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Motivation: By testing for association of DNA genotypes with gene expression levels, expression quantitative trait locus 
(eQTL) analyses have been instrumental in understanding how thousands of single nucleotide variants (SNVs) may affect gene 
expression. As compared to DNA genotypes, RNA genetic variation represents a phenotypic trait that reflects the actual allele 
content of the studied system. RNA genetic variation can be measured at expressed genome regions, and differs from the 
DNA genotype in sites subjected to regulatory forces. Therefore, assessment of correlation between RNA genetic variation 
and gene expression can reveal regulatory genomic relationships in addition to eQTLs.  
Results: We introduce ReQTL, an eQTL modification which substitutes the DNA allele count for the variant allele frequency 
(VAF) at expressed SNV loci in the transcriptome. We exemplify the method on sets of RNA-sequencing data from human 
tissues obtained though the Genotype-Tissue Expression Project (GTEx) and demonstrate that ReQTL analyses show con-
sistently high performance and sufficient power to identify both previously known and novel molecular associations. The ma-
jority of the SNVs implicated in significant cis-ReQTLs identified by our analysis were previously reported as significant cis-
eQTL loci. Notably, trans ReQTL loci in our data were substantially enriched in RNA-editing sites. In summary, ReQTL analyses 
are computationally feasible and do not require matched DNA data, hence they have a high potential to facilitate the discovery 
of novel molecular interactions through exploration of the increasingly accessible RNA-sequencing datasets.  
Availability and implementation: Sample scripts used in our ReQTL analyses are available with the Supplementary 
Material (ReQTL_sample_code). 
Contact: horvatha@gwu.edu or lfspurr@gwmail.gwu.edu 
Supplementary Information: Re_QTL_Supplementary_Data.zip 

1. Introduction 
Quantitative trait loci (QTL)-based approaches have served as a 
major tool to uncover genetic variants regulating phenotypic fea-
tures. In recent years, QTL approaches have been successfully ap-
plied to a variety of molecular traits, including gene expression 
(eQTL), splicing (sQTL), protein expression (pQTL), methylation 
(meQTL), chromatin accessibility (chQTL/caQTL) and histone 
modification (hQTL/cQTL) (Albert and Kruglyak, 2015; Atak et 
al., 2013; Aguet et al., 2017a; Weiser et al., 2014; Li et al., 2015; 
Brandt and Lappalainen, 2017; Odhams et al., 2017; Ko et al., 
2017; Winter et al., 2018; Heinig, 2018; De Almeida et al., 2018). 
To correlate genetic variants with the trait of choice, all these 
methods utilize the genotypes obtained through DNA analysis for 
each SNV locus.  

Compared to DNA, RNA molecules carry and present genetic 
variation in a related yet distinct manner, where the differences re-
flect regulatory or selective forces. The two most common mecha-
nisms causing differences between DNA and RNA alleles at SNV 
loci are allele specific expression (ASE) and RNA editing. ASE re-
sults in asymmetric RNA content derived from two chromosomes, 
and is frequently caused by cis-acting genetic variants affecting the 
function, structure, stability, or the speed of transcription of the RNA 
molecule (Chess, 2016). RNA editing is a post-transcriptional mod-
ification, which, similarly to the allele-specific expression, can re-
sult in different RNA function, stability, or sequence, including pro-
tein altering changes and motifs recognizable by RNA-binding mol-
ecules(Eisenberg and Erez Y. Levanon, 2018; Guo et al., 2018). 
Therefore, assessment of correlation between RNA genetic variation 
and gene expression can reveal molecular relationships in addition 
to those identifiable through eQTLs using genotypes. Moreover, 
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RNA genetic variation represents a phenotypic trait that reflects the 
actual allele content of the studied system. 

For diploid genomes, a commonly used measure for the RNA 
genetic variation is the expressed variant allele frequency, VAFRNA, 
which can be estimated from the RNA-sequencing data (VAFRNA = 
nvar / (nvar + nref)), where nvar and nref, are the variant and reference 
read counts (29267927). In contrast to the categorical DNA-allele 
count of 0, 1 and 2, VAFRNA is a continuous measure, which allows 
for precise allele quantitation. Furthermore, as compared to DNA 
genotypes, VAFRNA reflects allele-level expression regulation, in-
cluding imprinting, expression regulation mediated by RNA-
binding molecules, and RNA-editing.  

Herein, we propose a method to assess variation-expression re-
lationships based on VAFRNA-derived information on genetic varia-
tion; we term the method ReQTL (RNA-eQTL). We have based our 
model on the underlying assumption of eQTLs: if a given variant 
affects the expression of a given gene, the expression of this gene 
scales with the number of alleles harboring the variant of interest. 
This assumption intuitively implies both DNA-mediated effects 
(i.e., effects mediated via DNA-binding molecules), and effects re-
sulting from solely RNA-mediated interactions. For the majority of 
the expressed SNV positions, the RNA-transcription is expected to 
scale with the DNA-allele count. Hence, ReQTL analysis captures 
both DNA-defined variation-expression correlations, and RNA-
exclusive variation-expression relationships such as those involving 
RNA editing. ReQTL analyses can be run directly on eQTL-built 
computational platforms. The proposed pipeline (Figure 1) employs 
publicly available packages for processing of sequencing data, and 

sample code for our ReQTL-specific data transformation is available 
in the Supplementary Files (ReQTL_sample_code). We exemplify 
ReQTL analysis using the popular software Matrix eQTL (Shabalin, 
2012) on RNA-sequencing data obtained from the Genotype-Tissue 
Expression (GTEx) project (www.gtexportal.org, phs000424.v7), 
from three different tissue types: Nerve-Tibial, Skin-Sun-Exposed 
(lower leg), and Skin-Not-Sun-Exposed (suprapubic). We identify 
both common and tissue-specific ReQTLs, as well as both known 
and novel molecular relationships. In our data, trans-ReQTLs were 
significantly enriched in RNA-editing sites.  

 
 

2. Methods 

2.1. Samples 
A total of 772 raw RNA-sequencing datasets from three different 
body sites – Nerve–Tibial (238 samples), Skin-Sun-Exposed, lower 
leg (286 samples), and Skin-Not-Sun-Exposed, suprapubic (248 
samples) - were downloaded on 06/10/18 from the Database of Gen-
otypes and Phenotypes (dbGaP, https://www.ncbi.nlm.nih.gov/gap). 
All the libraries were generated using non-strand specific, polyA-
based Illumina TruSeq protocol, and sequenced to a median depth 
of 78 million 76-bp paired-end reads. The selection of tissue types 
was based on the availability of more than 200 samples, and consid-
eration for assessment of both distinct (Nerve vs Skin) and related 
(Skin-Sun-Exposed vs Skin-Not-Sun-Exposed) tissue types.  

 
2.2. Data processing 
RNA-sequencing reads were aligned to the latest release of the hu-
man reference genome (hg38/GRCh38, Dec 2013) using HISAT2 
(version 2.1.0) with an SNV-aware index covering over 12 million 
SNPs (Kim et al., 2015). SNV-aware alignment is recommended to 
avoid mapping bias in the computation of the allele frequency. On 
the aligned RNA sequencing reads, we called variants using GATK 
(version 4.0.8.0) and retained positions in the genome reference in-
dex with high quality calls in the individual samples (QUAL>100, 
MQ>55 for further analysis (Van der Auwera et al., 2013).  

Within each tissue type, we combined the SNVs called across 
all samples into a list of unique SNV positions. We then estimated 
nvar and nref, and computed VAFRNA for each of the positions in the 
list in each of the individual samples. To do that, we used the module 
readCounts previously developed in our lab 
(http://github.com/HorvathLab/NGS/tree/master/readCounts, 
(Movassagh et al., 2016). Briefly, readCounts employs the pysam 
Python module to assess the read counts at every SNV position of 
interest in each of the alignments (samples) from a studied group 
(i.e. tissue). ReadCounts then filters aligned reads based on align-
ment quality metrics including length, gaps and mapping quality, 
and tallies the remaining reads as having the expected reference or 
variant nucleotides. Importantly, for ReQTL analyses, we retained 
only positions covered by a minimum of 10 total sequencing reads 
in all of the samples from a studied group. Additionally, we excluded 
variants with a monoallelic or missing signal in more than 80% of 
the samples from a given tissue. 

Gene expression 
(i.e. TPM) 

SNV (loci) 
positions list 

Read counts 
VAFRNA 

Gene 
Expression matrix 

build_gene-exp_matrix.R 

readCounts.py 

ReQTLs 
RNA-seq data 
(SNV-aware 
alignments) 

build_VAF_matrix.R 

run_matrix_ReQTL.R 
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build_cov_matrix.R 
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Figure 1. Major steps of the ReQTL analyses (differences from eQTL 
analysis are outlined in red). SNV-aware alignments are used to generate 
gene-expression data; TPM values are quantile transformed and used to 
generate gene-expression matrix (exemplified by build_gene-exp_ma-
trix.R). Lists of genomic positions can be built using any custom set of 
positions of interest (i.e., dbSNP). Alternatively, lists of genomic posi-
tions can be generated through variant call and subsequent retainment of 
the unique variant genomic loci across the sample set. At each genomic 
position in the list, the reference and variant number of RNA-sequencing 
reads are counted from the alignments and used to estimate VAFRNA in 
each individual sample from the set (readCounts.py from our lab’s read-
Counts package). The VAFRNA estimations are used to build VAF matrix 
(exemplified by build_VAF_matrix.R). Covariates can be accounted for 
by using approaches similar to the ones used in eQTL analyses (exem-
plified by build_cov_matrix.R). The three matrices are then used as input 
for Matrix eQTL (exemplified by run_matrix_ReQTL.R). 
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Gene expression was estimated from the alignments using 
Stringtie (version 1.3.4.) (Kim et al., 2015), and TPM (transcripts 
per million) values were used for the ReQTL estimation. 
Pseudogenes were identified based on ensemble annotations 
(https://useast.ensembl.org/info/data/biomart/index.html), and ex-
cluded from the analysis. Furthermore, within each tissue, we fil-
tered out genes with TPM value < 1 in more than 80% of the sam-
ples. The TPM distribution was quantile-transformed using the av-
erage empirical distribution observed across all samples in the cor-
responding tissue (Aguet et al., 2017a). For each gene, the TPM val-
ues were transformed to the quantiles of the standard normal distri-
bution. The effects of unobserved confounding variables on gene ex-
pression were quantified using probabilistic estimation of expres-
sion residuals (PEER), with 25 PEER factors (Stegle et al., 2012).  
 
3. Results 
3.1. ReQTL analysis 
We performed the ReQTL analyses separately for the three tissues, 
using a linear regression model as implemented in the package Ma-
trix eQTL (Shabalin, 2012). To account for covariates, we corrected 
for the top 25 PEER factors (Stegle et al., 2012), reported age, race, 
sex, and the top ten VAFRNA principal components (PCs). Lists of 
loci were generated based on the combined variation call in each 
tissue, after filtering for quality and frequency of the variant in the 
studied group. To be considered cis-ReQTL, a variant was required 
to reside within 1Mb (megabase) of the transcription start site of a 
gene. We retained for further analysis significant associations (FDR 
< 0.05) with a strong positive or negative correlation (Spearman's 
rank correlation coefficient r > 0.3 or r < -0.3).  
3.2. Overall findings 
Under the described settings, we identified 21,371 cis- and 2,280 
trans-SNV loci implicated in ReQTLs using a significance level of 
FDR < 0.05 across the three tissues (Supplementary Tables 2 and 3, 
respectively). These SNVs participated in a total of 31,301 cis- and 

17,800 trans-correlations (Supplementary Tables 4 and 5, respec-
tively) with 4712 and 1842 unique cis- and trans-regulated genes 
(Supplementary Tables 6 and 7, respectively). Similar to the eQTL 
analyses, a high proportion of the effects were tissue-specific, with 
substantially higher overlap between the two related tissues (Skin-
Sun-Exposed and Skin-Not-Sun-Exposed) and higher tissue speci-
ficity in the trans- (as compared to cis-) ReQTLs (Figure 2a). Quan-
tile-quantile (QQ) plots are presented on Figure 2b. 

 
We observed three distinct correlation patterns (Figure 3). First, 

a substantial proportion of the correlation plots identified a pattern 
similar to an eQTL plot (Figure 3a). For these patterns, the VAFRNA 

Figure 2. a. Tissue-specific and shared ReQTL correlations in cis (left) 
and trans (right) correlations between tissues. As expected, substantially 
higher overlap is seen in the cis- correlations. b. Quantile-quantile plot 
of –log10 p-values for local and distal ReQTLs in the three tissue types. 
To be considered a cis-correlation, an SNV and the transcription starting 
site of a gene needed to be within 10e6 bases. Similar to the eQTLs, 
higher numbers of significant correlations were found in cis-mode.  
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Figure 3. Correlation 
patterns identified by 
ReQTL analyses. a. 
eQTL-like patterns were 
seen in a large number of 
the correlations that 
overlap with significant 
eQTLs. b. A proportion 
of correlations show 
plots with non-extreme 
VAFRNA values spread 
along the linear regres-
sion line, and VAFRNA of 
0 or 1 similar to the first 
pattern. c. A characteris-
tic plot pattern with most 
of the VAFRNA values 
spread along the linear 
regression line and few 
VAFRNA values of 0 and 
1; these patterns were 
seen in the majority of 
the trans-ReQTL corre-
lations. 
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distribution appears to reflect to a large extent the genotype distri-
bution. This type of correlation is likely to be explained by mecha-
nisms similar to those underlying the eQTLs. The second type of 
pattern was related to the first, with VAFRNA values of 0 or 1 corre-
sponding to homozygous genotypes, and intermediate VAFRNA val-
ues spread along the linear regression line (Figure 3b). These corre-
lations are likely to reflect quantitative effects of variants on gene 
expression, where discrete increase/decrease in the frequency of par-
ticular alleles leads to gradual changes in the gene expression. The 
third type of ReQTLs showed a distinct distribution, where the indi-
vidual measurements closely followed the association trend, with 
fewer VAFRNA values of 0 or 1 (Figure 3c). These patterns were seen 
in the majority of the visually examined trans-ReQTLs (the top 1000 
significant correlations of each tissue type). Further analysis of these 
ReQTLs showed that a substantial proportion of the involved loci 
overlap with known RNA-editing positions (see below). 
 
3.3. Overlap with eQTLs 
First, we assessed the overlap between cis-ReQTLs and significant 
cis-eQTLs reported in the GTEx database V7 (V7 trans-eQTLs were 
not available at the time of the submission). Of the significant cis-
ReQTL loci, 17,960 (84%) were reported as cis-eQTLs loci in the 
GTEx database V7 (Supplementary Table 8).  

We then analyzed the 3411 SNV loci identified exclusively 
through ReQTL analysis, and compared them with respect to func-
tion, position and annotation, to the set of loci called by both ReQTL 
and eQTL analyses. Several differences between the two sets were 
obvious. First, the ReQTL-exclusive set of loci contained higher per-
centage of positions known to be subject to RNA editing (3.4% vs 
0.2% in the eQTLs, p<0.0001, chi-square test). Examples of cis-
ReQTLs in RNA-editing sites are shown in Figure 4a. Overall, these 
correlation plots were very similar, with few VAFRNA values of 0 or 

1 (see Figure 3c). The remaining ReQTL-exclusive SNVs showed 
various types of correlation patterns including some similar to 
eQTLs, with no obvious associations between a given type of corre-
lation and a functional/positional annotation (Figure 4b). Second, 
the ReQTL-exclusive positions more often resided in non-coding 
exons and intergenic regions, while those identifiable by eQTLs 
were more frequently found in the 3’-UTR of the corresponding 
gene (Figure 4c, p<0.0001, chi-square test). The remaining func-
tional categories did not substantially differ between the ReQTL-
exclusive loci and those identified by both ReQTL and eQTL anal-
ysis. Additional factors, such as genome reference version (hg38, 
2% of the ReQTL exclusive positions were not convertible to hg19), 
SNV-aware alignment, and different processing tools/versions, as 
well as covariate adjustments, are likely to partially account for the 
differences in the sets of variants identified by ReQTL and those in 
the GTEx database. 
 
3.4. Overlap with RNA-editing sites 
Next, we set to assess the ReQTL capacity to capture correlations 
between gene expression and genetic variation introduced through 
the process of RNA-editing. To do that, we downloaded the list of 
genomic positions known to be subject to RNA editing from the 
REDIportal (srv00.recas.ba.infn.it/atlas, all tissues, (Picardi et al., 
2017)), and intersected it with the significant cis- and trans-ReQTLs 
identified through our analysis. From the 21,307 cis-ReQTLs loci, 
152 (0.7%) coincided with RNA-editing sites. Strikingly, this per-
centage was substantially higher – 35.8% (816 out of the 2280, 
p<1e-16, chi-square test) – among the trans-ReQTL positions. These 
positions were implicated in an even higher percentage – 67.6% - of 
the individual trans-ReQTL correlations (Supplementary Table 9, 
examples of trans-ReQTLs in and outside RNA-editing sites are 

Figure 4. a. Correlations identified ex-
clusively through ReQTL (and not 
through eQTL) analysis, and involving 
loci residing in known RNA-editing po-
sitions; all ReQTLs show similar corre-
lation plot patterns, with few extreme 
VAFRNA values (0 or 1). b. ReQTL-ex-
clusive SNVs residing outside known 
RNA-editing sites; non-coding exon 
(left two plots), missense (middle two 
plots) and intergenic (right two plots) 
SNVs are shown; various correlation 
plots are seen, including eQTL-resem-
bling ones. No association between type 
of correlation plot and functional/posi-
tional annotation of the SNV is ob-
served. c. Distribution of the func-
tional/positional annotation of the 
ReQTL-exclusive SNVs, as compared 
to eQTL-identifiable SNVs; the largest 
differences are seen in the distribution 
of non-coding, intergenic (more fre-
quent) and missense (less frequent) 
SNVs involved in ReQTL-exclusive 
correlations. 
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shown on Figure 5). Thus, the majority of the significant trans-cor-
relations in our dataset involved an RNA-editing site. 
 

3.5. ReQTL usage 
We note several considerations for the usage of the ReQTLs. First, 
because ReQTLs are based on VAFRNA, they are confined to ex-
pressed SNV loci in the studied sample-set and would not capture 
variants in transcriptionally silent genomic regions. Related to that, 
SNV loci with low expression levels (below the required threshold 
for minimum number of RNA-sequencing reads) are not eligible for 
this type of analysis. The threshold for minimum RNA-sequencing 
reads is necessary for distinguishing SNV positions with monoal-
lelic reference signal from non-expressed SNV positions and is crit-
ical for the estimation of VAFRNA. In the presented results, we have 
selected a threshold of 10 RNA-sequencing reads covering each 
SNV position of interest, based on considerations for sequencing 
depth and confidence of the VAFRNA assessment, and also following 
trends in the assessment of RNA editing from RNA-sequencing data 
(Park et al., 2017). Our experiments with various minimum thresh-
olds show that higher thresholds increase the accuracy of the 
VAFRNA estimation, naturally retaining a lower number of variants 
for analysis (Movassagh et al., 2016).  In the readCounts package, 
this threshold is flexible and can be set at the desired level depending 
on the depth of sequencing and required confidence in the assess-
ment of the VAFRNA.  

With respect to gene expression, ReQTL analysis can employ 
data processing identical to that of eQTL, including adjustment for 
covariates. In this study, we closely followed the pipeline employed 
by the GTEx Consortium, correcting for reported age, race, sex and 
hidden confounders using the top 25 PEER factors based on sample 
size (200-300 samples) (Aguet et al., 2017a). In addition, we quan-
tile-transformed the gene expression, as is customary in eQTL anal-
yses. As a result, we observed a strong linear correlation between 
quantile-transformed, covariate-adjusted gene expression and 
VARRNA. To fully explore ReQTLs, other expression-transformation 
strategies (Palowitch et al., 2018) may also be applicable.  

VAFRNA estimation can be also affected by technical parame-
ters or settings. To minimize such effects, we apply highly conserva-
tive settings to the alignment, variant call and the read count assess-

ment, correct for a high number of hidden confounders (top 10 
VAFRNA PCs), and closely follow the best practices for data pro-
cessing in allelic analysis (Castel et al., 2015). We observe strong 
concordance between the VAFRNA of multiple SNVs in the same 
gene (Figure 6), which indicates consistency in VAFRNA estimation. 
In addition to the growing reliability of the identification of genetic 
variants from RNA-sequencing data (Piskol et al., 2013; Deelen et 
al., 2015), it is important to note that ReQTLs do not necessarily 
require prior variant calls and can be run on custom pre-defined lists 
of genomic positions such as those in dbSNP or the database of 
RNA-editing sites. An additional factor for the VAFRNA estimation 
is the allele mapping bias. While shown to have little to no effect on 
the gene expression estimation (Panousis et al., 2014), mapping bias 
can lead to overestimation of the reference allele frequency, and con-
sequently bias in the VAFRNA assessment (Brandt et al., 2015). To 
correct for that, we map the raw sequencing reads against a genome 
index containing the SNVs subjected to our analysis. As a result, in 
the SNV-aware mapped sequencing data, we do not observe signs 
of mapping bias (See Figures 3-5). Alternative strategies for map-
ping bias correction, including read count assessment prior to map-
ping, are also possible (Miao et al., 2018).  
 
4. Discussion 
Traditional eQTLs assess the number of variant-harboring alleles (N 
∈ {0,1,2} for diploid genomes), in correlation with gene or transcript 
abundance across a population of individuals/samples. In our 
method – ReQTLs – the DNA allele count is substituted for the 
VAFRNA at expressed SNV loci in the transcriptome; both VAFRNA 
and the gene expression are assessed from the same sets of RNA-
sequencing data.  

At expressed loci, the difference between DNA- and RNA-
allele counts is driven by two major mechanisms - allele-preferential 
expression and RNA-editing. By using RNA-allele counts, ReQTLs 

Figure 5. a. Trans-ReQTL correlations involving RNA-editing sites; all correlation plots had similar characteristic patterns. B. Trans-ReQTLs outside 
RNA-editing sites – different patterns of correlation plots were observed. 
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are readily applicable to study both of the above mechanisms and to 
help elucidate their increasingly recognized role in diverse cellular 
processes (Imprialou et al., 2017; Casamassimi et al., 2017; Do et 
al., 2017; Eisenberg and Erez Y Levanon, 2018; Gagnidze et al., 
2018; Moreno-Moral et al., 2017; Vandiedonck, 2018). Further-
more, compared to DNA-allele count, correlation of variant RNA-
allele frequency with gene expression holds several technical ad-
vantages. First, as mentioned above, VAFRNA constitutes a continu-
ous measure and allows for precise quantitation of the allele repre-
sentation. Second, since VAFRNA and gene expression levels can be 
retrieved from a single source of transcriptome sequencing data 
alone, ReQTL analyses naturally employ within-sample concord-
ance of the measurements. Related to the above, ReQTLs do not re-
quire matched DNA data, and are thus directly applicable to the 
growing amount of transcriptome sequencing data across species 
and conditions. 

Along with the eQTL analysis on GTEx datasets, our ReQTL 
analysis identified a substantially higher number of cis- (as com-
pared to trans-) correlations, the majority of which overlap with pre-
viously reported eQTL loci (Aguet et al., 2017b). A notable finding 
on the ReQTL-exclusive loci is the high frequency of RNA-editing 
sites, correlated with gene expression in both cis- and trans- fashion. 
In our data, RNA-editing sites accounted for more than a third of the 
trans ReQTL loci and were involved in approximately two thirds of 
the trans-ReQTLs correlations, which presented with a characteristic 
correlation pattern (see Figures 3-5). These observations indicate the 
need for systematic evaluation of RNA-editing mediated effects on 
gene expression, for which ReQTLs can provide unique insights. In 
addition to RNA editing, correlations identified exclusively through 

ReQTL analysis (and not through eQTL analysis) are likely to in-
clude solely RNA-mediated (as opposed to DNA-mediated) molec-
ular interactions. 

In conclusion, our results show that ReQTL analysis: (1) is 
computationally feasible and can identify variation-expression rela-
tionships from RNA-sequencing data, (2) identifies a substantial 
subset of the eQTL- identifiable variants, and (3) identifies addi-
tional SNV loci which, in the herein presented results, are enriched 
in RNA-editing sites. Given the quickly growing availability of 
RNA-sequencing data, ReQTL analyses have considerable potential 
to facilitate the discovery of novel molecular interactions. 
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