functions denoting how truncation is performed, and the �
terms are normalization factors to ensure that fY and fZ integrate to 1. � represents the CDF of
a standard normal random variable. µL and µR denote the means of the untruncated versions of
the distributions. We want to test if the gene is di↵erentially expressed between two populations
Y and Z, i.e. if µL = µR.

2.2 Derivation of the test statistic

The joint distribution of our n samples of Y with ourm samples of Z can be expressed in exponential
family form as

fY,Z(y, z;µL, µR) = exp (µLnȳ + µRmz̄ �  (µL, µR))h(y, z),

where ȳ and z̄ represent the sample means of Y and Z, respectively.  is the cumulant generating
function, and h is the carrying density. Please see the Appendix for more details. To test for
di↵erential expression, we want to test if µL = µR, which is equivalent to testing if µR � µL = 0.
With a slight reparametrization, we let ✓ = (µR � µL)/2 and µ = (µR + µL)/2, resulting in the
expression:

fY,Z(y, z;µ, ✓) = exp
�
µ(nȳ +mz̄) + ✓(mz̄ � nȳ)�  0(µ, ✓)

�
h(y, z).
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Algorithm 1 1D TN test when variance = 1 and clustering is performed based on sign of expression
Input: Two groups of samples Y , Z
Output: p-value

1. Using maximum likelihood, estimate µL, µR, the mean parameters of the truncated Gaussian
distributions

2. To obtain the null distribution, set µL = µR = (µL + µR)/2, then obtain estimates of
µY , µZ ,�2Y ,�

2
Z , the means and the variances of truncated distributions

3. Perform an approximate test with the statistic

m(z̄ � µZ)� n(ȳ � µY )q
m�2Z + n�2Y

where m and n represent the number of samples of Z and Y , respectively. This statistic is
approximately N (0, 1) distributed.

We can test design tests for ✓ = ✓0 using its su�cient statistic, mz̄� nȳ [24]. From the Central
Limit Theorem (CLT), we see that the test statistic

m(z̄ � µZ)� n(ȳ � µY )q
m�2Z + n�2Y

CLT��! N (0, 1).

Intuitively, this test statistic compares mz̄ � nȳ, the gap between the observed means, to
mµZ � nµY , the gap between the excepted means. For di↵erential expression, we set ✓0 = 0.
Because µY , µZ ,�2Y ,�

2
Z under the null µL = µR are unknown, we estimate them from the data

by first estimating µL and µR via maximum likelihood. Although the estimators for µL and µR

have no closed-form solutions due to the � terms, the joint distribution can be represented in
exponential family form. Therefore the likelihood function is concave with respect to µL and µL,
and we can obtain estimates µ̂L, µ̂R via gradient ascent. We then set µ̂ = (µ̂L + µ̂R)/2. This
procedure is summarized in Algorithm 1. We note that approximation errors are accumulated from
the CLT approximation and errors in the maximum likelihood estimation process, and therefore
the limiting distribution of the test statistic should have wider tails. Despite this, we show later
that this procedure corrects for a large amount of the selection bias.

2.3 TN test for d dimensions and unknown variance

In this section, we generalize our 1-dimensional result to d dimensions and non-unit variance. Our
samples now come from the multivariate truncated normal distributions

fY (y;µL,⌃) =
1p

(2⇡)d|⌃|
exp

✓
�1

2
(y � µL)

T⌃�1(y � µL)

◆
I(aT y  0)

�
⇣
� aTµLp

aT⌃a

⌘

fZ(z;µR,⌃) =
1p

(2⇡)d|⌃|
exp

✓
�1

2
(z � µR)

T⌃�1(z � µR)

◆
I(aT z > 0)

�
⇣

aTµRp
aT⌃a

⌘
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Figure 2: Overview of the TN test with 1000 samples drawn independently from a unimodal Gaus-
sian distribution. Genes 1 and 2 are drawn independently from N (0.5, 1) and N (0, 1), respectively.
Analysis framework. The samples are split into two datasets. An arbitrary clustering algorithm
is performed on dataset 1, and a hyperplane is fitted to the cluster labels. The hyperplane, which
is independent from dataset 2, is then used to assign labels to dataset 2. Di↵erential expression
analysis is performed on dataset 2 using the TN test, which requires knowledge of the hyperplane
to correct for selection bias introduced by the clustering event. TN test. µL and µR are the
means of the untruncated normal distributions that generated Y and Z. The covariance matrix
is assumed to be diagonal and equal across the two untruncated distributions, and �2 represents
the diagonal entries along the matrix. Separating hyperplane a is assumed to be given, but can be
estimated from a held-out portion of data using a support vector machine. Under the t-test, the
p-values obtained for dataset 2’s genes 1 and 2 are 5.3⇥ 10�88 and 1.0⇥ 10�6, respectively.

where µL, µR,⌃ denote the means and covariance matrix of the untruncated versions of the
distributions. We assume that all samples are drawn independently, and ⌃ is diagonal: ⌃ij = �2i if
i = j else ⌃ij = 0. The joint distribution of our n samples of Y with our m samples of Z can be
expressed in exponential family form as

fY,Z(y, z; ⌘) = exp

✓
�1

2
⌘T1
�
kyk2F+kzk2F

�
+ ⌘T2 nȳ + ⌘T3 mz̄ �  (⌘)

◆
h(y, z)
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Algorithm 2 TN test
Input: Two groups of samples Y , Z, a separating hyperplane a
Output: p-value

1. Using maximum likelihood, estimate the mean and variance parameters of the truncated
Gaussian distributions on either side of the hyperplane: µL, µR,⌃

2. For gene g, obtain the marginal distributions fYg(yg), fZg(zg) under the null (i.e. setting
µLg = µRg = (µLg + µRg)/2)

3. Using numerical integration, obtain estimates of µYg , µZg ,�
2
Yg
,�2Zg

, the means and the vari-

ances of fYg(yg) and fZg(zg)

4. Perform an approximate test with the statistic

m(z̄g � µZg)� n(ȳg � µYg)q
m�2Zg

+ n�2Yg

where m and n represent the number of samples of Z and Y , respectively.

where  is the cumulant generating function, h is some carrying density, and k·kF denotes the
Frobenius norm. The natural parameters ⌘1, ⌘2, ⌘3 are equal to

⌘1 =

2

64
1/�21
...

1/�2k

3

75 , ⌘2 = ⌃�1µL, ⌘3 = ⌃�1µR.

To test di↵erential expression of gene g, we can test if ⌘2g = ⌘3g, which is equivalent to testing
µLg/�2g = µRg/�2g or µLg = µRg. In similar spirit to the 1-dimensional case, we perform a slight
reparameterization, letting ✓g = (⌘3g � ⌘2g)/2 and µg = (⌘2g + ⌘3g)/2:

fY,Z(y, z)

= exp

0

@�⌘
T
1

2
(kyk2F + kzk2F ) +

X

j 6=g

(⌘2jnȳj + ⌘3jmz̄j) + µg(nȳg +mz̄g) + ✓g(mz̄g � nȳg)�  0

1

Ah.

We again design tests for ✓g using its su�cient statistic, mz̄g � nȳg:

TN =
m(z̄g � µZg)� n(ȳg � µYg)q

m�2Zg
+ n�2Yg

CLT��! N (0, 1).

During the testing procedure, we want to evaluate if ✓g = 0 (i.e. if gene g has significantly
di↵erent mean expression between the two populations). With ✓g = 0 as our null hypothesis, we
compute the corresponding parameters µZg , µYg ,�

2
Zg
,�2Yg

under the null, allowing us to evaluate
the probability of seeing a TN statistic at least as extreme as the one observed for the actual data.

Like in the 1-dimensional case, we use maximum likelihood to estimate ⌘1, ⌘2, and ⌘3, leveraging
the fact that the likelihood function is concave because the joint distribution is an exponential
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family. After estimating the natural parameters, we can easily recover ⌃, µL, and µR. To obtain
estimates for µZg , µYg ,�

2
Zg
,�2Yg

under the null, we first set µLg = µRg = (µLg+µRg)/2. We then use
numerical integration to obtain the first and second moments of gene g’s marginal distributions:

fYg(yg) = �

0

@�agyg � aT�gµL,�gqP
i 6=g a

2
i�

2
i

1

A
exp

⇣
� 1

2�2
g
(yg � µLg)2

⌘

�

 
� aTµLqPd

i=1 a
2
i �

2
i

!q
2⇡�2g

fZg(zg) = �

0

@agzg + aT�gµR,�gqP
i 6=g a

2
i�

2
i

1

A
exp

⇣
� 1

2�2
g
(zg � µRg)2

⌘

�

 
aTµRqPd
i=1 a

2
i �

2
i

!q
2⇡�2g

.

The TN test procedure is summarized in Algorithm 2 and Figure 2. More details regarding the
above derivations are given in the Appendix.

2.4 TN test for p-value correcting with arbitrary clustering

Algorithm 3 Clustering and TN test framework
Input: Samples X
Output: p-value

1. Split X into two partitions X1, X2

2. Run your favorite clustering algorithm on X1 to generate labels, choosing two clusters for
downstream di↵erential expression analysis

3. Use X1 and the labels to determine a, the separating hyperplane (e.g. using an SVM)

4. Divide X2 into Y, Z using the obtained hyperplane

5. Run TN test using Y, Z, a

We describe a full framework (Figure 2) for clustering the dataset X and obtaining corrected
p-values via the TN test. Using a data-splitting approach, we run an arbitrary clustering algorithm
on one portion of the data, X1, to generate 2 clusters. For di↵erential expression analysis, we
estimate the separating hyperplane a using a linear binary classifier such as the support vector
machine (SVM). This hyperplane is used to assign labels to the remaining samples in X2, yielding
Y and Z. Finally, we can run a TN test using Y, Z, and a. This approach is summarized in
Algorithm 3. Note that in the case of k > 2 clusters, we can assign all points in X2 using our
collection of

�k
2

�
hyperplanes.
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a.

b.

c. d.

Figure 3: Results on simulated data drawn from truncated normal distributions. a. 500 samples
are drawn from the same distribution, and genes 1 and 2 are drawn from N (0.5, 1) and N (0, 1),
respectively. The clustering step splits the dataset into groups of 156 and 344 samples, and a exactly
captures the clustering rule. We see that although neither gene is di↵erentially expressed in the
underlying distribution, the t-test consistently returns small p-values across 100 simulation runs.
We present four version of the TN test, all of which significantly correct for the clustering step.
�̂2 indicates that the variance was unknown and therefore estimated from the data. â indicates
that the hyperplane was estimated from a held-out 10% of the samples using an SVM. b. The
experiment from a is repeated except gene 1 is drawn from a N (�1, 0) distribution instead. The
number of samples in each group and the separating hyperplane remain the same. c. We explore
how the minimum p-value across genes change with d, the number of genes. For a particular
number of genes, 200 samples are drawn from a N (0, I) distribution, and a is chosen randomly.
This simulation is repeated 10 times for each value of d. ↵ indicates the chosen level of significance.
d. For d = 500, we run a 200-sample simulation experiment (100 in each cluster) where 10 genes
are di↵erentially expressed. 10 values of µL were set to -1, and the corresponding entries in µR

were set to 1. All other entires of µL, µR were set to 0, and �2 = 1.
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3 Results

3.1 Performance on simulated truncated normal data

We first explore the performance of our proposed method on synthetic data sampled from normal
distributions prior to clustering, resulting in data sampled from truncated normal distributions
post-clustering. Figure 3a shows results for the 2-dimensional case where no di↵erential expression
should be observed (the untruncated means of both clusters are identical). The covariance matrix
is identity and we let �2 denote the diagonal entries of the matrix. Note that for this example, gene
1 needs a larger correction factor than gene 2 because the separating hyperplane is less aligned
with the gene 1 axis. We see that when both the variance �2 and separating hyperplane a are
known, the TN test completely corrects for the selection event. As we introduce more uncertainty
(i.e. if we need to estimate �2 or a or both), the correction factor shrinks; however, the gap is still
significantly better than for the t-test case. To estimate a, we fit a linear regression model to 10%
of the dataset, and we work with the remaining 90% of the dataset after relabeling it based on our
estimate of a. Figure 3b repeats the experiment for the case where gene 1 is di↵erentially expressed.
The TN test again corrects for the selection bias in gene 2, but we still obtain significant p-values
for gene 1 though not nearly as extreme as for the t-test case. We also observe a general loss of
statistical power if we need to estimate �2 or a. Loss of statistical power is visualized in Figure 3b
as a shift of the empirical CDF (ECDF) left towards larger p-values. For example, if we need to
estimate a, our dataset used for di↵erential expression grows smaller, and therefore the test loses
some power.

Figure 3c extends the above result to greater values of d, the total number of genes. For each
value of d, samples are drawn from the same N (0, I) distribution, and the separating hyperplane
is randomly chosen. We see that as we increase d, the minimum TN test p-value across all d
genes exactly follows the family-wise error rate (FWER) curve. FWER represents the probability
of making at least 1 false discovery, and naturally increases with d, the number of tests we do.
This highlights the validity of the TN test, which is behaving as expected when samples are drawn
from the null distribution. In comparison, the t-test returns extreme p-values especially for lower
values of d. As d increases, however, the marginal distributions become roughly normal, and the
selection bias incurred by our simple clustering approach disappears. While the TN test provides
less gain in higher (� 200) dimensions, we note that for real datasets, cluster identities are often
driven by an e↵ectively small amount of genes. Cell identities are not driven by a large amount of
independent features, and this is why several single-cell pipelines perform dimensionality reduction
before clustering.

We also simulate date from underlying distributions where di↵erential expression should be
observed. Figure 3d shows that the TN test assigns low p-values to di↵erentially expressed genes
and high p-values to the other genes.

3.2 Performance on single-cell RNA-Seq data

We consider the peripheral blood mononuclear cell (PBMC) dataset of 2700 cells generated using
recent techniques developed by 10x Genomics [4], and this dataset was also used in a tutorial
for the Seurat single-cell package [9]. Figure 4a shows the result of processing the dataset using
Seurat, which preprocesses the dataset before running a graph-based clustering algorithm [25, 26,
27] yielding 9 clusters.
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a. b. d.

c0 c1

c0 440 136

c1 112 429

c2 27 7

c0 c1

c0 105 90

c1 66 83

c0 c1

c0 210 79

c1 76 210

c0 c1

c0 356 120

c1 101 343

f =
1.0

f =
0.2

f =
0.5

f =
0.8

Concordance of labels on c0, c1 after 
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c.
c0
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Figure 4: TN test on subset of 2700-cell PBMC dataset. a. t-SNE plot of the 2700 PBMC dataset
colored by clusters found using Seurat [9]. b. The analysis pipeline in Figure 2 is run on the cells
in clusters 0 and 1 to generate TN test p-values. The Seurat clustering pipeline is used to recover 2
clusters on dataset 1, half of the 1151 cells, and seven di↵erential expression methods provided by
Seurat (see Appendix for details) are also run on dataset 1. c. The expression profile of two genes
across all 1151 cells with the new labels are shown: S100A4, the most significant gene according to
several tests, and B2M, a gene corrected by the TN test. d. State-of-the-art single-cell clustering
pipelines such as Seurat can generate di↵erent clustering results on the same cells.

We restrict our attention to clusters 0 and 1 and run the analysis framework described by
Figure 2. With 579 and 572 cells in clusters 0 and 1, we randomly split the pool of 1151 cells
in half into datasets 1 and 2. We recluster dataset 1 using Seurat, using clustering parameters
that would result in 2 clusters. We use SVM to obtain a hyperplane that perfectly separates the
two clusters, and we use this hyperplane to assign labels to samples in dataset 2. We subsequently
perform a TN test using the hyperplane and dataset 2. To compare the TN test to methods that do
not account for clustering bias, we run the entire Seurat pipeline (including di↵erential expression
analysis) on dataset 1. Seurat o↵ers several di↵erential expression approaches, and for each of 7
of the approaches (see Appendix for more details), we compare the obtained p-values to the TN
test p-values. Figure 4b shows while the TN test agrees with the 7 di↵erential expression tests on
several genes (e.g. S100A4 ), it also disagrees on some other genes. The gene with the most heavily
corrected p-value was B2M. While several of the Seurat-provided tests would detect a significant
change (p < 10�20), the TN-test accounts for the fact that this di↵erence in expression may be due
to a clustering artifact (p = 2.2 ⇥ 10�10). Figure 4c shows the expression profiles of S100A4 and
B2M for all 1151 cells with new labels, highlighting how the detected di↵erence for S100A4 may
actually be significant while the detected di↵erence for B2M may have been induced by clustering.

We also note that state-of-the-art single-cell clustering pipelines such as Seurat can generate
di↵erent clustering results on the same dataset (Figure 4d). Importantly, di↵erent clustering results
imply di↵erent null hypotheses when we reach the di↵erential expression analysis step, which further
undermines the validity of the “discovered” di↵erentiating markers. Although data splitting reduces
the number of samples available for clustering, we see that sacrificing a portion of the data can
correct for biases introduced by clustering. Additionally, we note that the method we propose here
allows arbitrary clustering schemes to be used on the first portion of the dataset but restricts to
only linear separators on the second portion of the dataset. In high dimensions, we can obtain
linear separators for most clusters found in practice.
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