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Abstract

Single-cell computational pipelines involve two critical steps: organizing cells (clustering)
and identifying the markers driving this organization (di↵erential expression analysis). State-
of-the-art pipelines perform di↵erential analysis after clustering on the same dataset. We
observe that because clustering forces separation, reusing the same dataset generates arti-
ficially low p-values and hence false discoveries. In this work, we introduce a valid post-
clustering di↵erential analysis framework which corrects for this problem. We provide software
at https://github.com/jessemzhang/tn_test.

Modern advances in single-cell technologies can cheaply generate genomic profiles of millions of
individual cells [1, 2]. Depending on the type of assay, these profiles can describe cell features such
as RNA expression, transcript compatability counts [3], epigenetic features [4], or nuclear RNA
expression [5]. Because the cell types of individual cells often cannot be known prior to the compu-
tational step, a key step in single-cell computational pipelines [6, 7, 8, 9, 10] is clustering: organizing
individual cells into biologically meaningful populations. Furthermore, computational pipelines use
di↵erential expression analysis to identify the key features that distinguish a population from other
populations: for example a gene based on its relative expression level.

Many single-cell RNA-seq discoveries are justified using very small p-values [9, 11]. The central
observation underlying this paper is: these p-values are often spuriously small. Existing workflows
perform clustering and di↵erential expression on the same dataset, and clustering forces separation
regardless of the underlying truth, rendering the p-values invalid. This is an instance of a broader
phenomenon, colloquially known as “data snooping”, which causes false discoveries to be made
across many scientific domains [12]. While several di↵erential expression methods exist [9, 13, 14,
11, 15, 16], none of these tests correct for the data snooping problem as they were not designed to
account for the clustering process. As a motivating example, we consider the classic Student’s t-test
introduced in 1908 [17], which was devised for controlled experiments where the hypothesis to be
tested was defined before the experiments were carried out. For example, to test the e�cacy of a
drug, the researcher would randomly assign individuals to case and control groups, administer the
placebo or the drug, and take a set of measurements. Because the populations were clearly defined
a priori, a t-test would yield valid p-values. In other words, under the null hypothesis where no
e↵ect exists, the p-value should be uniformly distributed between 0 and 1. For single-cell analysis,
however, the populations are often obtained, via clustering, after the measurements are taken, and
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therefore we can expect the t-test to return significant p-values even if the null hypothesis was true.
The clustering introduces a selection bias [18, 19] that would result in several false discoveries if
uncorrected.

In this work, we introduce a method for correcting the selection bias induced by clustering.
To gain intuition for the method, consider a single-gene example where a sample is assigned to a
cluster based on the expression level of the gene relative to some threshold. Fig. 1a shows how
this expression level is deemed significantly di↵erent between two clusters even though all samples
came from the same normal distribution. We attempt to close the gap between the blue and
green curves in the rightmost plot by introducing the truncated normal (TN) test. The TN test
(Fig. 1b) is an approximate test based on the truncated normal distribution that corrects for a
significant portion of the selection bias. As we go from 1 gene to multiple, the decision boundary
generalizes from a threshold to a high-dimensional hyperplane. We condition on the clustering
event using the hyperplane that separates the clusters, and Supplementary Table 1 shows that
this linear separability assumption is valid for a diverse set of published single-cell datasets. By
incorporating the hyperplane into our null model, we can obtain a uniformly distributed p-value
even in the presence of clustering. To our knowledge, the TN test is the first test to correct for
clustering bias while addressing the di↵erential expression question: is this feature significantly

di↵erent between the two clusters? We then proceed to provide a data-splitting based framework
(Fig. 1c) that allows us to generate valid di↵erential expression p-values for clusters obtained from
any clustering algorithm. Using both synthetic and real datasets, we argue that for a given set of
clusters, not all reported markers can be trusted. Importantly, this point implies that

1. large correction factors for multiple markers can indicate overclustering;

2. plotting expression heatmaps where rows and columns are arranged by cluster identity can
convey misleading information (e.g. Fig. S6 in [20] and Fig. 6b in [1]).

We consider the peripheral blood mononuclear cell (PBMC) dataset of 2700 cells generated
using recent techniques developed by 10x Genomics [2], and this dataset was also used in a tutorial
for the Seurat single-cell package [6]. Fig. 2a shows the Seurat pipeline output after preprocessing
the dataset and running a graph-based clustering algorithm [21, 22, 23], yielding 9 clusters. For
each of 7 approaches o↵ered by Seurat (see Supplement for more details), we perform di↵erential
expression analysis on clusters 0 and 1, and we compare the obtained p-values to TN test p-values.
Fig. 2a shows that while the TN test agrees with the di↵erential expression tests on several genes
(e.g. S100A4 ), it also disagrees on some other genes. The two genes with the most heavily corrected
p-value were B2M and HLA-A. While several of the Seurat-provided tests would detect a significant
change (e.g. the popular Wilcoxon test reported p = 8.5⇥ 10�30 for B2M and p = 3.8⇥ 10�17 for
HLA-A), the TN-test accounts for the fact that this di↵erence in expression may be driven by the
clustering approach (p = 3.7⇥10�13 for B2M and p = 7.2⇥10�8 for HLA-A). Because the amount
of bias correction is di↵erent for each gene, the TN test orders markers di↵erently than clustering-
agnostic methods. Comparisons are also performed for clusters 1 versus 3 and 2 versus 5, and the
results are reported in Supplementary Fig. 2. This indicates that the artifacts of post-selection
inference are fairly consequential even in real datasets.

We further explore how the TN test can be used to both validate and contest reported subtypes.
For a dataset of 3005 mouse brain cells [20], the authors reported 16 subtypes of interneurons using
26 gene markers. Fig. 2b and Supplementary Fig. 3 shows that Int11, the only subtype that
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was experimentally validated using immunohistochemistry, received relatively small amounts of
correction. Int1, Int12, and Int16, however, may need to further inspection.

We also demonstrate how the TN test can be used to gauge overclustering. We run the Seurat
clustering pipeline on a dataset of 704 mouse embryonic stem cells (mESCs) [24] using two di↵erent
clustering parameters, resulting in the two clustering results shown in Fig. 2c. For each pair of
clusters, we look at the top 10 most significant genes chosen by the t-test. We correct these p-values
using the TN test and observe the geometric average of the ratio of TN test p-values to t-test p-
values. We see that for valid clusters (Clustering 1), the p-value obtained using the TN test is
often even smaller, o↵ering no correction. When clusters are not valid (Clustering 2), however, we
observe a significant amount of correction.

State-of-the-art single-cell clustering pipelines such as Seurat can generate di↵erent clustering
results on the same dataset (Supplementary Fig. 4). Importantly, di↵erent clustering results imply
di↵erent null hypotheses when we reach the di↵erential expression analysis step, which further
undermines the validity of the “discovered” di↵erentiating markers. Although data splitting reduces
the number of samples available for clustering, we see that sacrificing a portion of the data can
correct for biases introduced by clustering.

The post-selection inference problem arose only recently in the age of big data due to a new
paradigm of choosing a model after seeing the data. The problem can be described as a two-step
process: 1) selection of the model to fit the data based on the data, and 2) fitting the selected model.
The quality of the fitting is assessed based on the p-values associated with parameter estimates,
but if the null model does not account for the selection event, then the p-values are spurious. This
problem was first analyzed in 2013 by statisticians in settings such as selection for linear models
under squared loss [18, 19]. Practitioners often select a subset of “relevant” features before fitting
the linear model. In other words, the practitioner chooses the best model out of 2d possible choices
(d being the number of features), and the quality of fit is hence biased. One needs to account for
the selection in order to correct for this bias [18]. Similarly, a single-cell RNA-seq dataset of n cells
can be divided into 2 clusters in 2n ways, biasing the features selected for distinguishing between
clusters. In this manuscript, we propose a way to account for this bias.

This work introduced and validated the TN test framework in the single-cell RNA-Seq appli-
cation, but the framework is equally applicable to other domains where feature sets are large and
clustering is done before feature selection. Because science has entered a big-data era where ob-
taining large datasets is becoming increasingly cheaper, researchers across domains have fallen into
the mindset of forming hypotheses after seeing the data [12]. We believe that the TN test is a
step towards the right direction: correcting data snooping to reduce false discoveries and improve
reproducibility.

Online Methods

Both the software package and the code used to generate the results presented in this paper are
available online at https://github.com/jessemzhang/tn_test.

Simulation details

We validate the method on synthetic datasets where the ground truth is fixed and known. For the
experiments discussed in Supplementary Fig. 1, we sample data from normal distributions with
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identity covariance prior to clustering, resulting in data sampled from truncated normal distribu-
tions post-clustering. To estimate the separating hyperplane a, we fit an SVM to 10% of the dataset
(50% for Fig. 1c), and we work with the remaining portion of the dataset after relabeling it based
on our estimate of a. Supplementary Fig. 1a shows results for the 2-gene case where no di↵erential
expression should be observed (i.e. the untruncated means are identical). Note that for this exam-
ple, gene 1 needs a larger correction factor than gene 2 because the separating hyperplane is less
aligned with the gene 1 axis. We see that when both the variance and separating hyperplane a are
known, the TN test completely corrects for the selection event. As we introduce more uncertainty
(i.e. if we need to estimate variance or a or both), the correction factor shrinks; however, the gap
is still significantly better than for the t-test case. Supplementary Fig. 1b repeats the experiment
for the case where gene 1 is di↵erentially expressed. The TN test again corrects for the selection
bias in gene 2, but we still obtain significant p-values for gene 1 though not nearly as extreme as
for the t-test case. Supplementary Fig. 1c shows that as we increase d, the number of genes, the
minimum TN test p-value across all d genes follows the family-wise error rate (FWER) curve. Since
FWER represents the probability of making at least 1 false discovery and naturally increases with
d, this highlights the validity of the TN test. In comparison, the t-test returns extreme p-values
especially for lower values of d. As d increases, however, the selection bias incurred by our simple
clustering approach disappears. While the TN test provides less gain in higher (� 200) dimensions,
we note that for real datasets, cluster identities are often driven by an e↵ectively small amount of
genes, which is why several single-cell pipelines perform dimensionality reduction before clustering.
Supplementary Fig. 1b and 1d show that when certain genes are di↵erentially expressed, the TN
test is still able to find them.

Single-cell dataset computational details

For all experiments discussed in Fig. 2, we randomly split set of samples in half into datasets 1 and
2. For Fig. 2a, we recluster dataset 1 with Seurat using clustering parameters that would result in
2 clusters. We use SVM to obtain a hyperplane that perfectly separates the two clusters, and we
use this hyperplane to assign labels to samples in dataset 2. When comparing the TN test results
to those obtained using other approaches, we run the entire Seurat pipeline (including di↵erential
expression analysis) on dataset 1. For the mouse brain cell and mESC datasets analyzed in Fig. 2b
and 2c, we assume that the generated labels are ground truth, and therefore we do not perform the
reclustering part of the analysis framework shown in Fig. 1. For Fig. 2b, we only report correction
factors for cases where SVM fit the data well, meaning that the new labels generated for dataset
2 have at least a 80% match with the original labels. We note that this does not contradict the
linear separability assumption discussed in the main text. The sizes of the interneuron subclusters
range from 10 to 26, and therefore the SVM was occasionally fit on as few as 5 samples, resulting
in an inability to generalize. Additionally, we only report correction factors greater than 0.

Clustering model

To motivate our approach, we consider the simplest model of clustering: samples are drawn from
one of two clusters, and the clusters can be separated using a linear separator. As we show
in Supplementary Table 1, the linear separability assumption is often true for high-dimensional
datasets such as single-cell datasets. For the rest of this section, we assume that the hyperplane
a is given and independent from the data we are using for di↵erential expression analysis. For
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example, we can assume that in a dataset of n independent and identically distributed samples
and d genes, we had set aside n1 samples to generate the two clusters and identify a, thus allowing
us to classify future samples without having to rerun our clustering algorithm. We run di↵erential
expression analysis using the remaining n2 = n � n1 samples while conditioning on the selection
event. More specifically, our test accounts for the fact that a particular a was chosen to govern
clustering. We will later demonstrate empirically that the resulting test we develop su↵ers from
significantly less selection bias.

For pedagogical simplicity, we start by assuming that our samples are 1-dimensional (d = 1)
and our clustering algorithm divides our samples into two clusters based on the sign of the (mean-
centered) observed expressions. Let Y represent the negative samples and Z represent the positive
samples. We assume that our samples come from normal distributions with known variance 1 prior
to clustering, and we condition on our clustering event by introducing truncations into our model.
Therefore Y and Z have truncated normal distributions due to clustering:

fY (y;µL) =
1p
2⇡

exp

✓
�1

2
(y � µL)

2

◆
I(y  0)

�(�µL)

fZ(z;µR) =
1p
2⇡

exp

✓
�1

2
(z � µR)

2

◆
I(z > 0)

�(µR)
.

Here, the I terms are indicator functions denoting how truncation is performed, and the �
terms are normalization factors to ensure that fY and fZ integrate to 1. � represents the CDF of
a standard normal random variable. µL and µR denote the means of the untruncated versions of
the distributions. We want to test if the gene is di↵erentially expressed between two populations
Y and Z, i.e. if µL = µR.

Algorithm 1 1D TN test when variance = 1 and clustering is performed based on sign of expression
Input: Two groups of samples Y , Z
Output: p-value

1. Using maximum likelihood, estimate µL, µR, the mean parameters of the truncated Gaussian
distributions

2. To obtain the null distribution, set µL = µR = (µL + µR)/2, then obtain estimates of
µY , µZ ,�2Y ,�

2
Z , the means and the variances of truncated distributions

3. Perform an approximate test with the statistic

m(z̄ � µZ)� n(ȳ � µY )q
m�2Z + n�2Y

where m and n represent the number of samples of Z and Y , respectively. This statistic is
approximately N (0, 1) distributed.
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Derivation of the test statistic

The joint distribution of our n samples of Y with ourm samples of Z can be expressed in exponential
family form as

fY,Z(y, z;µL, µR) = exp (µLnȳ + µRmz̄ �  (µL, µR))h(y, z),

where ȳ and z̄ represent the sample means of Y and Z, respectively.  is the cumulant generating
function, and h is the carrying density. Please see the Supplement for more details. To test for
di↵erential expression, we want to test if µL = µR, which is equivalent to testing if µR � µL = 0.
With a slight reparametrization, we let ✓ = (µR � µL)/2 and µ = (µR + µL)/2, resulting in the
expression:

fY,Z(y, z;µ, ✓) = exp
�
µ(nȳ +mz̄) + ✓(mz̄ � nȳ)�  0(µ, ✓)

�
h(y, z).

We can test design tests for ✓ = ✓0 using its su�cient statistic, mz̄� nȳ [25]. From the Central
Limit Theorem (CLT), we see that the test statistic

m(z̄ � µZ)� n(ȳ � µY )q
m�2Z + n�2Y

CLT��! N (0, 1).

Intuitively, this test statistic compares mz̄ � nȳ, the gap between the observed means, to
mµZ � nµY , the gap between the expected means. For di↵erential expression, we set ✓0 = 0.
Because µY , µZ ,�2Y ,�

2
Z under the null µL = µR are unknown, we estimate them from the data

by first estimating µL and µR via maximum likelihood. Although the estimators for µL and µR

have no closed-form solutions due to the � terms, the joint distribution can be represented in
exponential family form. Therefore the likelihood function is concave with respect to µL and µL,
and we can obtain estimates µ̂L, µ̂R via gradient ascent. We then set µ̂ = (µ̂L + µ̂R)/2. This
procedure is summarized in Algorithm 1. We note that approximation errors are accumulated from
the CLT approximation and errors in the maximum likelihood estimation process, and therefore
the limiting distribution of the test statistic should have wider tails. Despite this, we show later
that this procedure corrects for a large amount of the selection bias.

TN test for d dimensions and unknown variance

In this section, we generalize our 1-dimensional result to d dimensions and non-unit variance. Our
samples now come from the multivariate truncated normal distributions

fY (y;µL,⌃) =
1p

(2⇡)d|⌃|
exp

✓
�1

2
(y � µL)

T⌃�1(y � µL)

◆
I(aT y  0)

�
⇣
� aTµLp

aT⌃a

⌘

fZ(z;µR,⌃) =
1p

(2⇡)d|⌃|
exp

✓
�1

2
(z � µR)

T⌃�1(z � µR)

◆
I(aT z > 0)

�
⇣

aTµRp
aT⌃a

⌘

where µL, µR,⌃ denote the means and covariance matrix of the untruncated versions of the
distributions. We assume that all samples are drawn independently, and ⌃ is diagonal: ⌃ij = �2i if
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Algorithm 2 TN test
Input: Two groups of samples Y , Z, a separating hyperplane a
Output: p-value

1. Using maximum likelihood, estimate the mean and variance parameters of the truncated
Gaussian distributions on either side of the hyperplane: µL, µR,⌃

2. For gene g, obtain the marginal distributions fYg(yg), fZg(zg) under the null (i.e. setting
µLg = µRg = (µLg + µRg)/2)

3. Using numerical integration, obtain estimates of µYg , µZg ,�
2
Yg
,�2Zg

, the means and the vari-

ances of fYg(yg) and fZg(zg)

4. Perform an approximate test with the statistic

m(z̄g � µZg)� n(ȳg � µYg)q
m�2Zg

+ n�2Yg

where m and n represent the number of samples of Z and Y , respectively.

i = j else ⌃ij = 0. The joint distribution of our n samples of Y with our m samples of Z can be
expressed in exponential family form as

fY,Z(y, z; ⌘) = exp

✓
�1

2
⌘T1
�
kyk2F+kzk2F

�
+ ⌘T2 nȳ + ⌘T3 mz̄ �  (⌘)

◆
h(y, z)

where  is the cumulant generating function, h is some carrying density, and k·kF denotes the
Frobenius norm. The natural parameters ⌘1, ⌘2, ⌘3 are equal to

⌘1 =

2

64
1/�21
...

1/�2d

3

75 , ⌘2 = ⌃�1µL, ⌘3 = ⌃�1µR.

To test di↵erential expression of gene g, we can test if ⌘2g = ⌘3g, which is equivalent to testing
µLg/�2g = µRg/�2g or µLg = µRg. In similar spirit to the 1-dimensional case, we perform a slight
reparameterization, letting ✓g = (⌘3g � ⌘2g)/2 and µg = (⌘2g + ⌘3g)/2:

fY,Z(y, z)

= exp

0

@�⌘
T
1

2
(kyk2F + kzk2F ) +

X

j 6=g

(⌘2jnȳj + ⌘3jmz̄j) + µg(nȳg +mz̄g) + ✓g(mz̄g � nȳg)�  0

1

Ah.

We again design tests for ✓g using its su�cient statistic, mz̄g � nȳg:

TN =
m(z̄g � µZg)� n(ȳg � µYg)q

m�2Zg
+ n�2Yg

CLT��! N (0, 1).
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During the testing procedure, we want to evaluate if ✓g = 0 (i.e. if gene g has significantly
di↵erent mean expression between the two populations). With ✓g = 0 as our null hypothesis, we
compute the corresponding parameters µZg , µYg ,�

2
Zg
,�2Yg

under the null, allowing us to evaluate
the probability of seeing a TN statistic at least as extreme as the one observed for the actual data.

Like in the 1-dimensional case, we use maximum likelihood to estimate ⌘1, ⌘2, and ⌘3, leveraging
the fact that the likelihood function is concave because the joint distribution is an exponential
family. After estimating the natural parameters, we can easily recover ⌃, µL, and µR. To obtain
estimates for µZg , µYg ,�

2
Zg
,�2Yg

under the null, we first set µLg = µRg = (µLg+µRg)/2. We then use
numerical integration to obtain the first and second moments of gene g’s marginal distributions:

fYg(yg) = �

0

@�agyg � aT�gµL,�gqP
i 6=g a

2
i�

2
i

1

A
exp

⇣
� 1

2�2
g
(yg � µLg)2

⌘

�

 
� aTµLqPd

i=1 a
2
i �

2
i

!q
2⇡�2g

fZg(zg) = �

0

@agzg + aT�gµR,�gqP
i 6=g a

2
i�

2
i

1

A
exp

⇣
� 1

2�2
g
(zg � µRg)2

⌘

�

 
aTµRqPd
i=1 a

2
i �

2
i

!q
2⇡�2g

.

The TN test procedure is summarized in Algorithm 2 and Fig. 1. More details regarding the
above derivations are given in the Supplement. We note that this test is approximate because the
test statistic becomes normally distributed only when we have a large number of samples (m and n
both large). In practice, real datasets involve a finite number of samples, and the parameters need
to be estimated from the data. Therefore the tails of our test statistic’s null distribution should be
bigger in order to capture the added uncertainty. As shown in this work, we can obtain significant
selection bias correction (for both real and synthetic datasets) despite this approximation error.

TN test for post-clustering p-value correcting

Algorithm 3 Clustering and TN test framework
Input: Samples X
Output: p-value

1. Split X into two partitions X1, X2

2. Run your favorite clustering algorithm on X1 to generate labels, choosing two clusters for
downstream di↵erential expression analysis

3. Use X1 and the labels to determine a, the separating hyperplane (e.g. using an SVM)

4. Divide X2 into Y, Z using the obtained hyperplane

5. Run TN test using Y, Z, a

We describe a full framework (Fig. 1) for clustering the dataset X and obtaining corrected
p-values via the TN test. Using a data-splitting approach, we run some clustering algorithm on one
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portion of the data, X1, to generate 2 clusters. For di↵erential expression analysis, we estimate the
separating hyperplane a using a linear binary classifier such as the support vector machine (SVM).
This hyperplane is used to assign labels to the remaining samples in X2, yielding Y and Z. Finally,
we can run a TN test using Y, Z, and a. This approach is summarized in Algorithm 3. Note that
in the case of k > 2 clusters, we can assign all points in X2 using our collection of

�k
2

�
hyperplanes.
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Figure 1: Overview of the TN test. a. Although the samples are drawn from the same normal
distribution, a simple clustering approach will always generate two clusters that seem significantly
di↵erent under the t-test. The TN test statistic is based on the mixture of two truncated normal
distributions where the truncation is at the clustering threshold. This allows the test to account for
and correct the selection bias due to clustering, closing the gap between the blue and green curves
in the rightmost plot. b. TN test for di↵erential expression. µL and µR are the means of the
untruncated normal distributions that generated Y and Z. The covariance matrix is assumed to be
diagonal and equal across the two untruncated distributions, and �2 represents the diagonal entries
along the matrix. The threshold in the single-gene case generalizes to a separating hyperplane a
in the multi-gene case. The TN test assumes the hyperplane a is given. c. Analysis framework.
The samples are split into two datasets. The analyst’s chosen clustering algorithm is performed
on dataset 1, and a hyperplane is fitted to the cluster labels. The hyperplane, which is indepen-
dent from dataset 2, is then used to assign labels to dataset 2. Di↵erential expression analysis is
performed on dataset 2 using the TN test with this separating hyperplane.
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Figure 2: TN test on real datasets. a. t-SNE plot of the 2700-PBMC dataset with two clusters
found using Seurat [6]. Following the analysis pipeline in Fig. 1, the Seurat clustering approach
is used to recover 2 clusters on dataset 1, and seven di↵erential expression methods provided by
Seurat (see Supplement for details) are also run on dataset 1. The TN test ranks genes di↵erently
than standard di↵erential expression methods, indicating that artifacts of post-selective inference
are consequential in picking relevant genes. b. The 16 interneuron subclasses reported for the
mouse brain cell dataset [20] are re-compared using each of the 26 genes discussed by the authors.
The left plot shows an example correction factor heatmap for one of the 26 genes; the rest are
reported in Supplementary Fig. 3. The right plot shows the max correction factor for each cluster
and gene across all other clusters. We note that Int11, the only cluster that was verified to have
biological significance by the authors in [20] received the fourth smallest amount of correction.
Note that plotting expression heatmaps where rows and columns are arranged by cluster identity
can convey misleading information. c. The Seurat pipeline is run with two di↵erent clustering
parameters for the mESC dataset [24]. “None” indicates that TN test p-values were on average at
least as significant as t-test ones. Pairs of clusters which look separated (Clustering 1, left pane)
undergo no significant correction while pairs of clusters that do not look well separated (e.g. c0
and c5 in Clustering 2, right pane) undergo high correction.
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