
LeafCutter vs. MAJIQ and comparing software in the

fast moving field of genomics

Jorge Vaquero-Garcia1,2,+, Scott Norton2,+, Yoseph Barash1,2,∗

November 7, 2018

1Department of Genetics, Perelman School of Medicine, and
2Department of Computer and Information Science, School of Engineering,

University of Pennsylvania, Philadelphia, PA, 19104, USA.
+Both authors contributed equally to this work.

∗To whom correspondence should be addressed: yosephb@upenn.edu.

Abstract1

In a recent publication, Li et al. introduced LeafCutter, a new method for detecting2

and quantifying differential splicing of RNA from RNASeq data. In this work, Li et3

al. first compared LeafCutter to existing methods, then used it for a study of splicing4

variations and sQTL analysis from a large set of GTEx samples. While the study was5

elaborate and comprehensive, we want to highlight several issues with the comparative6

analysis performed by Li et al. We argue these issues created an inaccurate and mis-7

leading representation of other tools, namely MAJIQ and rMATS. More broadly, we8

believe the points we raise regarding the comparative analysis by Li et al. are repre-9

sentative of general issues we all, as authors, editors, and reviewers, are faced with and10

must address in the current times of fast paced genomics and computational research.11

The issues we identified are all concentrated in Fig3 of Li et al. [1]. We stress these do12

not invalidate the comprehensive GTEx analysis performed by the authors, for which they13

should be congratulated. These issues relate only to the comparison to other software and14

can be summarized by the following points:15

Usage of outdated software16

Li et al. compared LeafCutter to three different algorithms for differential splicing analysis17

from RNA-Seq data: MAJIQ[2], rMATS[3] and cufflinks2[4]. Importantly, the versions of18

the software used were not stated. We found the versions used (MAJIQ 0.9.2, released19

Jan 2016, and rMATS 3.2.5) were outdated, a consequence of when the authors set up the20

comparative analysis for their paper submission on March 31st, 2017 (Li et al. personal21

communication, see supplementary for more details). Consequently, major software re-22

implementation included in rMATS 4.0 (released May 1st 2017) and MAJIQ 1.0 (released23

May 10th 2017), were not included in the Li et al. BioRxiv manuscript posted Sep 7th 2017,24

or the paper published on Dec 11th 2017. The usage of the outdated software packages led25

the authors to conclude that “the identification of differential splicing across groups in large26

studies . . . impractically slow with rMATS or MAJIQ”. To support this claim, the authors27
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plotted time and memory usage where both rMATS and MAJIQ were found to consume1

over 10GB of memory and took over 50 hours (Fig. 3b, Supplementary Fig. 3b in Li et2

al. ). However, in our testing, the May 2017 versions required only a few hundred MB of3

memory per node, similar to LeafCutter, and while MAJIQ 1.0 was still significantly slower,4

rMATS was as fast as LeafCutter (see Figure 1a).5

Reproducibility and correct execution6

In order to assess LeafCutter’s accuracy, Li et al. performed two main types of tests. In7

the first, represented by Fig3b in the published paper, Li et al. assessed the distribution of8

p-values reported by the software. For this, the authors compared two groups of RNASeq9

samples which were both comprised of equal proportions of samples from two conditions10

(tissues). As both groups included an equal mix of the same conditions the software was11

expected to produce p-values that follow the null. This figure creates the false impression,12

also stated in the main text, that MAJIQ’s output is not well calibrated. In fact, the authors13

erroneously chose to use a different output type, the posterior probability for a predefined14

magnitude of inclusion change C (denoted P (∆Ψ > C)), as a proxy for p-values. This usage15

is wrong as p-values are derived from a null model, which is not used by MAJIQ. Instead,16

as evident by the shape of graph, the posterior probability produced by MAJIQ can be17

thought of as a soft proxy to a step function. Such an ideal step function would assign all18

the true ∆Ψ > C with probability 1 and assign probability 0 to the rest. Furthermore,19

when we perform such a test to assess putative false positives using GTEx samples and the20

setup discussed below, we find MAJIQ protected from false positives significantly better21

than LeafCutter (Figure 1b).22

The second measure of performance employed by Li et al. is a receiver operating charac-23

teristic (ROC) curve, assessing the accuracy of calling differential splicing from synthetically24

generated RNASeq data. The authors use this analysis to conclude MAJIQ severely under-25

performs in any but the most extreme cases. This analysis seemed incorrect to us since26

the graphs show MAJIQ is not able to retrieve many events (MAJIQ’s purple line satu-27

rates quickly, see Figure 1c). As the data and scripts were not available at publication, we28

contacted the authors for this information and were able to repeat the analyses. We found29

the authors did not use MAJIQ as intended based on the users manual and analysis in30

[2, 5]: In order to plot such ROC curves one needs to rank events by the absolute expected31

inclusion change (|E[∆Ψ]|) and have all events reported. Reporting all events is done using32

the --show-all flag. Running the pipeline supplied to us by Li et al. and superimposing33

the results on the original graphs, we find there is no significant difference in this test be-34

tween LeafCutter and MAJIQ (Figure 1c, blue line). However, as we detail below, in more35

realistic synthetic data as well as real data, we find MAJIQ outperforms both LeafCutter36

and rMATS by a variety of metrics.37

Realistic evaluation metrics38

We found the synthetic data used to evaluate the software to be unrealistic. Among the39

things we noted are the use of uniform expression of isoforms, spiking a single isoform’s40

expression level which does not translate to any specific splicing change (∆Ψ), using a fixed41

number (5) of isoforms per gene in the scripts we were supplied with, usage of only a small42

non-random set of 200 genes, and avoiding fluctuations between individuals. The last point43
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is especially relevant given the heterogeneous nature of the GTEx dataset. The Li et al.1

analysis also avoided any PSI or isoform specific measures of accuracy and instead assessed2

ROC at the gene level (spiked yes/no). In what we consider to be more realistic synthetic3

data mimicking biological replicates, and produced using the procedure described in [5], we4

find MAJIQ outperforms LeafCutter (see Figure 1d). A more complete description of the5

issues we found in the synthetic data can be found in the supplementary material.6

A metric we found missing was reproducibility of the identified significantly changing7

events when biological replicates are used to repeat the analysis. Here too we found MA-8

JIQ’s results to be significantly more reproducible then LeafCutter’s: when using two groups9

of GTEx cerebellum and skeletal muscle samples, MAJIQ achieved consistently higher re-10

producibility irrespective of the number of events reported (Figure 1e). MAJIQ’s improved11

reproducibility was maintained when using biological replicates (data not shown) and when12

restricting LeafCutter to use a more conservative additional filter of |∆Ψ| > 20% (compare13

light and dark orange lines in see Figure 1b,d). This additional filter is similar to MA-14

JIQ’s settings and commonly used in the RNA Biology field for defining significant splicing15

changes.16

The evaluations in the Li et al. analysis also did not include any experimental validation17

or accuracy measure by RT-PCR. While RT-PCR can suffer from biases as well, careful18

execution in triplicates is considered the golden standard in the RNA field. To make those19

accessible, we and others have made datasets of such experiments readily available online20

[2, 5]. Using those datasets, we found LeafCutter to be significantly less accurate when com-21

pared to MAJIQ (R2 0.821 vs 0.936 in Figure 1f) and when compared to rMATS. Moreover,22

we believe these results highlight an inherent issue in LeafCutters output: while useful for23

sQTL detection (the use case for which LeafCutter was originally designed for), LeafCutters24

cluster of introns are a mathematical construction. The clusters do not correspond directly25

to a biological entity or to ratios of isoforms which necessarily add up to one. As such, it26

is not clear how LeafCutter’s output should be translated to actual inclusion values, or be27

used for primer design.28

Finally, there are several important elements of LeafCutter which were not discussed in29

the Li et al. comparative analysis. Those include the limited granularity of intron clusters,30

which can cover large portions of genes (see number of events reported in Figure 1d as a31

crude indication of this issue), and the fact that intron retention (IR) is not modeled by32

LeafCutter. The latter has been shown to be of particular importance in the brain, a focus33

of Li et al. s analysis. For example, in a preliminary analysis of brain GTEx samples we34

found almost 10% of the differentially spliced events to involve differential IR (data not35

shown).36

Conclusions37

In conclusion, our evaluation supports the Li et al. assertion that LeafCutter is an efficient38

method for differential splicing and particularly sQTL analysis, for which it was originally39

constructed. We note that our analysis does not imply purposeful misrepresentation of com-40

peting software (see time-line in supplementary), nor does it invalidate the comprehensive41

analysis of GTEx samples performed by the authors. Nonetheless, we conclude that Li et al.42

misrepresented other software and their relative performance, namely rMATS and MAJIQ.43

This misrepresentation was a result of using outdated software, lack of proper documenta-44

tion (software versions, scripts), incorrect usage, and what we view as lacking evaluation45
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f

a b

c

e

d #Events Sens Spec FDR FNR

MAJIQ 15583 0.83 1.00 0.01 0.17

LeafCutter 2462 0.93 0.87 0.21 0.07
LeafCutter w. 
|ΔΨ| ≥20%

2462 0.79 0.99 0.02 0.21

rMATS 6290 0.48 0.99 0.22 0.52

Figure 1: Comparative evaluation. (a) Running time for each algorithm, when comparing groups of
different sizes. (b) The Intra to Inter Ratio (IIR) when using 3−7 GTEx per tissue group (skeletal muscle).
The IIR, serving as a proxy for false discovery, represents the ratio between the number of differential events
reported when comparing biological replicates of the same tissue (putative false positives), and the number
of events reported when comparing similarly sized groups but from different conditions (here skeletal muscle
and cerebellum, see main text and supplementary for details). (c) The original ROC plots from Li et al.
for evaluating each method’s accuracy, with the correct execution of MAJIQ superimposed on them (blue
line). The blue line was derived using scripts supplied by Li et al. for their data generation. (d) Evaluation
using “realistic” synthetic datasets: each synthetic sample is created to match a real sample in terms of gene
expression and a lower bound on transcriptome complexity. This simulation does involve de-novo events
which are not captured by rMATS or intron retention (not modeled by LeafCutter). All datasets involve 3
biological replicates per group. Each method was evaluated using its own definition of alternative splicing
events, so events are not directly comparable between methods. Positive events were defined as those with
(|E[∆Ψ]| ≥ 20%), and negative events were defined as those with a small difference between the groups of
(|E[∆Ψ]| ≤ 5%). (e) Reproducibility ratio (RR) plots for differentially spliced events between cerebellum
and heart GTEx samples (n = 5 per group, as in Li et al. ). The end of the line marks the point in
the graph matching the number of events reported as significantly changing (RR(NA), see main text and
supplementary). Events detected are not directly comparable as each algorithm uses a different definition
for splicing events. (f) Evaluation of accuracy using RT-PCR experiments from [2]. Both algorithms were
used to quantify Ψ using RNA-seq from [6] and RNA from matching Liver tissue was used for validation.
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criteria.1

Nature Research journals have been strong advocates for reproducible science (cf [7, 8].2

We believe that adherence to relevant reproducibility guidelines could have helped prevent3

many of the issues we identified. But beyond the need to follow reproducibility guidelines,4

other important questions arise. For example, what evaluation criteria should we use?5

Which software version should we run? What happens if a competing software is updated6

during a review? Are we obliged to change the manuscript then? Are we also obliged to7

address pre-prints? Should reviewers be allowed to use pre-prints to scrutinize a manuscript8

or a grant application? Can authors use pre-prints to base their scientific claims in other9

papers? And what is the role of the editor in such cases? We found ourselves struggling10

with those questions ourselves. For example, we faced reviewers of grants and papers which11

scrutinized our and collaborators work based on this inaccurate representation of MAJIQ,12

even when it was only a pre-print. We published improvements to the MAJIQ algorithm,13

which was released as a pre-print back in January 2017, but we choose not to discuss14

algorithmic enhancements here, as it was only formally published on December 2017. As15

another example, during the preparation of our Norton et al. manuscript [5], competing16

methods released updates. We decided to delay submission, rerun all comparative analyses,17

and consequently removed specific claims. How should such software changes be handled18

by reviewers and editors? As it stands, we are painfully aware that MAJIQ itself represents19

a moving target as it is actively being developed. For example, the current version (1.1,20

released March 1st 2018) is much faster than the previous 1.0 release, and the new version21

(MAJIQ 2.0, manuscript in preparation) compares well in running time to LeafCutter while22

still retaining MAJIQs added features (see Figure 1a). Consequently, we found even more23

recently published splicing analysis methods such as SUPPA2[9] and Whippet[10] also used24

outdated MAJIQ software (ver 0.9, released Feb 2016) or did not report versions. Such25

situations of constantly evolving software is not uncommon in genomics, with methods such26

as rMATS[11, 3], Salmon[12], EdgeR[13], and DESeq[14, 15] serving as good examples. In27

such settings, the decision on which version to use (and documenting it) can critically affect28

results.29

Finally, we want to point out an important take home message for our community. In30

this fast moving field of genomics, with evolving standards and procedures, mistakes are31

bound to happen even as we strive to minimize them. The question, then, is how do we32

handle mistakes? In preparing this response, we found the online discussion around the33

MAJIQ vs LeafCutter analysis, including personal communications with the authors, to all34

be helpful and constructive. The authors responded to our queries and supplied their scripts;35

other researchers even suggested to use this case to write a guide for software comparisons.36

We believe this sort of constructive response sets an excellent example, and hope we as a37

community will keep this positive approach in the future for the benefit of all.38

Addendum39

• We would like to thank Li et al. for their email correspondence, supplying their original40

scripts, providing feedback to this manuscript and sending us the time-line included41

in the supplementary information.42

• All scripts and data used to generate the results presented here are available at: https:43

//bitbucket.org/biociphers/vaquero_norton_2018/44

• Competing Interests: The authors declare that they have no competing financial in-45

terests.46

5

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2018. ; https://doi.org/10.1101/463927doi: bioRxiv preprint 

https://doi.org/10.1101/463927
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Information1

Tool use2

All the tools used were the last version found by the authors on August 2018, specifically3

rMATS 4.0.3 and Leafcutter v0.2.7-18-g7ad3ee1 (hash:7ad3ee1eba7a9bf6783f24b4a5b4b8f6aac91c9c).4

Running times reported are based on a 32-core Centos 7 machine with 64 GB.5

All the runs are done using each software provided options for multiprocessing/multithreading6

set to 16. This is achieved using rMATS options –nthreads and –tstats; Leafcutter option -p;7

and MAJIQ –nthreads or -j. Figure 1a reports execution time, calculated as time from start8

with bam files to producing each tool’s output. This means human readable text files for the9

three tools, with default parameters except for the threading options explained before. We10

also made the following simplifying assumptions in favor of the tools we compared against.11

First, we assumed an ideal execution framework for leafcutter, where a user was able to12

perfectly parallelize the supplied bam2junc.sh, which does not include parallelization, into13

parallel execution of 16 files without any computational overhead, i.e., 1/16th time of a sin-14

gle thread execution. We also note that the amount of information provided by each tools15

is different since Leafcutter doesn’t quantify intron retention and rMATS denovo detection16

is limited to known introns and exons. Still, we did not remove de-novo from MAJIQ and17

ran it with regular settings.18

All the execution scripts used on this work will be available publicly upon publication.19

Software and manuscript time-line20

The following time line, supplied to us by Li et al. , documents the times in which software21

and manuscripts were posted:22

• Feb 1, 2016: MAJIQ paper comes out in eLife, MAJIQ version 0.9.1.23

• March 16, 2016: First LeafCutter manuscript posted on bioRxiv. It does not include24

accuracy analysis compared to other software.25

• April 13, 2016: LeafCutter manuscript rejected without review.26

• April 29, 2016: Large scale LeafCutter based sQTL analysis published [16].27

• March 31, 2017: LeafCutter manuscript submitted to Nature Genetics including ac-28

curacy analysis compared to MAJIQ and rMATS.29

• May 1, 2017: rMATS-turbo, is released as a Docker installation.30

• May 10, 2017: MAJIQ 1.0 released.31

• September 7, 2017: Updated LeafCutter manuscript posted on bioRxiv, including32

comparative analysis.33

• November 15, 2017: rMATS-turbo released as v.4.0.1 (non Docker installation).34

• December 11, 2017: Blog post, with an initial examination of potential issues with the35

comparative analyses in the LeafCutter’s BioRxiv preprint, is posted [17].36

• December 11, 2017: LeafCutter manuscript published in Nature Genetics.37

• May 17, 2018: MAJIQ 1.1.3 released.38
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Synthetic data1

We found several aspects of the synthetic data used in Li et al. to be unrealistic or limiting.2

Specifically:3

1. Gene set: The set of genes selected for the analysis was small (200) and nonrandom4

(the first on chromosome 1).5

2. Gene isoform number and consequent transcriptome complexity: In the scripts we6

were given by the authors each gene got exactly 5 isoforms.7

3. Gene expression levels: The expression levels were not made to mimic those observed8

in real data (GTEx).9

4. Relative expression levels of isoforms: The authors chose to set all isoforms to the same10

expression level, except a single isoform which was “spiked” at varying expression folds11

(1.1, 1.25, 1.5, 3, 5). In real data, however, the distribution across isoforms is highly12

skewed [18], resulting in typically few dominant isoforms. Consequently, the observed13

inclusion level, or Ψ, in binary events has a typical ”U” shape (see for example,14

supplementary figure 1 in [11] for a good illustration of that across 16 human tissues).15

MAJIQ utilizes this as a prior over Ψ as part of its model.16

5. Spiked expression changes do not translate directly to splicing changes: Both MAJIQ17

and rMATS have been designed to detect changes in splicing at a predefined level18

(e.g., 20% change, or ∆Ψ = 0.2). Thus, one would expect their evaluation in an19

ROC to be based on positive and negative cases that meet that criteria. However, the20

testing shown in Figure 1c is not based on such labels and therefore does not capture21

true sensitivity and specificity for these algorithms. Furthermore, there is no clear22

way to translate spiked expression to changes in inclusion levels. For example, let us23

consider a change of 10% in the expression of one of the isoforms. In the best case24

scenario, an isoform whose expression is changed is solely responsible for the inclusion25

of a specific junction (we note this is not guaranteed by the procedure employed by Li26

et al. ). In such a case, assuming the expression of all other isoforms amounts to Y ,27

then ∆Ψ = 1.1X
1.1X+Y −

X
X+Y . Thus, in the best case scenario under Li et al. setup with28

1.1X expression spiking and using 5 equally expressed isoforms we get ∆Ψ ∼ 0.016. If29

the distribution of isoforms across the junctions is different, this can be easily smaller.30

It is true one can still rank events by their estimated ∆Ψ (this was not done for31

MAJIQ) but we hold the test is still not reflective of the positive or negative labels by32

∆Ψ which MAJIQ and rMATS are designed to capture, i.e., quantitative changes in33

splicing.34

6. Limited fluctuations of inclusion between replicates and non replicates: In real data,35

the observed inclusion levels are expected to naturally vary between individuals. This36

is true for biological replicates and even more so for heterogeneous data such as GTEx37

where a set of tissue samples come from different donors. Figure 3) illustrates the38

fluctuations of inclusions levels in biological replicates (blue), GTEx samples (green),39

and Li et al. synthetic data (red).40

The synthetic data we employed, originally used in [5], was developed to mimic biological41

replicates (Figure 3, orange). In this data, the expression levels and transcriptome variations42

for over 3000 genes were simulated (Figure 3, orange) to match real samples from [19]43
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Figure 2: Local Splicing Variations (LSV). Exons are blue, splicing events are black edges.
The LSV formulation we developed captures the classical, binary, AS events involving two
alternative junctions (top) but also more complex (non binary) splicing variations and effects
of alternative gene start/end (bottom).

(Figure 3, blue). We used the most complex splicing event we can find for each gene based1

on reliably-detected (multiple reads in multiple positions) junction-spanning reads by STAR2

[20]. This enabled us to define a lower bound on each gene transcriptome complexity. The3

expression level of each isoform to be simulated was set by the genes overall FPKM and the4

raw junction-spanning read ratios in the real sample to avoid biasing estimations towards5

any specific algorithm. This allowed us to simulate not just cassette exons or binary events6

but also complex variations, which both MAJIQ and LeafCutter are geared to capture.7

Simulated data was generated by our colleague Dr. Greg Grant using BEERS [21]. More8

details can be found in [5].9

Real data10

Reproducibility plots (RR)11

RR plots as those shown in Figure 1f follow a similar procedure to that of irreproducible dis-12

covery rate (IDR) plots[22], used extensively to evaluate ChIP-seq peak callers [23]. Briefly,13

we ask the following simple question: Given an algorithm A and a dataset D, if you rank14

all the events that algorithm A identifies as differentially spliced 1 . . . NA, how many would15

be reproduced if you repeat this with dataset D, comprised of similar experiments using16

biological/technical replicates? The RR(n) plot, as shown in Figure 1e, is the fraction of17

those events that are reproduced (y-axis) as a function of n ≤ NA (x-axis), with the overall18

reproducibility of differentially spliced events expressed as RR(NA) (far right point of each19

graph in Figure 1f). Briefly, for rMATS and LeafCutter events reported as differentially20

spliced were ranked by their associated p-value with a cut-off of 0.05 as in Li et al. and21
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Figure 3: IIR for GTEx samples from cerebellum. Analysis is equivalent to that used for
skeletal muscle samples in Figure 1

recommended by authors. We also tested adding an additional filtering step of |∆Ψ| ≥ 0.21

to make selection criteria closer to what is applied by default to MAJIQ (see main text).2

For MAJIQ, differentially spliced events were filtered for high confidence using a posterior3

threshold P (|∆Ψ| ≥ 0.2) ≥ 0.95 and ranked by |E[∆Ψ] ≥ 0.2|. A more detailed description4

of RR can be found in [2, 5].5

Intra to Inter Ratio (IIR)6

Reproducibility alone is not sufficient to establish accuracy. For example, an algorithm7

can be extremely reproducible but highly biased. To get a better sense of possible levels8

of false positives, we devised the following test: We compare similarly-sized groups of the9

same condition (e.g. brain vs. brain or liver vs. liver) and compute the ratio between the10

number of events identified as significantly changing in such a setting (NPFP ) to the number11

of events identified between the groups of different conditions (NA, e.g. brain vs. liver).12

We term this the intra to inter ratio (IIR = NPFP

NA
), as intuitively it computes the ratio13

between the number of events identified as different when comparing groups that share the14

same label or condition (intra) and similarly sized groups of different conditions (inter). We15

note the intra set are not necessarily false positives, but we consider them as putative false16

positives (PFP) with respect to the change we are interested in between conditions. More17
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Figure 4: Additional evaluation using RT-PCR. Here RT-PCR experiments from [2]
were used to assess LeafCutter (left) and MAJIQ (right) inclusion level (Ψ) quantification.
Both algorithms were used to quantify Ψ using RNA-seq from [6] and RNA from matching
Cerebellum tissue was used for validation. The set of events shown here were selected to be
binary (involving only two alternative junctions), known (both junctions annotated in the
transcriptome), and differentially spliced between mouse cerebellum and liver (see [2] for
details).

details can be found in [5]. Notably, the IIR test is similar to the one used by Li et al. to1

assess false positives (Fig3b in [1]). In their test setting, aiming to assess FDR, Li et al.2

mix the samples such that the condition of interest are balanced between the two groups3

(e.g., 3 liver and 3 brain samples vs another set of 3 liver and 3 brains).4

RT-PCR5

While the above tests are important and informative, these are focused on detecting splicing6

changes (∆Ψ) and do not address the question of how accurate the actual inclusion levels, or7

Ψ, quantified by the algorithm. This is particularly relevant for the analysis in Li et al. for8

sQTL, as this is done using Ψ in each sample and not ∆Ψ between groups. Moreover, the9

manuscript did not include experimental validations or independent measure of accuracy.10

For this, RT-PCR experiments are considered the gold standard in the RNA field. We11

note that RT-PCR experiments are not free of potential pitfalls and biases. For example,12

many available RT-PCR from publications may include quantitative values for Ψ but were13

only designed to be used qualitatively (i.e. change vs no change). The events selected for14

RT-PCR validation can be highly biased (e.g. only cassette exons), and naturally these are15

limited throughput experiments. Nonetheless, we assert that including carefully executed16

RT-PCR is important for methods that make strong claims about splicing quantification,17

and such datasets have been made available by us and others [2, 5] - see Figure 1g and18

Figure 4 for comparative analysis of LeafCutter, MAJIQ, and rMATS based on those. The19

events shown here were pre-selected to be classical cassette events which exhibit a clear20

change between tissues to enable comparison of MAJIQ and rMATS in [2].21

10
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