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Abstract 13 

Bacterial genomics has revolutionized our understanding of the microbial tree of life; however, 14 

mapping and visualizing the distribution of functional traits across bacteria remains a challenge. 15 

Here, we introduce AnnoTree - an interactive, functionally annotated bacterial tree of life that 16 

integrates taxonomic, phylogenetic, and functional annotation data from nearly 24,000 bacterial 17 

genomes. AnnoTree enables visualization of millions of precomputed genome annotations across 18 

the bacterial phylogeny, thereby allowing users to explore gene distributions as well as patterns 19 

of gene gain and loss across bacteria. Using AnnoTree, we examined the phylogenomic 20 

distributions of 28,311 gene/protein families, and measured their phylogenetic conservation, 21 

patchiness, and lineage-specificity. Our analyses revealed widespread phylogenetic patchiness 22 

among bacterial gene families, reflecting the dynamic evolution of prokaryotic genomes. Genes 23 

involved in phage infection/defense, mobile elements, and antibiotic resistance dominated the list 24 

of most patchy traits, as well as numerous intriguing metabolic enzymes that appear to have 25 

undergone frequent horizontal transfer. We anticipate that AnnoTree will be a valuable resource 26 

for exploring gene histories across bacteria, and will act as a catalyst for biological and 27 

evolutionary hypothesis generation. 28 
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Introduction 29 

Important biological and evolutionary insights can be generated by exploring the 30 

presence/absence of genes and functional annotations across species phylogenies. These include 31 

identifying unexpected taxonomic occurrences (Venter et al. 2004), uncovering the evolutionary 32 

origin of genes (Demuth and Hahn 2009), and locating putative horizontal gene transfer (HGT) 33 

events (Andersson et al. 2006; Ravenhall et al. 2015). With the ongoing exponential increase in 34 

available genome sequences, including information from previously uncharacterized and 35 

uncultured lineages, online genomic repositories are becoming increasingly valuable collections 36 

of predicted genes and functional annotations. With this wealth of genomic data comes the 37 

opportunity for large-scale examinations of gene family distributions and evolutionary histories, 38 

but databases are not easily accessed, updated, or visualized. 39 

 40 

A number of strategies exist for merging taxonomic and functional information to create 41 

annotated phylogenies. For instance, homologs of a gene family retrieved using BLAST 42 

(Camacho et al. 2009) or related methods can be manually mapped onto a custom species tree 43 

using tools such as iTOL (Letunic and Bork 2016) or GraPhlAn (Asnicar et al. 2015). 44 

Alternatively, several online bioinformatics databases offer precomputed summaries of 45 

taxonomic distributions for genes based on Linnean taxonomic classification or the NCBI 46 

taxonomy (Yang and Bourne 2009; Sayers et al. 2009; Finn et al. 2016; Adebali and Zhulin 47 

2017). However, there is a need for tools that allow users to explore gene/function distributions 48 

across a taxonomically curated and highly resolved tree of life. 49 

 50 

Here, we present AnnoTree (annotree.uwaterloo.ca), a functionally annotated bacterial tree of 51 

life that enables interactive exploration of gene/function annotations across nearly 24,000 52 

bacterial genomes. The phylogeny and taxonomic nomenclature used within AnnoTree is derived 53 

from the recently developed Genome Taxonomy Database (GTDB) (Parks et al. 2018). The 54 

GTDB overcomes several challenges with the construction of an annotated tree of life as it is 55 

standardized (its taxonomic nomenclature and phylogeny are made to be internally consistent) 56 

and thorough (it includes a large number of novel bacterial genomes derived from metagenomic 57 

sources). This differentiates the GTDB taxonomy and AnnoTree from similar approaches that 58 
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rely on the NCBI taxonomy (Federhen 2012), whose hierarchy disagrees with several recent 59 

reconstructions of bacterial phylogeny (Bromberg et al. 2016; Hug et al. 2016). 60 

Results 61 

To construct the AnnoTree database, we re-annotated all 23,936 genomes in the GTDB (Release 62 

02-RS83) using a consistent annotation pipeline. Following gene prediction, we assigned 63 

functional annotations [Pfam protein families (Finn et al. 2016) and KEGG orthology (KO) 64 

identifiers (Kanehisa et al. 2017)] to protein sequences using standard confidence score 65 

thresholds, resulting in 39,153,531 Pfam and 37,850,864 KEGG annotations. All taxonomic 66 

information, protein sequences, and functional annotations are stored in a back-end MySQL 67 

database for rapid retrieval by the front-end AnnoTree application (Fig. 1). To enable 68 

phylogenetic visualization of all 23,936 bacterial genomes, AnnoTree divides the bacterial tree 69 

of life into distinct views by each major taxonomic level. A user can explore the phylogenetic 70 

distribution of a trait anywhere from the phylum to genome level. 71 

 72 

 73 

 74 
Figure 1. Data flow in the AnnoTree application. Raw values and computed features derived 75 
from data obtained from the GTDB is stored in a MySQL database that will be updated to match 76 
revisions made to the GTDB. Users can access data relevant to their queries in the form of 77 
figures and tables that are rendered in their browser. The figures themselves and the data used to 78 
generate them can be downloaded in various file formats from the AnnoTree interface. 79 
 80 
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 81 
Figure 2. AnnoTree interface overview. AnnoTree can be queried with any number of KO 82 
identifiers, Pfam protein families, or NCBI taxon identification numbers to display a mapping of 83 
those traits on the GTDB tree at any resolution. Lineages containing at least one genome with the 84 
query annotation(s) are highlighted in red. A circle chart displays a taxonomic summary of the 85 
genomes containing the flagellin gene (KO identifier: K02406) at a chosen taxonomic level. 86 
Smaller trees below show the interactive view when different taxonomic levels are selected by 87 
the user. When a highlighted node is clicked, a window appears (not shown in figure) displaying 88 
basic taxonomic information, zooming options, and annotation confidence scores. 89 
 90 

AnnoTree can be queried in several ways: by Pfam protein family, KO term, or taxonomic 91 

name/id. Additionally, species that appear in a BLAST result can be visualized by uploading the 92 

BLAST XML2 output file directly. AnnoTree will then generate a “painted” phylogeny using 93 

root-to-tip coloring for all lineages containing matches to the query (Fig. 2). Visualizations are 94 

also accompanied by basic taxonomic information and distribution summary statistics based on 95 
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GTDB nomenclature (Fig. 2). Publication-quality SVG images, Newick formatted phylogenies 96 

for any selected subset of the tree, and taxonomic distribution tables of all queries can be 97 

downloaded for offline analysis or editing. Confidence scores (E-values) and options for 98 

downloading protein sequences for each annotation in a genome or lineage are displayed within a 99 

pop-up window when a colored node is selected on the tree. 100 

 101 

Since all data is precomputed, users can explore the phylogenomic distribution of any 102 

combination of gene families within seconds. As an example, the recent metagenomics-driven 103 

discovery of commamox bacteria (van Kessel et al. 2015; Daims et al. 2015) can be reproduced 104 

through a simple AnnoTree query by searching for genomes possessing all three key genes that 105 

act as a signature for commamox activity: KO terms K00371 (nxrB), K10944 (amoA), and 106 

K10535 (hao). Highlighted in the tree are the known commamox species (i.e., organisms within 107 

the genus Nitrospira), along with several additional taxa implicated as having potential 108 

commamox-like activity (e.g., Crenothrix) (Supplemental Fig. 1). 109 

 110 

As a second example, the recent discoveries of homologs of important bacterial toxins outside of 111 

their respective bacterial lineages can be reproduced and visualized phylogenetically using 112 

simple AnnoTree queries. A query with Pfam PF01742 (botulinum neurotoxin protease) reveals 113 

a taxonomic distribution outside of Clostridium including the lineages Weissella and 114 

Chryseobacterium, consistent with earlier analyses (Mansfield et al. 2015, 2017) (Supplemental 115 

Fig. 2). Similarly, a search with the diphtheria toxin domains (PF02763 or PF02764) reveals 116 

homologs in related genera Streptomyces and Austwickia, again reproducing recent analyses 117 

(Mansfield et al. 2018) almost instantaneously (Supplemental Fig. 3). These examples illustrate 118 

the use of AnnoTree as a hypothesis-generating tool by revealing distributions of gene families 119 

that may be new or unexpected to users. 120 

 121 

Lineage-specific gene families 122 

As an initial exploration of the data within AnnoTree, we examined the distributions of all 123 

77,004,395 Pfam and KO annotations when mapped onto the GTDB bacterial tree of life. Based 124 

on the phylogenetic conservation score (τD) (Martiny et al. 2013), 68.1% of KO identifiers and 125 

60.0% of Pfam protein families had significantly non-random phylogenomic distributions (P < 126 
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0.05), revealing a greater phylogenetic congruency for KO predictions than Pfam predictions. 127 

Next, we analyzed the distributions of Pfam and KO annotations to identify those with strong 128 

lineage-specificity, which we defined as those where 95% of the members of a gene family occur 129 

in 95% of the taxa under a specific phylogenetic node. Based on this criteria, we identified 358 130 

(3.2%) Pfam protein families and 152 (0.9%) KO identifiers with lineage-specific distributions in 131 

Bacteria (Supplemental Data File 1). We observed a trend in which lineage-specific KO 132 

identifiers and Pfam protein families increase in frequency from higher (e.g., phylum) to lower 133 

(e.g., species) taxonomic levels (Supplemental Fig. 4), consistent with the idea that gene family 134 

taxonomic distributions tend to diversify over time and that HGT impacts evolution over short 135 

evolutionary timescales (McDonald and Curriea 2017). Although lineage-specific families are 136 

relatively rare at high taxonomic levels, these cases often represent ancient, clade-defining 137 

bacterial innovations. Examples include K18955 (WhiB family transcriptional regulator) in the 138 

Actinobacteria, PF07542 (ATP12 chaperone) in the Alphaproteobacteria, and numerous 139 

photosynthesis-related genes within the Cyanobacteria (class Oxyphotobacteria). 140 

 141 

Lineage-specific gene families can provide insights into the unique biology of their respective 142 

organisms. For example, eight lineage-specific Pfam and KO annotations were detected within 143 

the Endozoicomonas subtree, a clade of endosymbiotic bacteria that inhabit numerous marine 144 

eukaryotic hosts (Neave et al. 2016). Consistent with possible utilization of host processes, the 145 

lineage-specific genes detected within this clade appear to be of eukaryotic origin and include 146 

genes involved in cytoskeletal organization (PF01302), eukaryotic cell-cell signaling (PF00812), 147 

apoptosis inhibition (K010343, K010344, K04725, PF07525), and eukaryotic proteolysis 148 

(K01378). Given the occurrence of numerous lineage-specific gene families in Endozoicomonas, 149 

we asked whether lineage-specific gene families may be overrepresented in certain taxa or 150 

branches of the bacterial tree. Indeed, lineage-specific genes were significantly enriched in 151 

specific taxonomic groups. Notable examples include 37 Pfam protein families within the 152 

Bacillus_A genus, and 19 Pfam protein families within the Actinobacteria that are largely 153 

composed of proteins of unknown function. We also observed an overrepresentation of lineage-154 

specific gene families in numerous well-studied pathogens (e.g., Bordetella, Helicobacter, 155 

Legionella, and Vibrio) (Supplemental Figs. 5-7; Supplemental Data File 1). This is in part 156 
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due to the presence of lineage-specific virulence factors and toxins, but is also likely influenced 157 

by annotation bias towards organisms of biomedical interest (Haynes et al. 2018). 158 

 159 

Gene families with patchy distributions 160 

Although 60-68% of functional annotations show a significant phylogenetic signal when mapped 161 

onto the tree, more surprising are the remaining 30-40% that show more random phylogenetic 162 

distributions, potentially reflecting the widespread horizontal transfer and/or frequent gene 163 

gain/loss that is known to occur in bacterial genomes (Ochman et al. 2000; Eisen 2000). To 164 

investigate this further, we ranked all Pfam and KEGG annotations according to their 165 

phylogenetic patchiness, determined by homoplasy score (total number of gains and losses by 166 

parsimony) normalized by gene family size after filtering out traits with family size less than 50 167 

(Supplemental Data File 2, see Methods). KEGG KO terms were grouped into their higher-168 

level functional categories for visual comparison of broader trends (Fig. 3, Supplemental Data 169 

File 3). Not surprisingly, “viral” (bacteriophage) genes ranked the highest in homoplasy in both 170 

Pfam and KEGG annotations, and therefore are the single most phylogenetically scattered class 171 

of genes in bacteria. In contrast, gene functions with extremely low homoplasy include 172 

sporulation, photosynthesis, and core processes such as transcription, replication, and protein 173 

synthesis (Fig. 3). Highly scattered genes showed significant overrepresentation among specific 174 

taxonomic groups such as the genera Pseudomonas_E, Streptomyces, and Mycobacterium 175 

(Supplemental Data Files 4, 5), suggesting that these taxa may be taxonomic “hotspots” of 176 

HGT. 177 

We then examined in more detail the top 100 gene families that showed the most 178 

scattered distributions across the bacterial tree. Not surprisingly, this list of gene families is 179 

dominated by transposases, CRISPR- and bacteriophage-associated gene families 180 

(Supplemental Data File 2). Numerous gene families of unknown function were included 181 

among the most patchy gene families, but further examination revealed that most of these genes 182 

are likely bacteriophage-derived. The extreme phylogenetic patchiness of bacteriophage and 183 

CRISPR genes is not only consistent with their known evolutionary dynamics but could also 184 

reflect the ongoing “arms race” between these two opposing biological forces (phage infection 185 

versus phage defense). Other biologically relevant members of the 1% most highly scattered KO 186 

genes include: K19057-K19059 (merC, merD, and merR of the mer operon) for mercury 187 
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 188 
Figure 3. Phylogenetic patchiness of annotations inferred using AnnoTree. Phylogenetic 189 
patchiness was computed for each KEGG KO identifier and Pfam protein family using the 190 
consistency index (CI), a common homoplasy metric representing the inverse of the minimum 191 
possible number of state changes (trait gain or loss) given the tree topology. The final 192 
phylogenetic patchiness score is equal to log(CI)/log(family size) where family size is the total 193 
number of genomes containing the trait. (A) Density plot showing the distribution of 194 
phylogenetic patchiness scores of Pfam protein families and KO identifiers with different visual 195 
examples of varying patchiness (red=present; gray=absent). The phylogenetic distribution plots 196 
are, from top to bottom: K10922 (transmembrane regulatory protein ToxS), K18955 (WhiB 197 
transcriptional regulator), PF01848 (ATP12 chaperone), PF01848 (Hok/Sok antitoxin system), 198 
and K07495 (putative transposase). (B) Mean-sorted box plots containing phylogenetic 199 
patchiness scores of KO identifiers in their respective KEGG pathways and KEGG BRITE 200 
categories. The mean patchiness score of a set of KO identifiers in a KEGG pathway or KEGG 201 
BRITE category is indicated by a black line. 202 
 203 

 204 

resistance; K19155 and K19156, components of a toxin-antitoxin system characterized in E. coli; 205 

K15943, K15945, and K16411 for polyketide antibiotic biosynthesis; and K19173-K19175 for 206 

DNA backbone S-modification (phosphorothioation) (Supplemental Data File 2). 207 

 208 

Reductive dehalogenases 209 

As a case study for the hypothesis generation and data mining strengths of AnnoTree, we 210 

selected a gene family of significant biological interest that ranked among the top percentile of 211 

homoplasy scores: pcpC; tetrachloro-p-hydroquinone reductive dehalogenase (K15241) 212 

Supplemental Data File 2). As key enzymes in bioremediation of chlorinated solvents, there has 213 
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been extensive characterization of the diversity and phylogenomic distribution of reductive 214 

dehalogenases (Rdhs) and organohalide respiring organisms (Hug et al. 2013). Using AnnoTree, 215 

we compiled a dataset of Rdh genes and associated taxa using Pfam query PF13486. Our 216 

analysis produced a comprehensive dataset of 1,299 putative Rdh genes from 385 genera and 38 217 

phyla (Supplemental Table 1, Supplemental Figs. 8, 9), which not only recapitulates the 218 

known diversity of Rdh-associated phyla, but significantly expands it. In comparison, a 219 

manually-curated Rdh-specific database contains 264 Rdh genes from only 19 genera and 6 220 

phyla (Hug et al. 2013), less than 15% of the total diversity identified by AnnoTree 221 

(Supplemental Table 1). The AnnoTree-derived dataset includes several newly predicted rdh-222 

encoding taxa discovered from metagenome-assembled genomes (Supplemental Table 2), 223 

including the candidate phyla KSB1 (4 of 6 genomes, rdh copy number = 1) and UBP10 (7 of 14 224 

genomes, rdh copy number = 1), as well as Rhodospirillales UBA2165 (rdh copy number = 13) 225 

and Acidobacterium UBA2161 (rdh copy number = 8) (Supplemental Fig. 9, Supplemental 226 

Table 2). The novel organisms with high rdh copy numbers are potential obligate organohalide 227 

respirers and may be valuable for remediation efforts. By revealing both known and potentially 228 

novel groups of organohalide respiring bacteria, the Rdh case study highlights the ability of 229 

AnnoTree to capture a broad and complete taxonomic diversity of a gene family, with 230 

accompanying hypothesis generation around the evolution and ecology of a function of interest. 231 

 232 

Discussion 233 

Ultimately, by combining functional annotation data with evolutionary data, AnnoTree provides 234 

an automated framework for users to explore the distribution of function across the bacterial tree 235 

of life. These visualizations allow users to investigate a wide variety of research questions 236 

concerning their genes and functions of interest. As starting points for future analyses, we have 237 

assessed Pfam and KO annotations based on phylogenetic conservation, homoplasy, and lineage-238 

specificity. However, while AnnoTree provides a snapshot of gene occurrence, additional 239 

sequence and phylogenetic analyses are required to validate many of these predictions. Our 240 

development team has plans to include additional functional annotation types and to provide a 241 

standalone version of AnnoTree for local use. The AnnoTree database will also be continuously 242 

and automatically updated to reflect revisions of the GTDB taxonomy as the data become 243 
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available. Future work will expand AnnoTree’s taxonomic scope to Archaea and Eukaryotes. We 244 

anticipate that AnnoTree will become a valuable resource for exploring the evolution and 245 

phylogenomic distribution of genes and functional traits across the tree of life. 246 

 247 

Methods 248 

Gene prediction, annotation, and profile generation 249 

Gene prediction was performed with Prodigal v2.6.3 (Hyatt et al. 2010) and annotated using the 250 

Pfam v27 (Finn et al. 2016) and UniRef100 (Suzek et al. 2015) (downloaded March 6, 2018) 251 

databases. Pfam protein families were identified using HMMER v3.1b1 (Eddy 2011) with model 252 

specific cutoff values for the Pfam (-cut_gc) HMMs. Pfam annotations were assigned using the 253 

same methodology as the Sanger Institute, which accounts for homologous relationships between 254 

Pfam clans (see pfam_scan.pl on the Sanger Institute FTP site). UniRef100 was used to establish 255 

KO annotations by creating a DIAMOND v0.9.22 (Buchfink et al. 2015) database consisting of 256 

all UniRef100 clusters with one or more KO identifiers. KO identifiers were then assigned to 257 

predicted genes through homology with the following criteria: E-value cutoff ≤1e-5, percent 258 

identity ≥30%, and query and subject percent alignments ≥70%. A count matrix was computed 259 

for each trait and genome combination based on the annotation methods described above. The 260 

count matrices were converted to binary presence/absence profiles for all analyses, where a 261 

genome with at least one qualifying hit score for a trait was assigned ‘1’ and ‘0’ otherwise. 262 

 263 

Web application development 264 

AnnoTree has three components: a front-end, back-end, and a MySQL database. GTDB (Parks et 265 

al. 2018) (Release 02-RS83) provides bacterial taxonomy structure data, along with the presence 266 

and absence of Pfam domains and KEGG genes in each genome assembly. Those are imported to 267 

MySQL tables. The back-end is a Python Flask application to serve REST API endpoints. It 268 

converts JSON query to SQL statements. The front-end is a single page application using 269 

modern web frameworks such as D3, React, and Mobx. The tree and summary chart is drawn 270 

using D3.js, while other UI components are encapsulated by React. Mobx is a state management 271 

engine that triggers UI update whenever state variables change. 272 

 273 
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Calculation of phylogenetic conservation  274 

The trait depth (τD) for each annotation profile on the GTDB tree was calculated using the 275 

consenTRAIT algorithm (Martiny et al. 2013) implemented in the castor R package (Louca and 276 

Doebeli 2018). A trait was classified as phylogenetically conserved if the probability of 277 

encountering a profile with such a τD or higher is less than 5% (ie. P < 0.05) based on 1000 278 

different independently- and randomly-drawn binary presence/absence profiles where the 279 

probability of a tip exhibiting the trait is equal to the proportion of positive states in the trait’s 280 

profile. 281 

 282 

Classification of lineage-specific traits 283 

Traits were classified as lineage-specific if there was at least one clade in the tree where at least 284 

95% of presence states occurred in at least 95% of the taxa in that clade and that no more than 285 

half of the genomes in the tree contained the trait. The node furthest from the root of the GTDB 286 

tree passing these criteria was assigned the root of the lineage-specific clade for that trait. The 287 

trait’s taxonomic rank was selected as the lowest identical taxonomic rank between all genomes 288 

of the lineage-specific clade. 289 

 290 

Calculation of homoplasy metrics 291 

Parsimony-based homoplasy metrics were used to quantify phylogenetic scatter of traits. The 292 

consistency index (CI) and retention index (RI) were calculated for each annotation profile with 293 

the GTDB tree using the phangorn R package (Schliep 2011). The homoplasy slope ratio (HSR) 294 

was calculated similarly with a custom script (“HSR.R” in 295 

https://bitbucket.org/doxeylab/annotree-scripts) that utilizes the algorithm described in Meier et 296 

al. (1991). The random homoplasy slope was calculated using 100 randomly-drawn 297 

presence/absence profiles with equal probability of presence and absence. 298 

 299 

Taxonomic rank homoplasy enrichment analysis 300 

Annotations contained within less than 50 genomes were removed before verifying taxonomic 301 

enrichment of homoplasic traits for each annotation type. Taxonomic rank presence/absence 302 

profiles for each trait were generated for each taxonomic rank by combining the profiles of all 303 

encompassing genomes; ‘1’ was assigned if at least one genome possessed the trait and ‘0’ 304 
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otherwise. Next, traits were ranked by increasing log[CI]/log[family_size]. Each taxonomic rank 305 

at each taxonomic level was tested for over-enrichment within the 5% most homoplasic traits in 306 

Bacteria (KO: 618; Pfam: 552) using the hypergeometric test. The tests were conducted similarly 307 

to those done by Nasir et al. (2012). P values were obtained using the fisher.test function of R 308 

with the ‘alternative’ option set to ‘greater’.  309 

 310 

The contingency table was given as follows: 311 

 Category 1 (∈ rank) Category 2 (∉ rank) 

Class 1 (∈ homoplasic trait) k n - k 

Class 2 (∉ homoplasic trait) M - k N - M - n + k 

where k is the number of unique homoplasic traits within the rank, n is the number of unique 312 

ranks that contain at least one of the homoplasic traits, M is the total number of unique traits 313 

within the rank, and N is the total number of unique traits. P values were corrected for multiple 314 

tests at each taxonomic level using the Benjamini-Hochberg method (Benjamini and Hochberg 315 

1995). 316 

Data Availability 317 

The AnnoTree application is available at http://annotree.uwaterloo.ca. All software and data used 318 

within AnnoTree can be downloaded at: http://annotree.uwaterloo.ca/downloads.html. 319 

Additional data for the genomes and taxonomy derived from the GTDB can be found at: 320 

http://gtdb.ecogenomic.org/downloads.  321 

 322 

 323 

 324 

 325 

 326 
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