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Summary 

The lesion method has been a cornerstone in the endeavor to understand brain-behavior 

relationships in humans, but has relied on the flawed assumption that anatomically abnormal 

tissue functions abnormally and anatomically normal tissue functions normally. To address this 

longstanding problem, we introduce an approach to directly map the degree of functional 

anomaly throughout the brain in individual patients. These functional anomaly maps identify 

anatomical lesions and are stable across measurements. Moreover, the maps identify functionally 

anomalous regions in anatomically normal tissue, providing a direct measure of remote effects of 

lesions such as diaschisis. Lesion-behavior mapping using these maps replicates classic 

behavioral localization and identifies relationships between tissue function and behavior distant 

from the anatomical lesions. This method provides brain-wide maps of the functional effects of 

focal lesions, which could have wide implications for one of the most important methods in 

neuroscience. 
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Introduction 

Lesion-behavior relationships have been recognized since ancient times (Helgason, 1987). 

Identifying consistent relationships between lesion location and behavioral deficits were keys to 

the localizationist debates of the 19th century (Bartolomeo, 2011; Dronkers et al., 2007; 

Steinberg, 2014). To this day, lesion studies remain a cornerstone of neuroscience because they 

permit a strong causal inference that recently popular methods like functional MRI do not 

(Adolphs, 2016; Fellows et al., 2005; Price et al., 1999; Rorden and Karnath, 2004). 

Contemporary lesion-behavior mapping incorporates modern neuroimaging methods to precisely 

map brain regions in which anatomical lesions cause behavioral deficits (Bates et al., 2003; 

Rorden et al., 2007). 

 

Despite the importance of the lesion method, it has always suffered from a major drawback: it 

relies on the assumption that tissue that appears anatomically abnormal functions abnormally, 

and that tissue that appears anatomically normal functions normally. The first issue causes 

problems because lesions appear heterogeneous and often do not have clear boundaries on scans, 

so manual segmentation requires a number of arbitrary decisions. For the same reason, 

automated lesion segmentation methods perform inadequately in general (Maier et al., 2015). 

Most significantly, one cannot know whether tissue that appears somewhat abnormal 

anatomically is functioning normally or not, nor can one know the degree of dysfunction if 

present.  

 

More importantly, anatomical lesion studies make the flawed assumption that tissue that appears 

anatomically normal is functioning normally. Yet, it has been recognized since the early 20th 

century that lesions cause distant functional disturbances, a phenomenon known as diaschisis 

(Carrera and Tononi, 2014; Feeney and Baron, 1986; von Monakow, 1914). Modern ideas about 

brain function emphasize the role of large-scale networks (Bullmore and Sporns, 2009; Farah, 

1994; Mesulam, 1990) and disruption of brain networks is thought to form the basis of diaschisis 

(Feeney and Baron, 1986; Grefkes and Fink, 2014; Price et al., 2001). 

 

Positron emission tomography (PET) has detected metabolic disturbances distant from the lesion 

even in the chronic period (Metter, 1991), but this technique is not common because of its use of 

radioactive tracers. A number of studies have also used task-based fMRI to demonstrate 

functional disturbances distant from the lesion (Corbetta et al., 2005; Saur et al., 2006; Ward et 

al., 2003), but such task-based approaches are limited because they only measure dysfunctional 

neural processes associated with one specific experimental paradigm (Carter et al., 2012). More 

recent work has relied on resting state fMRI connectivity (Boes et al., 2015; He et al., 2007; Nair 

et al., 2015; Park et al., 2011; Yourganov et al., 2018), or hemodynamic lag at rest (Zhao, 

Lambon Ralph, & Halai, 2018) to examine remote effects of lesions, but these approaches have 

not yielded maps of brain-wide functional integrity in individual patients.  

 

A method to directly map functional aberrations throughout the brain would obviate the 

arbitrariness of lesion segmentation by grading the degree of functional irregularity in 

anatomically abnormal regions. Further, this would extend lesion-behavior mapping beyond the 

boundaries of the anatomical lesions, providing a direct measure of functional differences 

between individuals related to diaschisis, compensatory plasticity, or individual differences that 

explain resilience to stroke. 
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We have developed a method that uses machine learning on 4D resting state fMRI data to map 

the degree of functional aberration throughout the brain in individual patients. We demonstrate 

that these functional anomaly maps (FAMs) identify the region of obvious anatomical damage, 

and that the maps are reproducible over time. We further demonstrate that the local degree of 

functional aberration in the unlesioned hemisphere relates to the degree of dysfunction in the 

roughly homotopic location of the lesioned hemisphere, strongly suggesting an effect of the 

lesion on the function of distant, seemingly intact, tissue. Finally, we demonstrate that lesion-

behavior mapping using FAMs recapitulates the results of lesion-behavior mapping based on 

anatomical lesions, and importantly that it can identify regions outside the distribution of 

anatomical lesions in which functional aberration relates to behavioral outcomes. This method 

for direct brain-wide mapping of functional lesions could have wide implications for one of the 

most important approaches to neuroscientific inquiry. 

 

Results 

Functional Anomaly Maps Detect Anatomical Lesion Location 

An anatomical lesion overlap map of the patients is shown in Figure 1. Of the 132 resting state 

datasets across 50 subjects for which FAMs were estimated, 128 (96.9%) were successful. Four 

failed to converge or contained zero support vectors with our hyperparameter values and control 

group. Figure 2A shows FAMs for an example patient over three scan sessions, and illustrates 

that FAMs contain a grading of functional anomaly at every voxel in the brain. Figure 2B shows 

FAMs for a sample of four patients. Although for the reasons outlined in the introduction the 

anatomical lesion masks cannot serve as a gold standard against which to test FAMs, we still 

predicted that in general, FAMs should identify the region of gross anatomical abnormality. 

Upon visual inspection, the anatomical lesion tracings (Figure 2A left column, red outline) 

appear very similar to areas of high functional anomaly load for each of three scan sessions 

(Figure 2B, right). In some cases, FAMs show areas of highest functional anomaly load outside 

the anatomical lesion. An example of this is shown in Figure 2B, in which a patient with a lesion 

in the deep white matter and basal ganglia of the left hemisphere (left pane, arrow) exhibits 

widespread abnormalities in the cortex of the left hemisphere. This pattern of mild metabolic 

changes throughout ipsilesional hemisphere has been previously observed on PET after some 

subcortical lesions (Metter, 1991). Although the FAMs in Figure 2B and 2C are thresholded to 

visually highlight areas of highest signal, at no point in our analyses is a threshold applied to 

FAMs. FAMs for all patients at all available time points are shown in Supplemental Figure 1.  

 

We performed three analyses to determine the degree to which FAMs are sensitive to the left-

hemisphere anatomical lesions in our patient cohort. First, we predicted that larger anatomical 

lesions would be associated with greater left-hemisphere functional anomaly load. As predicted, 

in a bivariate correlation, larger anatomical lesions were associated with greater average left-

hemisphere signal in the FAMs (r = .49, P < .001) (Figure 3A). 

 

Second, we predicted that the signal in FAMs would discriminate regions of anatomical lesion 

from unlesioned tissue. We tested this using a receiver operating characteristic (ROC) curve 

analysis in which we calculated area under the curve (AUC) for a patient’s FAM to accurately 

classify voxels of their anatomical lesion map. Average AUC was .73 (SD = .11), significantly 

better than a chance-level AUC of .5 (t(48) = 14.34, P < .001), indicating that the FAMs 

distinguished regions of anatomical lesion from unlesioned tissue (Figure 3B). AUC correlated 
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with anatomical lesion volume (r = .477, P < .001), such that the larger the anatomical lesion, the 

more closely the location of high FAM signal corresponded to the location of the anatomical 

lesion (Figure 3C). ROC curves and AUCs for each patient are shown in Supplemental Figure 

2. 

 

Third, since one important potential use of FAMs is in lesion-behavior mapping analyses, we 

tested if lesion-behavior maps based on FAMs could localize scores with a ground-truth 

anatomical localization. Scores were derived for each patient as anatomical lesion load in each of 

132 left-hemisphere atlas parcels. The FAM-based lesion-behavior maps localized the scores 

generated from atlas parcels to the source anatomical lesion location with a median distance of 

2.01 cm (SD = 1.00 cm), significantly better than chance based on permutation analysis (Z = 

10.6, P < .001; Figure 4A). The precision of localization using this approach is limited by lesion 

covariance and the size of the atlas parcels, so for comparison, we ran the same analyses using 

the anatomical lesions to localize scores based on the same anatomical lesion data. These lesion-

behavior maps localized the scores generated from atlas parcels with a median distance of 1.95 

cm (SD = 0.96 cm; Figure 4B). Localization precision using FAM data was not significantly 

different from the results using anatomical lesion data (Z = 0.71, P = .48). 

 

Functional Anomaly Map Signal Indexes Functional Integrity of Spared Tissue 

Next, we tested if transcallosal diaschisis (Feeney and Baron, 1986; von Monakow, 1914) would 

be measurable as functional aberrations in the unlesioned hemisphere. To test this question, we 

generated scores based on the mean FAM signal in atlas parcels placed in the lesioned left-

hemisphere and performed lesion-behavior analyses to localize right-hemisphere regions in 

which the FAM signal related to these left-hemisphere scores. We reasoned that the FAM signal 

in the unlesioned right-hemisphere should relate to the degree of functional anomaly in the 

homotopic areas of the lesioned left-hemisphere. Confirming our prediction, the right-

hemisphere regions identified by these analyses had a median distance of 1.28 cm (SD = 1.97 

cm) from the homotopic site of the corresponding left-hemisphere regions (Figure 4C), 

significantly better than chance based on permutation testing (Z = 12.9, P < .001). To test the 

upper bound of precision for this analysis, we then used the same approach to localize regions in 

left-hemisphere FAMs in which the signal related to the scores derived from the same left-

hemisphere FAMs. The median localization precision was 0.82 cm (SD = 0.47 cm; Figure 4D).  

 

Functional Anomaly Maps Are Reproducible Over Multiple Independent Sessions 

For the 36 patients for whom data from multiple sessions was available, the average intraclass 

correlation coefficient (ICC) for FAM values across the brain ranged from .66 to .89 (M = .80, 

SD = .06; Figure 5A), in the good-to-excellent range based on a commonly cited qualitative 

interpretation of ICC (Bennett and Miller, 2010; Cicchetti and Sparrow, 1981). For each of these 

patients, average voxelwise correlation between pairs of runs ranged from .68 to .89 (M = .80, 

SD = .06; Figure 5B, Figure 5C). 

  

Functional Anomaly Map Signal Relates to Behavior In Both Lesioned and Unlesioned 

Tissue 

One of the main potential uses for FAMs is for lesion-behavior mapping analyses. To assess their 

utility for this purpose, we performed multivariate lesion-behavior mapping analysis using the 

FAMs (called functional lesion-behavior mapping below) and comparable analyses using the 
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anatomical lesion maps (called anatomical lesion-behavior mapping below), examining four 

behaviors commonly affected by left-hemisphere stroke: auditory comprehension, phonological 

processing, speech fluency, and right-hand strength. 

 

Shown in Figure 6A, functional lesion-behavior mapping revealed that impaired auditory 

comprehension was associated with a single cluster encompassing anterior/middle left temporal 

lobe, sagittal stratum, Heschl’s gyrus, left posterior insula and external capsule (P < .001, 48768 

mm3). Anatomical lesion-behavior mapping produced a single cluster encompassing superior 

temporal gyrus (P = .002, 31812 mm3), largely overlapping the functional results. The main 

differences were that functional results included the left lateral/medial middle and inferior 

temporal gyri and left anterior fusiform gyrus, while anatomical results were largely restricted to 

the superior temporal gyrus, but extended into the posterior superior temporal gyrus. These 

findings are consistent with the classic localization of auditory comprehension to the temporal 

lobe, as shown by prior stroke lesion studies (Bonilha et al., 2017; Hillis et al., 2017) and fMRI 

studies of healthy controls (Price, 2012). The fact that the functional results extend more 

ventrally into the temporal lobe likely relates to poor anatomical lesion coverage in that region. 

 

Shown in Figure 6B, functional lesion-behavior mapping revealed that impaired phonological 

processing was associated with a single cluster encompassing the left supramarginal gyrus, 

neighboring intraparietal sulcus, and underlying white matter (P = .001, 19648 mm3). 

Anatomical lesion-behavior mapping revealed a single cluster (P = .007, 16281 mm3), which 

appeared patchy around the left temporoparietal junction near the strongest functional results, 

and extended medially and anteriorly into posterior insula, parietal operculum, and posterior 

external capsule. Both analyses converged at the temporoparietal junction. This localization is 

consistent with modern neuroanatomical language models that implicate this region as the locus 

for converting auditory input to phonological representations (Hickok and Poeppel, 2007) and 

patient studies which find that damage to this area relates to repetition deficits that characterize 

conduction aphasia (Buchsbaum et al., 2011; Hickok and Poeppel, 2000; Hickok et al., 2003). 

 

Shown in Figure 6C, functional lesion-behavior mapping found that impaired speech fluency 

was associated with a cluster encompassing ventral premotor cortex, pars opercularis and 

triangularis, anterior corona radiata, anterior insula and neighboring external capsule, and the 

anterior limb of the internal capsule (P = .001, 21120 mm3). A second cluster in right cerebellum 

approached significance (P = .098). Anatomical lesion-behavior mapping found impaired speech 

fluency was associated with a single patchy cluster of anatomical damage including ventral 

premotor cortex, pars opercularis, external capsule, a larger swath of anterior corona radiata and 

some superior corona radiata, extending into inferior frontal sulcus and the middle temporal 

gyrus (P = .009, 13312 mm3). The main difference between the two analyses was that the 

functional results showed larger cortical findings and included anterior insula, while the 

anatomical results included more anterior corona radiata and extended into middle frontal 

sulcus/gyrus. The functional results in right cerebellum were naturally absent from the 

anatomical results. The left frontal lobe localization is consistent with prior stroke lesion studies 

(Basilakos et al., 2015; Graff-Radford et al., 2014; Itabashi et al., 2016) and work on patients 

with progressive apraxia of speech (Josephs et al., 2006). In addition, speech motor planning is 

among the functions to which the right cerebellum is thought to contribute (Mariën et al., 2014; 

Stoodley et al., 2012). 
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Finally, shown in Figure 7, functional lesion-behavior mapping revealed three left-hemisphere 

clusters associated with right-hand strength that failed to reach significance based on cluster-

level correction for multiple comparison. Two of these clusters overlapped with primary motor 

cortex including the hand area (P = .07, 6016 mm3), descending corticospinal tract including 

superior corona radiata, and the posterior limb and retrolenticular portion of the internal capsule 

(P = .12, 4480 mm3). Together these two clusters overlap the canonical motor system, but were 

split into two at the fibers of the descending corticospinal tract. The third cluster involved frontal 

white matter (P = .063, 6400 mm3) including the anterior superior corona radiata and underlying 

body of the corpus callosum. One right-hemisphere cluster in the ventral premotor cortex, not 

including underlying white matter, survived correction for multiple comparisons (P = .02, 10304 

mm3). Anatomical lesion-behavior mapping produced a single significant left-hemisphere cluster 

encompassing primary motor cortex and descending corticospinal tract, overlapping with the 

functional results (P = .04, 5390 mm3). The main difference between the analyses was that 

anatomical results did not reach as far dorsally into cortex, but its higher spatial resolution 

allowed it to detect the slender descending corticospinal tract fibers without any breaks. In 

addition, the anatomical analysis naturally produced no right-hemisphere results, as anatomical 

lesion coverage was limited to the left-hemisphere in our cohort. These left-hemisphere findings 

are consistent with the canonical motor system architecture, with both methods converging on 

the descending corticospinal tract (MNI x = -24, y = -17) and overlapping the posterior limb of 

the internal capsule. The right-hemisphere region identified by functional analysis is convergent 

with evidence that contralesional premotor cortex plays a role in recovery after motor stroke, 

with meta-analytic neuroimaging results showing consistent recruitment of this area to support 

residual function in post-stroke motor deficits (Rehme et al., 2012). It is also consistent with 

findings that inhibitory neurostimulation over contralesional dorsal premotor cortex impairs 

recovered motor performance in patients with subcortical stroke (Lotze et al., 2006). 

Discussion 

Lesion-behavior association methods have been limited by assumptions regarding the 

relationship between anatomical appearance of tissue and its functional integrity. Here, we have 

introduced a method to derive brain-wide maps of functional integrity from 4D resting fMRI 

data. These maps are replicable when derived from data acquired on different days, and are 

sensitive to the location of the anatomical lesion. Further, signal in the unlesioned hemisphere 

relates to the functional integrity of the homotopic locations in the lesioned hemisphere, 

suggesting that this signal is meaningful and may reflect transcallosal diaschisis. When used to 

localize behavioral deficits, these maps replicate classical patterns of behavioral localization, and 

are able to detect relationships between functional integrity and behavior in regions distant from 

the anatomical lesions. Together these findings demonstrate that this technique can reliably map 

behaviorally relevant functional integrity of tissue throughout the brain in individual stroke 

survivors. This new approach to lesion measurement could have widespread implications for one 

of the key methods of neuroscientific inquiry. 

 

The long-standing approach to lesion identification based on anatomical appearance has come 

with critical limitations on attempts to interpret the consequences of lesions. In addition to the 

unclear relationship between anatomical signal and functional integrity mentioned above, 

defining lesion boundaries by anatomy alone requires arbitrary cutoffs, for example on the 

degree of white matter signal abnormality included in the lesion boundaries. Ultimately, 
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anatomical lesion boundaries are unreliable because the tissue surrounding a lesion often exhibits 

metabolic or perfusion abnormalities not visible on anatomical scans (Forkel and Catani, 2018; 

Hillis et al., 2001; Karnath et al., 2018; Kuhl et al., 1980; Metter, 1991; Metter et al., 1981; 

Richardson et al., 2011). Identification of lesions based on anatomy alone also fails to detect 

distant dysfunction due to diaschisis (Carrera and Tononi, 2014; Feeney and Baron, 1986; Finger 

et al., 2004). Indeed, it is insensitive to any signal in residual tissue, including functional 

attributes of spared regions which may explain resilience to lesion effects (Abdullaev and 

Posner, 2005; He et al., 2007) and compensatory plasticity in spared regions which may 

contribute to behavioral outcomes (Corbetta et al., 2005; Nelles et al., 1999; Siegel et al., 2018). 

A method such as the one we present here addresses all of these issues. Although there is much 

room for further development of this technique, we clearly demonstrate that behaviorally 

relevant signal reflecting the functional status of tissue throughout the brain can be derived from 

a 4D BOLD time-series. 

 

Previous approaches to identify functional abnormalities distant from lesions have also used 

rsfMRI, which has provided an avenue to explore intrinsic brain activity in the absence of a task 

(Snyder and Raichle, 2012). One approach, lesion network mapping (Boes et al., 2015), 

combines anatomical lesion information with functional connectivity, a common analytic 

approach to fMRI data that involves measuring long-range correlations in the spontaneous 

BOLD signal (Biswal et al., 1995). Functional connectivity has revealed a number of large-scale 

brain networks that correspond to cognitive states reliably across individuals (Fox and Raichle, 

2007). Lesion network mapping takes advantage of these normative findings to infer the possible 

contribution of spared tissue to lesion-mapping results (Boes et al., 2015). By identifying a 

network of regions in a normative connectome that exhibit strong functional connectivity with 

each patient’s anatomical lesion, the method can deduce where areas of projected connectivity 

disruption might relate to behavioral symptoms. The approach has identified regions that explain 

an impressive diversity of specific symptoms associated with variable anatomical lesions sites 

(Darby et al., 2016, 2018; Fasano et al., 2017; Ferguson et al., 2017; Fischer et al., 2016; 

Laganiere et al., 2016; Sutterer et al., 2016). Still, this approach does not measure brain function 

directly in patients and relies on anatomically defined lesions. Connectome-based lesion-

symptom mapping is another approach for understanding the contribution of spared tissue using 

structural or functional connectivity measured between brain regions. It has been proposed as a 

supplement to traditional anatomical lesion-symptom mapping’s poor sensitivity to white matter 

damage (Del Gaizo et al., 2017; Gleichgerrcht et al., 2017; Yourganov et al., 2016). When 

applied to structural data, this method finds the contribution of white matter disconnections to 

behavioral outcomes using a whole-brain structural connectome based on white matter 

tractography (Hagmann et al., 2008). Connectome-based lesion-symptom mapping has also been 

applied to functional connectivity matrices measured during resting state fMRI. This approach 

identifies locations where increased or decreased correlation between regions are associated with 

changes in behavioral deficits in post-stroke aphasia (Yourganov et al., 2018). Aside from 

functional connectivity, Zhao and colleagues (Zhao et al., 2018) associated regional 

hemodynamic lag or advance in spared tissue with specific behavioral deficits in post-stroke 

aphasia, but this method focuses on temporal hemodynamic disruption rather than the more 

general question of identifying areas of functionally aberrant tissue, and no attempt was made to 

validate this tool for mapping functional anomalies in individual patients.  
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The current method obviates the need for arbitrary anatomical segmentation of lesions, and is 

able to directly map the degree of voxelwise functional aberration throughout the brain in 

individual patients, identifying signals in both the area directly affected by the lesion and in 

anatomically spared regions. There are advantages to using FAMs specifically for lesion-

behavior mapping. Lesion-behavior mapping using anatomical data has been challenged by 

modest sample sizes and variable lesion coverage, with both considerations limiting statistical 

power to detect lesion-behavior relationships (Inoue et al., 2014; Kimberg et al., 2007; Lorca-

Puls et al., 2018). The use of FAMs allows participants to contribute multiple scans to a single 

lesion-behavior mapping analysis and ensures data in every voxel of the brain, meaning it could 

help with sensitivity for detecting lesion-behavior relations in regions where anatomical lesion 

coverage typically tends to be poor (e.g. ventral occipitotemporal gyrus). In addition, anatomical 

lesion-behavior mapping has been observed to have poor sensitivity for white matter damage 

(Gleichgerrcht et al., 2017), but the method presented here appears to show sensitivity to effects 

in both gray and white matter. 

 

A key outstanding question regarding the FAM method is what biological processes the 

anomalous signal represents. The approach measures the degree to which the BOLD signal 

differs from control subjects over time. However, since aberrations in the ongoing BOLD 

fluctuations can produce either positive or negative differences from controls, the FAM signal 

has no sign. For this reason, the differences between a patient and control group identified by 

FAM could theoretically relate to either dysfunction or hyper-function, either occurring at a 

hemodynamic or a neural level. It is logical that the most extreme values would correspond to 

the area of obvious anatomical lesion, either due to gross disruption of hemodynamic response or 

due to gross neural dysfunction, and this is what we found. But signal elsewhere could reflect 

any difference in the patient relative to the control group. These differences could arise from 

negative biological effects of the stroke on surviving tissue, such as diaschisis (i.e., distant 

dysfunction due to network level disruption) (Carrera and Tononi, 2014; Feeney and Baron, 

1986; von Monakow, 1914), hemodynamic differences (Bonakdarpour et al., 2007; Siegel et al., 

2016; Zhao et al., 2018), maladaptive disinhibition (Allred et al., 2010; Ferbert et al., 1992; 

Johansen-Berg et al., 2002; Letzkus et al., 2015), or atrophy due to deafferentation of cell bodies 

in otherwise spared regions of the brain (Bonilha and Fridriksson, 2009; Bonilha et al., 2014). 

Other differences in anatomically intact brain regions could reflect negative behavioral 

consequences of stroke, such as learned disuse (Levin et al., 2009; Taub et al., 2006), or 

maladaptive behavioral compensation (Levin et al., 2009; Takeuchi and Izumi, 2012). 

Conversely, the signal could represent changes related to compensatory plasticity (Takeuchi and 

Izumi, 2013), including plasticity directly related to the biological effects of the stroke damage or 

plasticity related to environmental enrichment (e.g., therapy) (Biernaskie and Corbett, 2001; 

Döbrössy and Dunnett, 2001; Nithianantharajah and Hannan, 2006) or increased behavioral 

reliance on spared abilities (Bury and Jones, 2002; Cirstea and Levin, 2000; Luke et al., 2004; 

Rauschecker, 1995). Finally, the signal could relate to individual differences that predated the 

stroke (Hillis and Tippett, 2014; Nunnari et al., 2014; Pearson-Fuhrhop et al., 2012), although in 

a relatively homogeneous sample these would be expected to be smaller than the other effects.  

 

These different potential sources of the FAM signal are difficult to disambiguate in individual 

patients at present, but clues regarding the prevailing sources of the signal can be gleaned from 

patterns across the group. For example, we found that the signal in the right hemisphere relates to 
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the signal in homotopic areas of the left hemisphere, strongly suggesting a direct biological 

effect of the lesion, although the specific nature of that change remains unknown. We have 

demonstrated two examples of functional lesion-symptom mapping in which the contralesional 

functional integrity relates to behavioral outcomes. In these cases the inverse relationship 

between the signal and the behavior suggests that the anomalous signal measured there has 

negative effects on behavior and so likely reflects diaschisis, maladaptive disinhibition, or 

deafferentation atrophy rather than compensatory plasticity. Further research will be needed to 

investigate the nature of the signal, and to develop methods that can discriminate between the 

various potential causes of abnormal functional signals distant from the lesion. 

 

Some limitations of relying on BOLD signal to detect lesions should be considered. Because this 

method relies on fMRI data, it is sensitive to head movement and has poorer spatial resolution 

than high-resolution anatomical scans. This is evident in our motor analysis results in which the 

descending corticospinal tract breaks into two clusters in the functional analysis because the 

fibers exceed the spatial resolution of our functional voxels. Moreover, although FAM provides 

whole-brain coverage for lesion detection, regional differences in sensitivity may occur due to 

hemodynamic differences between different tissue types or signal dropout and distortion from 

magnetic susceptibility differences at air tissue interfaces as with a typical fMRI analysis 

(Caparelli et al., 2005). These issues may be addressed using higher resolution fMRI 

acquisitions, measures of hemodynamic responsiveness, and methods to measure and correct 

signal inhomogeneities. A limitation for all neuroimaging methods involving participants with 

brain lesions is suboptimal spatial normalization. This issue is evident in our results as 

periventricular artifact where patient ventricles were larger than or displaced relative to the 

control group. Further advances in nonlinear spatial normalization will result in improved FAMs. 

 

Further development of the FAM approach will also be required to address other current 

limitations. First, a small percentage (3%) of patient FAM models failed to converge or produced 

zero support vectors, indicating that the machine learning algorithm was not able to find a 

solution that delineated the patient from control subjects. In one case this affected a patient’s 

single resting state run, but in the other three cases, this affected one of multiple scan times for a 

given patient, suggesting that the failure to converge related to characteristics of the specific 

resting state run rather than characteristics of the patient lesion or brain. Another limitation is 

that the entirety of the densely necrotic lesion core was not detected in every person at every 

scan time point, perhaps due to a particularly noisy resting state run. Both of these limitations 

indicate room for improvement to the central FAM method. 

 

Several avenues are available for improvement of the FAM method. Future work is needed to 

optimize hyperparameter selection and preprocessing procedures to achieve greater robustness to 

variability in the preprocessed data and more sensitivity to densely necrotic lesions. In addition, 

other approaches to quantifying functional aberrations in the resting signal should be considered. 

Here we focus on the average deviation in a patient versus a control group at a point in space, but 

other distributional properties of abnormal signal over the time-course of a single resting state 

run, such as whether abnormalities are static or fluctuate over seconds or minutes, may provide 

information that speaks to the nature of the anomalous signal. Speculatively, different measures 

(e.g., static vs. time-varying anomalies) may be sensitive to different types of dysfunction or 

compensation, such that multiple FAMs composed of different measures of functional anomaly 
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may more fully capture the differences in brain function between patients and controls.  

 

A number of potential clinical and scientific applications of FAMs should also be explored. 

Although we have used FAMs here to make inferences about behavior measured at a single time 

point, future work could associate changes in anomalous signal over time with changes in 

behavior over time. This may help to clarify the nature of the signal, and may also provide 

critical evidence regarding the brain basis of stroke recovery, the basis of day-to-day fluctuations 

in behavioral performance, and also the basis of behavioral response to neurorehabilitation, 

medications, and neuromodulation. Finally, efforts have been made to use resting BOLD data to 

identify functional changes in several clinical populations, often examining changes in resting 

state connectivity (He et al., 2007; Liu et al., 2018; Nair et al., 2015; Park et al., 2018; 

Ranasinghe et al., 2017); likewise, the technique described here may be applied to other 

populations without gross anatomical damage to identify functional anomalies in individuals 

with neurodegenerative disorders, psychiatric disorders, developmental disorders, or other 

clinical populations. Beyond clinical applications, this technique could also potentially be used to 

measure development or skill acquisition (e.g., literacy) or examine any source of individual 

difference in brain function, such as sensory experience (e.g., blind or deaf populations), 

multilingualism, or socioeconomic status. 

 

While the lesion method remains a uniquely strong source of causal inference for the brain-

behavior relationship, it has always been limited by its focus on anatomical damage alone. 

Consequently, its relevance has diminished with the explosion of functional brain imaging 

techniques that can address contemporary questions related to ongoing neural processes. The 

work we presented here shows that the lesion method can also address such questions. This 

represents a significant advance in a method that is thousands of years old and ensures that the 

study of lesions will continue to play an essential role in the neuroscientific endeavor. 
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Methods 

Participants 

We derive functional anomaly maps (FAMs) for a cohort of 50 left-hemisphere stroke survivors 

(40 ischemic, 6 hemorrhagic, 4 unknown) at least 6-months post-stroke (chronicity 49.5 ± 40.2 

months (range 6.2-151.2 months); age 59.7 ± 9.3 years (range 43-78 years); 31 male, 19 female; 

44 right-handed, 4 left-handed, 2 ambidextrous; education 16.1 ± 3.1 years (range 12-24 years)). 

Together, their strokes encompassed the middle cerebral artery distribution, with some extending 

into the anterior and posterior cerebral artery territories (Figure 1). FAMs are normed with 

reference to a control group consisting of 57 healthy adults (51.2 ± 21.5 years (range 19-84 

years); 27 male, 28 female; 50 right-handed, 4 left-handed, 1 ambidextrous; education 16 ± 2.6 

years (range 12-21 years)). Aside from the stroke events, participants had no history of 

psychiatric or other neurological condition. Data was collected as part of previous studies 

conducted in the Cognitive Recovery Lab. All subjects provided informed consent in accordance 

with the Georgetown University IRB. Supplemental Supplemental Table 1 shows the patient 

demographics. 

 

Imaging data 

Image acquisition 

Images were acquired on a 3T Siemens Magnetom Trio scanner using a 12-channel head coil at 

Georgetown University. T2*-weighted BOLD echo planar images were collected with the 

participant at rest with the following parameters: 168 + 2 initial volumes discarded; 47 axial 

slices in descending order; slice thickness = 3.2 mm with no gap; field of view = 240 × 240 mm; 

matrix 64 × 64; repetition time (TR) = 2,500 ms; echo time (TE) = 30 ms; flip angle = 90°; voxel 

size = 3.2 × 3.2 × 3.2 mm. For a subset of participants, runs were 239 volumes long, which was 

cut the 168 to make them comparable to other runs. For anatomical reference and lesion tracing, 

T1-weighted MPRAGE structural images (voxel size = 0.98 × 0.98 × 1.0 mm) were acquired.  

 

Multiple sessions 

We included in our analyses multiple resting state runs acquired at different times for 

participants as available. In total, 132 resting state runs across 50 subjects were analyzed. Of the 

36 subjects with multiple resting state scans, five had two sessions, 25 had three sessions, four 

had four sessions, one had six sessions, and one had eight sessions. The time between first and 

last scan sessions was 5.2 ± 9.8 months (range 0.4-63 months; median = 3.3 months). For 

patients with multiple sessions, the first structural scan served as a shared anatomical reference.  

 

Anatomical lesion tracings 

Patient lesions were traced based on T1-weighted anatomical images by a trained neurologist 

(P.E.T.) using ITK-snap (Yushkevich et al., 2006), and were used as cost-function masks during 

normalization of patient anatomical scans (Brett et al., 2001).  

 

Image preprocessing 

Imaging data were preprocessed using the CONN toolbox version 18a (Whitfield-Gabrieli and 

Nieto-Castanon, 2012) and SPM12 (Friston, 2003) using the default pipeline for volume-based 

analyses. Specific preprocessing steps included functional realignment and unwarping, image 

centering, and slice-timing correction. Scans with global signal Z > 9 or subject-motion of >2mm 

were rejected as outliers. Data were smoothed by spatial convolution with an 8mm FWHM 
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Gaussian kernel. A nuisance model was used to remove confounders, including the 6 

realignment parameters estimated during correction for minor head movement and their first-

order derivatives, the effect of rest and its first-order derivative, and scrubbing parameters for 

outlier volumes. The residuals were linearly detrended and band-pass filtered (0.008-0.09 Hz). 

Cerebrospinal fluid signal and white matter signal were not included as covariates of the 

nuisance model to ensure that we did not inadvertently remove signal that distinguished 

abnormal regions, such as areas of encephalomalacia filled with cerebrospinal fluid. Structural 

scans for each subject were segmented and normalized to the Montreal Neurological Institute 

(MNI) average of 152 brains in SPM12. During normalization, patient brains were cost-function 

masked with manually-traced anatomical lesion masks. Functional time-series and anatomical 

lesion tracings for each participant were then normalized using these warp fields. 

 

Machine learning approach 

In this study we use support vector regression (SVR), a machine-learning approach to multiple 

regression (Drucker et al., 1996) adapted from the support vector machine (Cortes and Vapnik, 

1995). Specifically, our analyses utilize epsilon-insensitive SVR (ε-SVR) implemented in 

MATLAB 2018a. As its name suggests, SVR behaves comparably to regression but importantly 

it uses a machine learning algorithm for parameter estimation, which allows it to be robust to 

many collinear predictors (here, individual voxels). From an algorithmic standpoint, the 

technique is also innately similar to the process of manual lesion segmentation, in which an 

experimenter classifies voxels by tracing out a boundary line between damaged and spared 

tissue. Similarly, the classic SVM finds an optimal decision boundary that separates classes of 

labeled data. In practice, the input data features are transformed into a high-dimensional space in 

which an optimal hyperplane is estimated. The resulting model is comprised of a subset of 

training points, referred to as support vectors, which constrain this estimated hyperplane. 

Although a trained model is usually then used to classify novel, unobserved data sets, here we 

back-project the model into the original dataspace to create a pseudodataset in which we can 

visualize voxels that play an important role in defining the hyperplane solution. 

 

We use SVR as opposed to SVM for functional anomaly mapping because it treats differences 

between patients and controls as falling on a continuum rather than unnecessary assuming they 

are mutually exclusive classes that are categorically distinct. SVR is a mathematical 

reformulation of the SVM classification problem in which the hyperplane can be thought of as 

falling through the center of the solution like a line of best fit, rather than separating classes. 

 

Functional anomaly map (FAM) derivation 

We used a novel procedure to derive a FAM for each resting state run of each patient. This 

procedure involved comparing a normalized, pre-processed 4D resting state time-series from a 

single patient to a control group with the following procedure: All data were combined into a 

single feature matrix with columns corresponding to subjects and rows corresponding to points 

in space and time. These data comprised the training features of an SVR model with a contrast 

matrix specified as patient status coded with an indicator variable. SVR-β values from the trained 

model were back-projected into 4D (see equation 8 of Zhang et al., 2014). Each back-projected 

3D volume was then Z-scored to eliminate uninterpretable volume-to-volume variability. Finally, 

a single 3D image was computed as the average absolute Z value down the fourth dimension. 
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The absolute value was used because the sign of the Z-scores have no straightforward 

interpretation, owing to the fact that the sign of the original resting state data naturally fluctuates.  

 

This procedure yielded a single 3D statistical map of functional anomaly that can be overlaid 

onto a brain in standard space. The value at each voxel was an average Z-score, reflecting the 

accumulation of statistical deviations from the control group discovered by the SVR in the 

individual patient’s resting state run.  

 

Functional anomaly mapping analyses employed a linear kernel with the following 

hyperparameters: epsilon = 0.1; box constraint = 1; kernel scale = auto; standardize = true; 

outlier fraction = 5%; algorithm = ISDA. Kernel scale was chosen by a heuristic subsampling 

procedure implemented in MATLAB. Our analyses were conducted with 4mm3 voxels within a 

brain mask (Holmes et al., 1998).  

 

Validation of FAMs through localization of scores with ground-truth localization 

For analyses validating the FAM signal, scores with ground-truth localizations were generated 

based on the anatomical lesion load for each patient within 132 left-hemisphere atlas parcels 

(Shen et al., 2013). For each score, an SVR-LSM analysis (see Lesion-Behavior Mapping below) 

was performed using FAMs as lesion maps. Localization accuracy was calculated as the 

Euclidean distance between the center-of-mass of the source atlas parcel and the center-of-mass 

of its SVR β-map solution (thresholded at 7). To determine whether localization accuracy was 

greater than chance, we compared the distribution of actual solution distances to the distribution 

obtained if solution distance was randomly related to seed. This null distribution consisted of the 

distances between each seed’s center-of-mass and the center-of-mass for all solutions. To assess 

whether right-hemisphere FAM signals could detect functional lesions in the homotopic region 

of the left hemisphere, we generated another set of 132 scores using the average FAM for each 

patient in each of the 132 left-hemisphere atlas parcels, and performed SVR-LSM analyses for 

each score using only the right hemisphere of the FAMs as lesion maps. For each score, the 

localization accuracy was calculated as above, ignoring the sign of the x coordinate. 

 

Behavioral scores for lesion-behavior mapping 

Four behaviors with known patterns of localization were examined for lesion-behavior mapping 

using FAMs and anatomical lesion maps. Auditory comprehension impairment was measured 

using the Yes/No Questions subtest on the Western Aphasia Battery (WAB) (Shewan and 

Kertesz, 1980). Phonological processing deficits were measured using an in-house pseudoword 

repetition test. Speech fluency deficits were measured by the mean length of utterance (MLU) 

during the Picnic Scene picture description from the Western Aphasia Battery and/or the Cookie 

Theft Picture from the Boston Diagnostic Aphasia Examination (Goodglass et al., 2001). To 

control for the contribution of lexical-retrieval deficits during the picture description task, we 

included as a covariate the accuracy on a spoken picture naming test (Philadelphia Naming Test) 

(Roach et al., 1996). Upper-limb motor impairment was measured using the right-hand pinch-

strength score on the Motricity Index (Demeurisse et al., 1980). 

Lesion-behavior mapping 

Anatomical lesion-behavior mapping was conducted with 2.5 mm3 voxels using SVR-LSM 

implemented in our MATLAB toolbox using default hyperparameters (DeMarco and Turkeltaub, 

2018; Zhang et al., 2014). Lesion volume was regressed out of both the behavior and voxelwise 
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data as a covariate of no interest using a nuisance model. Functional lesion-behavior mapping 

was conducted with 4 mm3 voxels invoking modified versions of these same toolbox routines. 

Functional lesion-behavior mapping analyses employed the following hyperparameters: epsilon 

= 0.1; box constraint = 1; kernel scale = auto; standardize = true; outlier fraction = 5%; algorithm 

= ISDA. All results were thresholded voxelwise at P < .005, and corrected for multiple 

comparisons based on cluster extent at P < .05, based on 10,000 permutations. 
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Figures 

 

 

Figure 1. Overlap of anatomical lesions from the patient cohort. 
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Figure 2. Examples of patients (rows) with anatomical lesion tracing outlined on their high-

resolution anatomical scans (leftmost column, red outline) and FAMs (hot scale) for three scan 

sessions (columns). (A) Example FAM showing that all voxels in the brain are graded for 

statistical deviation relative to the control group. (B) An illustrative threshold is applied to FAMs 

for four example patients to highlight that in many individuals, the regions of greatest functional 

anomaly roughly correspond to obvious anatomical lesions. (C) An illustrative threshold is 

applied to another example patient’s FAMs to highlight that some patients with subcortical 

lesions (left, larger arrow) reliably showed areas of greatest signal throughout the left-

hemisphere cortex in the lesioned hemisphere (small arrows). FAMs in panes (B) and (C) are 

thresholded at a functional anomaly load cutoff of Z > 1 to illustrate areas of highest signal. 
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Figure 3. FAMs detected manually-traced anatomical lesions as evidenced by (A) a significant 

positive relationship between anatomical lesion volume and average function anomaly load 

within the left-hemisphere, (B) a group average ROC curve for the ability of FAMs to classify 

tissue labeled anatomically lesioned from background, and (C) a significant positive relationship 

between anatomical lesion volume and FAM classification accuracy for anatomical lesion maps. 
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Figure 4. Accuracy of using SVR-LSM of FAMs to localize sources of scores that have ground-

truth localization. The top row shows localization accuracy of scores with ground-truth 

localization derived from anatomical lesion load within left-hemisphere atlas parcels: (A) 

localization accuracy using left-hemisphere FAMs to map scores and, for comparison, (B) 

localization accuracy using left-hemisphere anatomical lesions to map scores. The bottom row 

shows localization accuracy of scores with ground-truth localization derived from FAM values in 

left-hemisphere atlas parcels: (C) homotopic localization accuracy of mapping using right-

hemisphere FAMs and, for comparison, (D) localization accuracy of mapping using left-

hemisphere FAMs. For each analysis, a histogram of localization accuracy is shown for the real 

data (gray) and for comparison a histogram of the null distribution (red). All histograms have a 

bin width of 2. Distances are computed from center-of-mass between atlas seed parcel used to 

generate the score to that of the resulting SVR-β map thresholded at >7. 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2018. ; https://doi.org/10.1101/464248doi: bioRxiv preprint 

https://doi.org/10.1101/464248
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                           FUNCTIONAL ANOMALY MAPPING           32 

 

Figure 5. Reproducibility of FAMs for the 36 subjects with data available from multiple 

scanning sessions. (A) A boxplot of whole-brain voxelwise intraclass correlation coefficient 

across the group. (B) Average whole-brain voxelwise correlation coefficients between pairs of 

resting state runs for individual patients. (C) Voxelwise correlations (jet scale) between pairs of 

resting state runs for individual patients.  
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Figure 6. Lesion-behavior mapping results for three speech and language behaviors including 

(A) auditory comprehension, (B) phonology, and (C) speech production. Results are shown for 

FAM data (left, red-yellow scale) and traditional anatomical lesion data (right, blue-green scale). 

With the exception of the right cerebellar findings for functional lesion-behavior mapping for 

speech production deficits, which didn’t quite reach full correction for multiple comparisons 

(translucent), all results are shown as the absolute value of SVR-β values thresholded voxelwise 

at P < .005 and corrected for multiple comparison by cluster extent at P < .05 based on 10,000.  
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Figure 7. Results of lesion-behavior mapping for right-hand pinch strength using (A) FAMs 

(red-yellow scale) and (B) traditional anatomical lesion data (blue-green scale). With the 

exception of left-hemisphere functional lesion-mapping results which failed to quite reach full 

significance after correction for multiple corrections (translucent), results are shown as the 

absolute value of SVR-β values thresholded voxelwise at P < .005 and corrected for multiple 

comparison by cluster extent at P < .05 based on 10,000 permutations. 
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Supplemental Figure 1. FAMs for each patient at all available time points. Part 1 shows FAMs 

for each patient with three scan sessions. Part 2 (A-D) shows FAMs for each patient with two, 

four, six, or eight scan sessions. For each patient, the left-most image shows the anatomical scan 

with the anatomical lesion outlined in red. All FAMs are shown in a jet color scale. 
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Supplemental Figure 2. For each patient, ROC curve and average AUCs for the accurate 

classification by FAMs of manually-traced tissue as damaged or spared. Each plot shows the 

participant code, the number of runs that contribute to the plot for that subject, the average ROC 

curve (black), and the standard deviation around the curve (dark gray) for participants with 

multiple scan sessions. 
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Tables 

 
Subject 

Code 

Aphasia Type(s) † Age 

(years) 

Gender Education 

(years) 

Chronicity 

(months) 

Stroke 

mechanism* 

Handedness Number of  

sessions 

AFB Cond/Anomic 76 Male 22 72.6 Ischemic Right 3 

AMM Conduction 46 Female 18 25.6 Ischemic Right 3 

APJ Global 65 Male 18 11.3 Ischemic Right 1 

BIC Broca 65 Male 18 46.7 Ischemic Right 7 

BST Anomic 75 Female 18 6.3 Ischemic Right 1 

CCS Anomic 56 Female 16 30.4 Ischemic Right 3 

CYM Anomic 51 Female 15 8.3 Ischemic Right 3 

DSA Broca 44 Female 16 27.4 Ischemic Left 1 

DTE Anomic 59 Female 12 27.6 Ischemic Right 1 

EDS Broca 64 Female 16 27.4 Ischemic Left 3 

EYU Wernicke/Cond 61 Male 20 55.6 Ischemic Right 9 

FTH Tran Sens/Wern 55 Female 16 29.7 Ischemic Right 3 

GAR Broca 62 Male 21 24.8 Ischemic Right 3 

GCL Anomic 65 Male 16 25.4 Ischemic Right 5 

HLL Anomic 53 Male 14 24.4 Hemorrhagic Ambidextrous 3 

HPY Broca 78 Female 12 27.1 Ischemic Right 3 

ICY Anomic 75 Male 19 105.5 Ischemic Right 3 

IEB Broca 57 Female 13 13.6 Ischemic Right 2 

JVC Broca 57 Male 14 21.9 Both Right 4 

KAP Anomic 58 Female 18 16.4 Ischemic Right 3 

KGX Broca 56 Male 14 41.9 Ischemic Right 3 

LJL Broca/Global 54 Male 18 30.3 Ischemic Left 3 

LSD Broca 49 Male 14 67.9 Ischemic Right 3 

LSW Broca 46 Male 12 42.9 Ischemic Right 3 

MAD Broca 58 Male 14 32.6 Ischemic Right 2 

MFV Broca 45 Male 16 72 Hemorrhagic Right 3 

MHL Anomic 66 Male 16 149.1 Unknown Right 1 

MLM Anomic 59 Male 12 81.9 Ischemic Right 1 

MLO - 47 Female 18 107.5 Ischemic Right 1 

MLU Anomic 55 Male 12 26.9 Ischemic Right 3 

NJG Global 57 Female 12 7.9 Ischemic Right 1 

NQL Anomic 67 Male 20 23.2 Ischemic Right 3 

OBA Anomic 63 Male 20 137.6 Ischemic Right 3 

ODH Conduction 71 Female 12 22.1 Ischemic Right 5 

PRO Broca 64 Female 24 116.6 Ischemic Right 3 

PSN - 58 Male 18 136.9 Hemorrhagic Right 2 

PTI Wernicke/Broca 64 Female 18 60.2 Ischemic Right 4 

RCQ Anomic 50 Female 12 37 Ischemic Right 2 

RGI - 50 Male 18 7.9 Ischemic Right 2 

SBF Conduction 56 Male 18 12.3 Ischemic Right 1 

SHB Anomic 43 Male 12 11.3 Ischemic Ambidextrous 1 

SLO Anomic 75 Male 17 151.2 Ischemic Left 3 

STP Broca 73 Male 18 47.3 Ischemic Right 3 

SWD Anomic 70 Male 21 6.2 Unknown Right 1 

TSE Anomic 77 Male 19 112.6 Unknown Right 1 

VMX Anomic 61 Female 12 58.2 Hemorrhagic Right 3 

WBT Anomic 61 Male 14 38.3 Ischemic Right 1 

WSS Anomic 56 Male 18 69 Ischemic Right 3 

XTK Broca/Cond 49 Male 16 16.8 Hemorrhagic Right 3 

ZNP Anomic 61 Female 18 36.6 Ischemic Right 3 
†Aphasia type evolved over the course of lab participation for some patients. 

*Ischemic stroke includes ischemia with hemorrhagic conversion. 

Supplemental Table 1. Patient cohort demographics in this study. 
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