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ABSTRACT 

Protein structure prediction relies on two major components, a method to generate good 
models that are close to the native structure and a scoring function that can select the good 
models. Based on the statistics from known structures in the protein data bank, a statistical 
energy function is derived to reflect the amino acid neighbourhood preferences. The 
neighbourhood of one amino acid is defined by its contacting residues, and the energy 
function is determined by the neighbhoring residue types and relative positions. A scoring 
algorithm, Nepre, has been implemented and its performance was tested with several decoy 
sets. The results show that the Nepre program can be applied in model ranking to improve the 
success rate in structure predictions. 

INTRODUCTION 

Despite the advances in protein structure determination methods, the discovery rate of new 

proteins far exceeds the speed of experimental structure determination for protein molecules. 

New proteins can be automatically discovered from high throughput genome sequencing data 

with sophisticated genome analysis tools (Bateman et al., 2015; Kim et al., 2014; Altelaar et 

al., 2013). On the other hand, the protein structure determination requires complicated 

procedures to get high quality protein samples for good experimental signals. For example, 

the targeting protein must have a reasonable expression rate to obtain sufficient amount of 

samples, which are subsequently purified, followed by the optimization of crystallization 

cocktail recipes to yield high quality crystals in the case of X-ray crystallography (Carpenter 

et al., 2008; Slabinski et al., 2007), or molecules have to be labelled using isotopes at specific 

atoms in the case of nuclear magnetic resonance (Markwick et al., 2008; Billeter et al., 2008). 

The recent breakthrough in cryogenic electron microscopy methods shines light on the 
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possibility of high throughput structure determination (Cheng, 2018). However, the 

technology is still not highly automated and requires extensive computational analysis on 

large volume of data. The limitation on experimental structure determination of protein 

molecules urges the development of protein structure prediction using computational 

modelling method. 

The protein structure prediction research has a long history, marked by the popular 

international prediction contests, the Critical Assessment of protein Structure Prediction, the 

CASP that was first organized in 1994 (Moult, 2005; Moult et al., 2018). The structure 

prediction has achieved successes in many cases and attracted numerous applications (Zhang, 

2008). In particular, the predicted structures can be combined with experimental data to 

provide more comprehensive understanding of the molecules (Nealon et al., 2017; 

Schneidman-Duhovny et al., 2012; Dos Reis et al., 2011; Latek et al., 2007; Wang and Liu, 

2017). In many cases, it is difficult to determine a high quality structure with limited 

experimental information alone. The hybrid methods that integrate structure prediction results 

and experimental data are very promising to exploit the information from both experimental 

research and computational predictions. For a structure prediction method to be successful, it 

must have two components: (1) an algorithm to generate an structure ensemble that include 

good models, i.e., at least some models in the ensemble are similar to the correct structure; 

and (2) a scoring function that can rank the generated structures, so that the good models can 

stand out from the rest. The structure ensemble for a protein, often referred to as a decoy set, 

can be generated using several computational methods. The main stream methods include 

homology modeling (Martí-Renom et al., 2000), structure threading (Lemer et al., 1995; Xu 

et al., 2010), and segments assembling (Rohl et al., 2004; Lange and Baker, 2012; Lee et al., 

2011). The advanced sampling algorithms can be applied to ensure diversity of the decoy set, 

such that the chance of sampling the best structure can be guaranteed (Lee et al., 2011). In 

this work, we focus on the scoring function that used to assess the quality and correctness of 

each generated model. 

There are two types of scoring functions, one is based on physical chemistry principles, 

represented with the force fields in molecular modeling, such as Amber or Charmm for 
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atomic models (Case et al., 2005; Brooks et al., 2009) and Martini or UNIRES for coarse 

grained models (Marrink et al., 2007; Monticelli et al., 2008; Liwo et al., 1999). The other 

type is empirical energy functions based on statistics from knowledge of experimentally 

determined structures. There has been tremendous success in applying these empirical energy 

functions to predict protein structures. One famous example is the protein main chain dihedral 

angle distributions, known as Ramachandran plot (Ramachandran and Sasisekharan, 1968), 

which is widely used for protein structure validation (Laskowski et al., 1993; Hooft et al., 

1997; Davis et al., 2004). The outstanding developments in empirical energy functions 

include DFIRE, DOPE, RW, RWplus, GOAP, etc (Zhang, 2004; Shen and Sali, 2006; Zhang 

and Zhang, 2010; Zhou and Skolnick, 2011). Inspired by these pioneer work, we developed a 

new energy function that describes the amino acid neighborhood preferences. For each of the 

20 natural amino acids, the neighboring amino acid was analyzed in detail. Specifically, the 

preference was understood using 400 (20x20) matrices that describe the relative positioning 

of any two types of amino acids. The likelihood to be neighbors for different types of amino 

acids was also counted in the implementation. First, for any two types of amino acids, the 

likelihood to be neighbors and the likelihood to be neighboring in each discretized section in 

spherical coordinate were extracted from a high resolution structure dataset. The likelihood 

distributions were converted to energy functions using Boltzmann relation, and these energy 

functions were used to evaluate the decoy structures. Based on the testing results and the 

comparison with several other structure assessment methods, we report that the neighborhood 

preference (Nepre) function is effective in ranking the decoy structures and quantifying the 

structural correctness. 

MATERIALS AND METHODS 

The native state structures of proteins are mostly stabilized by the weak interactions between 

atoms that are not covalently bonded, mostly include electrostatic or van der waal 

interactions. Although these weak interactions are nonspecific, each residue is found to have 

preferences on its neighboring residue types, especially on the nearest neighbors. 

Furthermore, the relative position of the neighboring residues are also critical for their 

packing. With this in mind, we carried out detailed statistics on the neighborhood preference 
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of each amino acid type. First, a local coordinate system was defined for each amino acid to 

describe its neighboring residue positions; secondly, the neighboring residues were mapped to 

the polar coordinates defined around the center residue; at last, every amino acid in the 

protein molecule was treated as the center residue in turn to obtain the statistics of overall 

neighborhood preference. The final statistics were obtained from a non-redundant dataset 

composed of 14,647 PDB structures, which were selected from the NCBI VAST (the vector 

alignment search tool) server with p-value=10-7 (Gibrat et al., 1996). 

Local coordinate system for each amino acid 

The local coordinate system was defined using main chain atoms of each amino acid, as 

described in an earlier work (Xiang and Liu, 2018). In brief, the X-Y plane was defined using 

the geometry center (gc) of the focusing amino acid, nitrogen atom (N), and carboxyl carbon 

atom (C). The geometry center, gc, only accounts for the non-hydrogen atoms, and is defined 

as the origin point (O) of the local coordinate system. The positive x-direction is defined as 

OàN, then the positive y-direction can be defined in the X-Y plane such that the carboxyl 

atom has a positive y coordinate. The z-direction was defined using the right-hand rule. 

The neighboring amino acids were defined based on the distances between the centers of the 

corresponding amino acid side chains. If the distance is within a given cutoff value, they are 

considered as the neighbors. Once the neighborhood is defined, the statistics is carried out 

within the cutoff, therefore, the scoring function becomes distance-independent at this level. 

We used two approaches for the distance cutoff: a universal fixed cutoff for all amino acids 

and the other one depends on the neighboring amino acid types.  

For the case of fixed cutoff, the performance of the algorithm was tested using different cutoff 

values, with rc between 4Å and 10Å. For the second case that the cutoff was determined by 

the radii of two neighboring amino acids. The radius distributions of 20 amino acids were 

studied from the same VAST structure dataset.  
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Figure 1. The schematic drawing of two neighboring amino acids. (a)The coordinate of 

amino acid B in coordinate system of amino acid A. (b) The distance between two amino acids.  

 

The statistical model for amino acid contacts in protein molecules 

The distribution function is related to the energy via the Boltzmann’s law, explicitly, the energy 

can be expressed as: 

𝑢" = −𝑘𝑇𝑙𝑜𝑔 *+,-
*./0

≈ −𝑘𝑇𝑙𝑜𝑔 2+,-
2./0

   (1) 

where the 𝑝456  and 𝑝78*  are the observed and expected probabilities in the subspace 

specified with parameters of interest. In Nepre, 𝑝456  and 𝑝78*  are defined with five 

parameters: (𝑖, 𝑗, 𝑟, 𝜃, 𝜑). While (𝑖, 𝑗) are the types of amino acids, (𝑟, 𝜃, 𝜑) represent the 

relative coordinate parameters of the latter in the former amino acid’s spherical coordinate. To 

simplify the representations, the geometric center of each amino acid is used to represent its 

location in the centerred amino acid (See Figure 2). From the structure database, the observation 

of amino acid type j in the neighbourhood of amino acid i is expressed as 𝑃456(𝑖, 𝑗, 𝑟, 𝜃, 𝜑).  

The observed probability 𝑃456(𝑖, 𝑗, 𝑟, 𝜃, 𝜑) can be expressed as: 

𝑃456(𝑖, 𝑗, 𝑟, 𝜃, 𝜑) =
2BC(D,E,F)
∑ 2BCB,C

= 2BC
∑ 2BCB,C

∗ 2BC
(D,E,F)

2BC
= 𝑝IJ ∗ 𝑝IJ(𝑟, 𝜃, 𝜑)   (2) 

The expected values of the distribution of various amino acids are uniform, which can be 
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expressed as: 

𝑃78*(𝑖, 𝑗, 𝑟, 𝜃, 𝜑) = 𝑝I ∗ 𝑝J ∗ 𝑟K𝑠𝑖𝑛𝜃∆𝑟∆𝜃∆𝜑   (3) 

According to the above derivation, we got: 

𝐸(𝑖, 𝑗, 𝑟, 𝜃, 𝜑) = −𝑘𝑇𝑙𝑜𝑔 P+,-(I,J,D,E,F)
P./0(I,J,D,E,F)

= −𝑘𝑇log T PBC
PBPC

PBC(D,E,F)

DU6IVE∆D∆E∆F 
W  (4) 

Where 𝑘  is the Boltzmann constant and 𝑇  is the temperature, (𝑟, 𝜃, 𝜑)  is the spherical 

coordinate of the amino acid 𝑗 around the amino acid 𝑖. 

For a protein with M amino acids, the energy can be expressed as: 

     (5) 

Where m is the index of the amino acid, {n} is the neighboring amino acid with the given 

cutoff value; t(x) is the function that maps the amino acid type to each amino acid. 

In the implementation of the program, the distance was integrated out as the statistics were 

carried out in the sections specified by the angles (𝜃, 𝜑) within the contacting sphere. A regular 

grid system was used to divide the sphere into 20x20 regions, with ∆𝜃 = p
KX
, 𝑎𝑛𝑑	∆𝜑 = Kp

KX
 

(because the range for 𝜃	𝑖𝑠	[0,p)	and	for	𝜑	is	[0,2p)	). Although this setup does not give an 

equal volume division, the effect can be corrected by using the appropriate probability in the 

respected volume (see equation 3).  

Testing decoy datasets 

The performance of the algorithms were tested using five published datasets: the original I-
Tasser dataset, denoted as I-Tasser(a), and four datasets generated using the 3DRobot programs, 
including I-Tasser(b), 3DRobot, Rosseta, and Modeller. The information about the datasets is 
summarized in Table 1.  

Table 1. Summary of the five decoy datasets. 

Dataset Name Protein size No. of protein 
decoy sets 

Size of each 
decoy 

Reference 

I-TASSER (a) 47-118 aa 56 400 (Zhang and 
Zhang, 2010) 

3DRobot 80-250 aa 200 (48 α-, 40 
β-, and 112 α/β-

300 (Deng et al., 
2015) 

E = E(t(m),t(n),r,θ ,ϕ )
n∈{n}
∑

m=1,M
∑
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single-domain 
proteins) 

Rosetta 50-146 aa 58 100 (Simons et al., 
1997; Deng et 
al., 2015) 

I-TASSER (b) 47-118 aa 56 400 (Zhang and 
Zhang, 2010; 
Deng et al., 
2015) 

Modeller 81-340 aa 20 200 (John and Sali, 
2003; Deng et 
al., 2015) 

The decoy structures were evaluated using the designed scoring function. Two metrics were 
used to characterize the ranking: (1) whether the native structure corresponds to the lowest 
energy; (2) the pearson correlation between the energy and the RMSD (root-mean-square-
deviation) with respect to the native structure.  

Results 

The probability of neighboring for amino acids 

The 20 natural amino acids appear in protein molecules with different abundances. The 

probability of finding a particular type of amino acid in the nonredundant dataset is summarized 

in Figure 2a, showing that the hydrophobic amino acids, such as leucine, alanine and valine, 

appear in protein molecules more frequently than others. The probabilities of observing two 

neighboring amino acids for the 20x20 pairs were also studied. Figure 2b shows the probability 

distribution for the cases with the distance cutoff value 6.0 Å. The neighborhood preference is 

quantified using the observed to expected ratio, o/e, defined as , which is 

summarized in Figure 2c. It is clear that some amino acid types have strong preferences about 

their neighbors, such as cysteine strongly prefers another cysteine in its neighborhood. This 

information is useful to quantify the packing of amino acids in protein structures, with the 

applications explained in the method section. 

p(i, j)
p(i)p( j)
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Figure 2. Probability of observing amino acid and amino acid neighbors. (a) amino acid 

abundance (normalized) in the protein dataset; (b) the probability of amino acid types that are 

neighboring in pairs; (c) the observation to expectation ratio for types of neighboring amino 

acids. 
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Location preferences of amino acids within the neighborhood 

The amino acids interact with each other in their preferred orientations, as revealed by the 

uneven distribution of one amino acid within the sphere centered at another amino acid. This 

provides additional information on top of the preferred pairing discussed in the previous section. 

In figure 3a, the distribution of glutamate acid around proline is shown in a contour map, 

indicating that the proline most likely to be in the region around (63°,144°). Cysteines have 

even stronger preferences upon their cysteine neighbors, concentrated in the region of (162°, 

270°) (Figure 3b).  

 

 
Figure 3. The distribution of amino acid in the neighborhood of each other. (a) glutamate 

acid around proline within the neighborhood of 6Å; (b) cysteine in the neighborhood of 

another cysteine. 
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The performance of Nepre 

As described in the Method section, the neighbourhood preference based scoring function 

(Nepre) has two implementations depending on the choice of neighbourhood cutoff values. One 

implementation utilizes a fixed cutoff value for all amino acid types, hereafter named as Nepre-

F; and the second implementation has cutoff values depending on the neighboring amino acid 

types, and this one is named to be Nepre-R (meaning that the cutoff value depends on the radii 

of the neighboring amino acids).  

For the case of Nepre-F, the cutoff value is critical for the neighborhood boundary. We tested 

the scoring function at various cutoff values from 4Å to 10Å for five datasets described in the 

Method section. The success rates for picking out the native states for each decoy set were 

summarized in Table 2. 

Table 2. The number of success cases with different fixed cutoffs.  

Cutoff I-TASSER(a) 3DRobot I-TASSER(b) ROSETTA Modeller 

4 Å 11/56 27/200 4/56 8/58 9/20 

5 Å 42/56 95/200 16/56 27/58 12/20 

6 Å 48/56 106/200 21/56 32/58 13/20 

7 Å 49/56 89/200 19/56 25/58 14/20 

8 Å 49/56 80/200 18/56 21/58 12/20 

9 Å 49/56 65/200 18/56 13/58 11/20 

10 Å 50/56 60/200 10/56 10/58 11/20 

The overall performance for Nepre-F is the best for the case with cutoff=6Å, where the native 

states were scored to have the lowest energy in 220 out of 390 decoy sets in total. The second 

best is with cutoff=7Å, with 196 native states picked out, followed by case with cutoff=5Å 

giving 192 native states. Based on this criterion, cutoff=6Å is an optimal choice and will be 

used as the default value for structure assessment. We also carried out analysis on the 

correlation between the scoring function and the structural difference with respect to the native 

state in each decoy (quantified using the RMSD). Very interestingly, we found that the 

correlation gets higher as the cutoff increases, with cutoff=10Å giving the best pearson 

correlation coefficient (Figure 4). Considering the ultimate goal of the scoring function is to 
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select the native (or near native) structure from decoys, we use cutoff=6Å as the default 

parameter in the following analysis. 

For the case of Nepre-R, the radii for each type of amino acid were extracted from the non-

redundant dataset. The distributions of radii for 20 amino acids were shown in the 

supplementary figure S1 and the mean values were summarized in Table 3. These values were 

used to determine the cutoff values in the neighborhood statistics for specific amino acid 

types. From the neighborhood analysis, the associated energy function was derived as in the 

case of Nepre-F. 

Table 3. The mean value of radius for each amino acid type.  

Amino Acid Type Radius(Å) Amino Acid Type Radius(Å) 

ALA 3.20 LEU 4.24 

ARG 5.60 LYS 5.02 

ASN 4.04 MET 4.47 

ASP 4.04 PHE 4.99 

CYS 3.65 PRO 3.61 

GLN 4.64 SER 3.39 

GLU 4.63 THR 3.56 

GLY 1.72 TRP 5.38 

HIS 4.73 TYR 5.36 

ILE 3.94 VAL 3.55 

 

 
Figure 4. Overall ranking quality measured using pearson correlation coefficients. The 
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distributions of pearson correlation coefficients are shown at cutoff values from 4Å to 10Å. 

 

Comparison of native structure selection using different potentials 

In Table 4, we present the recall rates and the z-scores of Nepre-R and Nepre-F on the five 
decoy datasets. Overall, Nepre-R performance is better on I-TASSER(a) and I-TASSER(b) 
datasets with lower z-scores, while Nepre-F performs better on modeller, Rosetta, and 3DRobot 
datasets. 

Table 4. The comparison of performance of Nepre-R and Nepre-F. 

Dataset I-TASSER(a) I-TASSER(b) Modeller Rosetta 3DRobot 

Nepre-R 49/56 19/56 11/20 27/58 83/200 

Z-Score -6.40 -1.75 -2.22 -2.03 -1.96 

Nepre-F 48/56 21/56 13/20 32/58 106/200 

Z-Score -5.79 -1.51 -2.48 -2.44 -2.40 

 

As it is shown in Table 5, Nepre-R and Nepre-F have advantages in recognizing the native 
structures in decoy sets (represented as the number of TOP1 selected by each scoring function). 
Meanwhile, we also compared the sensitivity of the algorithm to check the ability of the 
algorithm to narrow down the native structure in a smaller ensemble selected based on the 
energy values. The smaller ensembles are composed of 1, 5, or 10 structure(s) with lowest 
energies. We compare the sensitivity of DFIRE, DOPE, RW, RWplus, Nepre (-R and -F), the 
results are summarized in Table 5 (TOP5 and TOP10, in addition to TOP1). Two phenomena 
were observed: (1) the Nepre algorithm performs well in all decoy sets, with Nepre-F showing 
slightly better results; (2) the success rate in selecting the native structure is increased as the 
ensemble size is increased. For example, when the ensemble is composed of 10 structures with 
lowest energies, the success cases is increased from 83 to 135 for 3DRobot decoy set using 
Nepre-R, and from 106 to 151 using Nepre-F for the same dataset. The same trend was observed 
for other algorithms as well. 

Table 5. Performance comparison of different potentials. 

  DFIRE DOPE RW RWplus Nepre-R Nepre-F 

I-TASSER(a) TOP1 53/56 48/56 54/56 56/56 49/56 48/56 
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 TOP5 55/56 48/56 55/56 56/56 51/56 48/56 

 TOP10 55/56 49/56 55/56 56/56 53/56 49/56 

I-TASSER(b) TOP1 0/56 11/56 0/56 0/56 19/56 21/56 

 TOP5 2/56 25/56 1/56 2/56 27/56 29/56 

 TOP10 2/56 29/56 4/56 4/56 30/56 34/56 

Rosetta TOP1 0/58 7/58 0/58 0/58 27/58 32/58 

 TOP5 2/58 31/58 2/58 2/58 43/58 49/58 

 TOP10 5/58 43/58 8/58 8/58 52/58 53/58 

Modeller TOP1 2/20 6/20 2/20 2/20 11/20 13/20 

 TOP5 4/20 8/20 4/20 4/20 16/20 18/20 

 TOP10 6/20 10/20 6/20 7/20 17/20 18/20 

3DRobot TOP1 38/200 63/200 0/200 0/200 83/200 106/200 

 TOP5 49/200 141/200 5/200 8/200 114/200 135/200 

 TOP10 60/200 165/200 9/200 10/200 135/200 151/200 

 

Performance on CASP12 decoy datasets 

Ten structures with resolution better than 2.5 Å were selected from CASP12 experiments. The 
decoys associated to these structures are the prediction models submitted by the participating 
teams in CASP12. The results of Nepre analysis on this dataset are summarized in Table 6. 
Two implementations, Nepre-R and Nepre-F, were both tested. In general, the Nepre with the 
universal fixed cutoff=6.0Å gave better results, succeeded in selecting native structures for five 
decoy sets (indicated by the RMSD=0Å cases in the last column of table 6). In the case of 
Nepre-R, the native structures were selected in only two out of ten decoy sets. Although this 
looks less promising, we found that the selected structures, which have the lowest energy in 
each decoy set, are very close to the corresponding native structures. In seven decoy sets, the 
selected structures have RMSD values within 3Å of the native structures. Similar results were 
found for the Nepre-F analysis. This testing indicates that the Nepre algorithm is generally 
applicable to the structure predictions. 

Table 6. Performance of Nepre algorithm on 10 decoy sets in CASP12. 
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  Nepre-R Nepre-F 

No. Decoy ID Energy 
for native 
structure 

Lowest 
energy 

RMSD*  Energy 
for native 
structure 

Lowest 
energy 

RMSD* 

1 T0860 -42.34 -43.48 1.52 -43.46 -43.46 0 

2 T0864 -43.25 -61.58 21.87 -55.43 -66.59 18.41 

3 T0869 -71.49 -71.49 0 -63.75 -63.75 0 

4 T0872 -28.27 -37.49 1.76 -33.76 -35.13 1.76 

5 T0877 -41.06 -45.43 2.77 -38.02 -46.36 3.11 

6 T0878 -86.51 -100.33 35.66 -119.68 -119.68 0 

7 T0879 -72.81 -78.95 1.39 -79.43 -79.43 0 

8 T0882 -27.18 -37.87 1.64 -19.59 -27.96 1.90 

9 T0900 -27.98 -34.56 13.63 -32.81 -35.03 7.99 

10 T0912 -126.92 -126.92 0 -171.49 -171.49 0 

* the RMSD is calculated between native and selected structures that have the lowest energies. 
The successful cases in selecting the native structure in each decoy set have an RMSD=0Å, and 
they are highlighted in bold font. 

DISSCUSSIONS AND CONLCUSION 

In protein structures, amino acids exhibit preferences on their neighboring amino acids, in both 
the types and the relative positioning of the amino acids. This property was systematically 
studied from the structures determined using experimental methods. Established on the results 
of neighbourhood preference, we have developed an new algorithm, Nepre, which is shown to 
be generally applicable in structure assessment. We have tested this algorithms using five 
published decoy sets and a new decoy set composed of 10 proteins with predicted models in 
CASP12. The excellent performance of Nepre algorithm has shown its potentials in structure 
predictions. The execution time is within 3-4 seconds for proteins in the tested decoy sets, 
including the PDB file parsing. Therefore, it is feasible to integrate the Nepre algorithm in 
model generation programs to sample the desired structure ensemble. 

The Nepre algorithm was implemented in two forms, depending on the cutoff values that 
defines the neighborhood. The testing results have shown that the cutoff=6Å is an optimal 
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choice for all 20 amino acids, regardless of the amino acid types. This was proved to be true 
in the case of the CASP12 decoy sets, which were not used in the determination of the 
optimal distance cutoff values. Surprisingly, the performance is even slightly better than the 
more sophisticated case of Nepre-R, which has distance cutoff values depending the 
neighboring amino acid sizes. Intuitively, the usage of type dependent cutoff values should 
gain more precious interactions between the amino acids, and therefore should lead to better 
performance of the algorithm. While we are still uncertain about the cause for inferior 
performance compared to its peer Nepre-F (with cutoff=6Å), there are several possible 
explanations. The radius values for each amino acid were obtained from the statistics in the 
protein structures, and the average values may not reflect the neighboring relation with other 
amino acids. For example, cysteine and serine each has two peak values, and using a single 
average value will result in some misrepresentation of the neighborhood (see Supplementary 
materials). The neighborhood described in this work is at residue level, since the distance is 
measured using center-to-center distance. Using amino acid type specific distance cutoff will 
enhance this residue level feature. On the other hand, using a universal fixed cutoff may 
reduce this strong selection, and the neighborhood is more uniformly defined. There is a 
necessity to carry on a detailed analysis to resolved this question. 
 
The universal cutoff distance for the Nepre-F program was optimized by examing the 
performance of the program in five published decoy datasets. Besides this, the Nepre 
algorithm was not fine tuned in any other way. The distance dependence was considered 
during the neighborhood definition. It is reasonable to claim the Nepre algorithm is mainly 
depend on the orientation of the neighboring amino acids. The good performance of the 
algorithm indicate that the orientation is more critical for amino acids packed in a protein 
structure. 
 
In summary, the neighborhood of amino acids in protein structures were statistically 
analyzed, and the discovered preferences were quantified using the neighbhoring amino acid 
types and relative positions. The neighborhood preference was then used to assess the 
structure quality for proteins, using a program implemented as Nepre. The Nepre programs 
showed excellent performance in selecting the native (or near native) structure from structure 
decoy sets. The algorithm can be generally applied in protein structure quality assessment and 
protein structure prediction studies. The source codes for Nepre is available via 
https://github.com/LiuLab-CSRC/ or upon request to the authors. 
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Supplementary Information 

 
Figure S1. Distribution of amino acid radius. The statistics is based on the dataset composed 

of 30,000 high-resolution protein structures. The radius is defined as the largest distance 

between any atom and the geometry center of the amino acid. 

 

Figure S2. The correlation between scoring function and the structure difference 

compared to native state (measured using RMSD) for decoy set 1BYIA. 
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Table S1. Pearson coefficient on different datasets using different potentials. 

 3DRobot I-TASSER(b) ROSETTA Modeller 

DFIRE 0.810 0.754 0.769 0.776 

DOPE 0.828 0.763 0.781 0.811 

RW 0.802 0.756 0.771 0.781 

RWplus 0.801 0.756 0.769 0.783 

Nepre-R 0.767 0.647 0.691 0.769 

Nepre-F* 0.734 0.609 0.671 0.730 

* Nepre-F used cutoff=6Å in this statistics. 

Table S2. The native structure and Nepre selected decoy information for the 10 datasets 
from CASP12. 

No. Structure Native Nepre-R 

Minimum 

Nepre-F 
Minimum 

1 T0860 5fjl.pdb T0860TS313_3 T0860TS313_2 

2 T0864 5d9g.pdb T0864TS384_1 T0864TS450_2 

3 T0869 5j4a.pdb T0869TS446_4 T0869TS363_4 

4 T0872 5jmb.pdb T0872TS384_5 T0872TS384_5 

5 T0877 5nsj.pdb T0877TS467_1 T0877TS251_3 

6 T0878 5unb.pdb T0878TS450_5 T0878TS247_3 

7 T0879 5jmu.pdb T0879TS005_2 T0879TS005_5 

8 T0882 5g3q.pdb T0882TS243_1 T0882TS247_5 

9 T0900 5aot.pdb T0900TS282_3 T0900TS247_5 

10 T0912 5mqp.pdb T0912TS475_4 T0912TS411_1 
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