
BELLA: Berkeley Efficient Long-Read to Long-Read

Aligner and Overlapper

Giulia Guidi1,2,*, Marquita Ellis1,2, Daniel Rokhsar3,4,
Katherine Yelick1,2, Aydın Buluç1,2,*

1Computer Science Division, University of California at Berkeley, Berkeley, CA 94720, USA
2Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

3Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
4DOE Joint Genome Institute, Walnut Creek, CA 94598, USA

∗To whom correspondence should be addressed.
Contact: gguidi@berkeley.edu

Availability: https://github.com/giuliaguidi/bella

Abstract

Recent advances in long-read sequencing enable the characterization of genome structure
and its intra- and inter-species variation at a resolution that was previously impossible. Detect-
ing overlaps between reads is integral to many long-read genomics pipelines, such as de novo
genome assembly. While longer reads simplify genome assembly and improve the contiguity
of the reconstruction, current long-read technologies come with high error rates. We present
Berkeley Long-Read to Long-Read Aligner and Overlapper (BELLA), a novel algorithm for
computing overlaps and alignments via sparse matrix-matrix multiplication that balances the
goals of recall and precision, performing well on both.

We present a probabilistic model that demonstrates the feasibility of using short k-mers
for detecting candidate overlaps. We then introduce a notion of reliable k-mers based on our
probabilistic model. Combining reliable k-mers with our binning mechanism eliminates both
the k-mer set explosion that would otherwise occur with highly erroneous reads and the spurious
overlaps from k-mers originating in repetitive regions. Finally, we present a new method based
on Chernoff bounds for separating true overlaps from false positives using a combination of
alignment techniques and probabilistic modeling. Our methodologies aim at maximizing the
balance between precision and recall. On both real and synthetic data, BELLA performs
amongst the best in terms of F1 score, showing performance stability which is often missing for
competitor software. BELLA’s F1 score is consistently within 1.7% of the top entry. Notably,
we show improved de novo assembly results on synthetic data when coupling BELLA with the
Miniasm assembler.

1 Introduction

Recent advancements in long-read sequencing technologies enable the characterization of genome
structure and its variation between and within species that were not possible before. Nevertheless,
the analysis of data after sequencing remains a challenging task. One of the biggest challenges
for the analysis of high-throughput sequencing DNA fragments, namely reads, is whole genome
assembly (Zhang et al., 2011), which is the process of aligning and merging DNA fragments to
reconstruct the original sequence. More specifically, de novo genome assembly reconstructs a
genome from redundantly sampled reads without prior knowledge of the genome, enabling the
study of previously uncharacterized genomes (Simpson and Durbin, 2012).

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

Long-read technologies (Eid et al., 2009; Goodwin et al., 2015) generate long reads with average
lengths reaching and often exceeding 10,000 base pairs (bp). These allow the resolution of complex
genomic repetitions, enabling more accurate ensemble views that were not possible with previous
short-read technologies (Phillippy et al., 2008; Nagarajan and Pop, 2009). However, the improved
read length of these technologies comes at the cost of lower accuracy, with error rates ranging
from 5% to 35%. Nevertheless, errors are more random and more evenly distributed within Pacific
Biosciences long-read data (Giordano et al., 2017) compared to short-read technologies.

The majority of state-of-the-art long-read assemblers uses the Overlap-Layout-Consensus (OLC)
paradigm (Berlin et al., 2015). The first step in OLC assembly consists of detecting overlaps be-
tween reads to construct an overlap (or string) graph. The OLC paradigm benefits from longer
reads as significantly fewer reads are required to cover the genome, limiting the size of the overlap
graph. Highly-accurate overlap detection is a major computational bottleneck in OLC assem-
bly (Myers, 2014), mainly due to the compute-intensive nature of pairwise alignment.

At present, several algorithms are capable of overlapping error-prone long-read data with vary-
ing accuracy. The prevailing approach is to use an indexing data structure, such as a k-mer index
table or a suffix array to identify a set of initial candidate read pairs, thus mitigating the high cost
of computing pairwise alignments in a second stage (Chu et al., 2016).

The process of identifying a set of initial candidate read pairs, sometimes simply known as
overlapping, affects both the accuracy and the algorithm runtime. Precise identification of initial
candidate read pairs minimizes the pairwise alignment running time while retaining all pairs that
truly overlap in the genome. Computationally efficient and highly accurate overlapping and align-
ment algorithms have the potential to improve existing long-read assemblers, enabling de novo
reference assemblies, detection of genetic variations of higher quality, and accurate metagenome
classification. Our main contributions are:

1. Using a Markov chain model (Markov, 1971), we demonstrate the soundness of using a k-mer
seed-based approach for accurately identifying initial candidate read pairs.

2. We develop a simple procedure for pruning k-mers and prove that it retains nearly all true
overlaps with high probability. The result is greater computational efficiency without loss of
accuracy.

3. We reformulate the problem of overlap detection in terms of a sparse matrix-matrix multi-
plication (SpGEMM), which enables the use of high-performance techniques not previously
applied in the context of long read overlap and alignment.

4. Coupling our overlap detection with our newly developed seed-and-extend alignment algo-
rithm, we introduce a novel method to separate true alignments from false positives.

2 Proposed Algorithm

The current work develops a computationally efficient and highly accurate algorithm for overlap
detection and alignment for long-read genomics pipelines. The algorithm is implemented in a high-
performance software package, called Berkeley Long-Read to Long-Read Aligner and Overlapper
(BELLA).

BELLA uses a seed-based approach to detect overlaps in the context of long-read applications.
Such an approach parses the reads into k-mers (i.e. sub-strings of fixed length k), which are then
used as feature vectors to identify overlaps amongst all reads. Using a Markov chain model, we

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

first show the feasibility of using a k-mer seed based approach for overlap detection of long-read
data with high error rates.

Importantly, not all k-mers are created equal in terms of their usefulness for detecting overlaps.
For instance, the overwhelming majority of k-mers that occur only once in the data set are errors
(and are also not useful for seeding overlaps between pairs of reads). Similarly, k-mers that occur
more frequently than what would be expected given the sequencing depth and the error rate are
likely to come from repetitive regions. It is a common practice to prune the k-mer space using
various methodologies (Koren et al., 2017; Lin et al., 2016; Carvalho et al., 2016).

BELLA implements a novel method for filtering out k-mers that are likely to either contain
errors or originate from a repetitive region. The k-mers that are retained by BELLA are considered
to be reliable, where the reliability of a k-mer is defined as its probability of having originated from
a unique (non-repetitive) region of the genome. BELLA’s reliable k-mer detection maximizes the
retention of k-mers that belong to unique regions of the genome, using a probabilistic analysis
given the error rate and the sequencing depth.

BELLA uses a sparse matrix to internally represent its data, where the rows are reads, columns
are reliable k-mers, and a nonzero A(i, j) 6= 0 contains the position of the jth reliable k-mer within
ith read. Construction of this sparse matrix requires efficient k-mer counting.

Overlap detection is implemented in BELLA using SpGEMM, which allows our algorithm to
achieve fast overlapping without using approximate approaches. SpGEMM is a highly flexible
and efficient computational paradigm that enables the better organization of computation and
generality because it can manipulate complex data structures such as the ones used in finding
overlaps using shared k-mers. The implementation of this method within our pipeline enables the
use of high-performance techniques previously not applied in the context of long-read alignment. It
also allows continuing performance improvements in this step due to the ever-improving optimized
implementations of SpGEMM (Nagasaka et al., 2019; Deveci et al., 2017).

BELLA’s overlap detection has been coupled with our high-performance seed-and-extend al-
gorithm, meaning the alignment between two reads starts from a shared seed (identified in the
previous overlap detection) and not necessarily from the beginning of reads. To refine the seed
choice, we introduce a procedure, called binning. The k-mer positions in a read pair are used to
estimate the length of the overlap, and the k-mers are “binned” based on their length estimates.
We consider for alignment only k-mers belonging to the most crowded bins, termed consensus
k-mers. During the alignment stage, BELLA uses a new method to separate true alignments from
false positives depending on the alignment score. We prove that the probability of false positives
decreases exponentially as the length of overlap between reads increases.

Existing tools also implement approximate overlap detection using sketching. A sketch is a
reduced space representation of a sequence. Multiple randomized hash functions convert k-mers
into integer fingerprints and a subset of these is selected to represent the sketch of a sequence
according to some criterion. For example, Berlin et al. (2015) retain only the smallest integer for
each hash function and use the collection of these minimum valued fingerprints as sketch. These
methods, while fast, are approximate because sketching is a lossy transformation. Conversely,
BELLA uses an explicit k-mer representation, which allows us to couple our overlap detection with
a seed-and-extend alignment to refine the output and to improve the precision of our algorithm.

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

Giulia Guidi
gguidi@berkeley.edu

!1

Proposed model

!

Number of states:
Legend:

State: correct bases on readi and readj

Slides by Giulia Guidi
giulia.guidi@mail.polimi.it

!1Proposed model

0 1 3

 i
State: correct bases on
readi and on readj

For the sake of simplicity here k is equal to 5

Legend of transition probabilities:
States number:

2

4 5
! − 1 !

2
0 1

! + 1

'

! − 1 !

2
0 1

! + 1

'

! − 1 !

2
0 1

! + 1

'

! − 1 !

2
0 1

! + 1

'

! − 1 !

2
0 1

! + 1

'

! − 1 !

2
0 1

! + 1

'

Figure 1: Proposed Markov chain model to prove the feasibility of using short k-mers for overlap detection.

3 Methods

Overlapping Feasibility

Chaisson and Tesler (2012) proposed a theory for how long reads contain subsequences that may
be used to anchor alignments to the reference genome. The sequences are modeled as random
processes that generate error-free regions whose length is geometrically distributed, with each
such region separated by an error (Giordano et al., 2017). The result obtained from their theory
is the minimum sequence length to have an anchor within a confidence interval.

Here, we present an alternative model on how these subsequences, also known as k-mers, can
be used to anchor alignments between two erroneous long reads, allowing an accurate overlap
discovery among all the reads in a data set. The initial assumption of our model defines the
probability of correctly sequencing a base as equal to p = (1− e), where e is the error rate of the
sequencer. From this notion, we model the probability of observing k correct consecutive bases on
both read1 and read2 as a Markov chain process (Markov, 1971).

The Markov chain process is characterized by a transition matrix P that includes the proba-
bilities to move from one state to another. Each row-index start of P represents the starting state,
and each column-index end of P represents the ending state. Each entry of P is a non-negative
number indicating a transition probability. Our transition matrix has (k+1) possible states, which
lead to (k+1)2 transition probabilities of moving from start to end. The probability of having one
correct base on both reads is p2. For any state except the absorbing state k, an error in at least
one of the two sequences sets the model back to state 0, which happens with probability 1 − p2;
otherwise, the Markov chain transition from state i to i + 1 happens with probability p2. The
absorbing state k cannot be abandoned, as both read1 and read2 have already seen k consecutive
correct bases. Hence, its transition probability is 1. Figure 1 describes the process: each state
contains the number of successful sequenced bases obtained up to this point on both reads, while
the arrows represent the transition probabilities.

One can then find the probability of being in any of the states after L steps in the Markov chain
by computing the Lth power of the matrix P, where L is the length of the overlap between the
two sequences. More efficiently, one can compute this iteratively using just L sparse matrix-vector
products starting from the unit vector v← (1, 0, . . . , 0), as shown in Algorithm 1. This approach
is sufficient because we are only interested in the probability of being in the final absorbing state.
The above operation leads to the probability of having one correct k-mer in the same location on
both reads given a certain overlap region.

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 1 Probability of observing at least one shared correct k-mer in an overlap region of
length L > k.

1: procedure EstimateSharedKmerProbability(k,L,p)
2: states← (k + 1)
3: P← 0 . Entire matrix initialized to 0
4: for i← 0 to states do
5: P[i, 0]← (1− p2)
6: P[i, i+ 1]← p2

7: end for
8: P[states, states]← 1
9: v← (1, 0, . . . , 0) . Initialized to standard unit vector

10: for i← 0 to L do . Compute vPL without exponentiation
11: v← vP
12: end for
13: return v[states]
14: end procedure

The proposed model is the driving factor behind the choice of the optimal k-mer length to be
used during overlap detection.

Reliable k-mers

Repetitive regions of the genome lead to certain k-mers occurring frequently in the input reads.
k-mers from these regions pose two problems for pairwise overlapping and alignment. First, their
presence increases the computational cost, both at the overlapping stage and at the alignment
stage, because these k-mers generate numerous and possibly spurious overlaps. Second, they often
do not provide valuable information.

Our argument here is that k-mers coming from a repetitive region in the genome can be ignored
for seed-based overlapping. This is because either (a) the read is longer than the repeat, in which
case there should be enough sequence data from the non-repeat section to find overlaps, or (b) the
read is shorter than the repeat, in which case their overlaps are ambiguous and uninformative to
begin with and will not be particularly useful for downstream tasks such as de novo assembly.

Following the terminology proposed by Lin et al. (2016), we identify k-mers that do not exist
in the genome as non-genomic, thus characterizing k-mers present in the genome as genomic. A
genomic k-mer can be repeated, if it is present multiple times in the genome, or unique, if it is not.
One can think of the presence of k-mers within each read as that read’s feature vector. For the
reasons discussed above, the feature vector should include all the unique k-mers, as they often are
the most informative features.

Since we do not know the genome before assembly, we must estimate the genomic uniqueness of
k-mers from our redundant, error-containing reads. In this section, we provide a mathematically
grounded procedure that chooses a frequency range for k-mers that we consider being reliable. The
basic question that guides the reliable k-mer selection procedure is the following: “Given that a
k-mer is sequenced from a unique (non-repeat) region of the genome, what is the probability it will
occur at least m times in the input data?”. For a genome G sequenced at depth d, the conditional
modeled probability is:

Pr(freq(k-mer, G, d) ≥ m | count(map(k-mer, G) = 1) (1)

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

where map(k-mer, G) is the set of locations in the genome G where k-mer can be mapped, count()
function computes the cardinality of a given input set, and freq(k-mer, G, d) is the expected
number of occurrences of k-mer within sequenced reads, assuming each region of G is sequenced
d times (sequencing depth). In that sense, BELLA’s approach to select reliable k-mers diverges
sharply from how Lin et al. (2016) selects their solid strings. While solid strings discard infrequent
k-mers, our model discards highly-repetitive k-mers, arguing that (a) unique k-mers are sufficient
to find informative overlaps, and (b) a unique k-mer has a low probability of occurring frequently.

The probability of a k-mer being sequenced correctly is approximately (1 − e)k, where e is
the error rate. The probability of correctly sequencing a k-mer once can be generalized to obtain
the probability of seeing it multiple times in the data, considering that each correct sequencing
of that k-mer is an independent event. For example, if the sequencing depth is d, the probability
of observing a unique k-mer ki in the input data d times is approximatively (1 − e)dk. More
generally, the number of times a unique k length section of the genome is sequenced correctly
when the sequencing depth is d follows a binomial distribution:

B(n = d, p = (1− e)k) (2)

where n is the number of trials and p is the probability of success. Consequently, we derive that
the probability of observing a k-mer ki (which corresponds to a unique, non-repetitive region of
the genome) m times within a sequencing input data with depth d is:

Pr(m; d, (1− e)k) =

(
d

m

)
(1− e)km(1− (1− e)k)(d−m) (3)

where m is the multiplicity of the k-mer in the input data, e is the error rate, d is the sequencer
depth, and k is the k-mer length. Given the values of d, e, and k, the curve Pr(m; d, (1− e)k) can
be computed.

Equation 3 is used to identify the range of reliable k-mers. To select the lower bound l, we
compute Pr(m; d, (1 − e)k) for each multiplicity m and cumulatively sum up these probabilities,
starting from m = 2. The cumulative sum does not start from m = 1 because a k-mer appearing a
single time in the input data (and therefore appearing on a single read) cannot be used to identify
the overlap between two reads. The lower bound l is the smaller m value after which the cumulative
sum exceeds a user-defined threshold ε. The choice of l matters when the sequencing error rate
is relatively low (≈ 5%) or when the sequencing coverage is high (≈ 50 − 60×), or both. This is
because in those cases, a k-mer with small multiplicity has a high probability to be incorrect.

The upper bound u is chosen similarly. Here, the probabilities are cumulatively summed up
starting from the largest possible value of m (i.e. d). In this case, u is the largest value of m
after which the cumulative sum exceeds the user-defined threshold ε. The k-mers that appear
more frequently than u have too low a probability of belonging to a unique region of the genome,
and multi-mapped k-mers would lead to an increase of computational cost, and potentially to
misassemblies.

K-mers appearing with greater multiplicities than u and those appearing with smaller multi-
plicities than l in the input set are discarded and not used as read features in the downstream
algorithm. Our reliable k-mer selection procedure discards at most 2ε useful information in terms
of k-mers that can be used for overlap discovery.

Sparse Matrix Construction and Multiplication

BELLA uses a sparse matrix format to store its data and sparse matrix-matrix multiplication
(SpGEMM) to identify overlaps. Sparse matrices express the data access patterns concisely and

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

R1 R2 R3 R4 R5

R1 R2 R3 R4 R5

R1

R2

R3

R4

R5

R1

R2

R3

R4

R5

K1 K2 K3 K4 K5

K1

K2

K3

K4

K5

A AT

Hash accumulator

1

2 AAT

Figure 2: Column-by-column sparse matrix multiplication. AT(:, R3) is selected as the “active column”:
its non-zero elements define which columns of A need to be considered, by looking at their corresponding
row indexes in AT.

clearly, allowing better organization of computation. The sparse matrix A, also known as the
data matrix, is a |reads|-by-|k-mers| matrix with reads as its rows and the entries of the k-mer
dictionary as its columns. If the jth reliable k-mer is present in the ith read, the cell (i, j) of A
is non-zero. A is then multiplied by its transpose, AT, yielding a sparse overlap matrix AAT of
dimensions |reads|-by-|reads|. Each non-zero cell (i, j) of the overlap matrix contains the number
of shared k-mers between the ith read and the jth read and the corresponding positions in the
corresponding read pair of (at most) two shared k-mers.

The column-by-column sparse matrix multiplication is implemented efficiently using the Com-
pressed Sparse Columns (CSC) format for storing sparse matrices. However, other options are
certainly possible in the future, which is one of the advantages of our work. Any novel sparse
matrix format and multiplication algorithm would apply to the overlapping problem and would
enable continued performance improvements since multiple software packages already implement
this primitive, including Intel MKL and Sandia’s KokkosKernels (Deveci et al., 2017).

The SpGEMM algorithm shown in Figure 2 is functionally equivalent to a k-mer based seed-
index table, which is common in other long-read alignment codes. However, the CSC format
allows true constant-time random access to columns as opposed to hash tables. More importantly,
the computational problem of accumulating the contributions from multiple shared k-mers to
each pair of reads is handled automatically by the choice of appropriate data structures within
SpGEMM. Figure 2 illustrates the merging operation of BELLA, which uses a hash table data
structure indexed by the row indexes of A, following the multi-threaded implementation proposed
by Nagasaka et al. (2019). Finally, the contents of the hash table are stored into a column of the
final matrix once all required nonzeros for that column are accumulated.

Since BELLA performs a seed-and-extend alignment from pairs of reads that share at least t
(by default t = 1) k-mers, the overlapping stage needs to keep track of the positions of the shared
k-mers. In the cases of multiple k-mers shared between any pair of reads, it is not economical
to store all k-mer matches. Furthermore, while the reliable k-mer selection procedure described
earlier eliminates most of the hits from repetitive regions, it is still possible to observe misleading
k-mer matches due to sequencing errors and repetitions.

To ensure an optimal seed choice for the alignment step, BELLA employs the following binning

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

methodology. Whenever a shared k-mer is encountered between a pair of reads, we use its location
in these reads to estimate an overlap length and orientation. A new overlap estimate forms its
bin with a single element unless it is already within the boundaries of a previous bin (i.e. within
an adjustable distance β, which is 500 by default), in which case that nearby bin’s vote count is
incremented by one as long as the two originating k-mers are not overlapping. Only two bins with
the highest number of votes are retained, together with a representative k-mer supporting that
overlap estimate.

In the resulting sparse overlap matrix AAT, each non-zero cell (i, j) is a structure composed
of an integer value storing the number of shared k-mers, and an integer array of size 4 storing the
position on read i and on read j of (up to two) shared k-mers corresponding to the overlap estimate
bins with highest number of votes. To enable this special multiplication that performs scalar
multiplication and additions differently, we use the semiring abstraction (Kepner and Gilbert,
2011). Multiplication on a semiring allows the user to overload scalar multiplication and addition
operations and still use the same SpGEMM algorithm. Many existing SpGEMM implementations
support user-defined semirings, including those that implement the GraphBLAS API (Buluç et al.,
2017).

Increasing the genome size also increases the memory requirements for building the final overlap
matrix. For large genomes, it is possible that the sparse overlap matrix AAT would not fit in
memory even if the data matrix A does. BELLA avoids this situation by dividing the multiplication
into batches based on the available RAM. At each stage, only a batch of columns of the overlap
matrix are created. The set of nonzeros in that batch of the overlap matrix are immediately tested
for alignments (as described in Section 3). The pairs that pass the alignment test are written to
the output file of BELLA so that the current batch of overlap matrix can be discarded.

Given the nature of our problem, the sparse overlap matrix AAT is a symmetric matrix.
Thus, we compute the multiplication using only the lower triangle of A, avoiding computing
the pairwise alignment twice for each pair. Currently, there are no known specialized SpGEMM
implementations for AAT that store and operate only on A, but we hope to develop one in
the future. This would have cut the memory requirements in half. The obvious solution of
computing inner projects of rows of A is suboptimal, because it has to perform Ω(|reads|2) inner
products even though the majority of inner products are zero. By contrast, our column-by-column
implementation runs faster than O(|reads|2) whenever the overlap matrix AAT is sparse. Given
that the main purpose of the overlapping process is used to filter candidate pairs, the overlap
matrix tends to be very (over 99%) sparse in practice.

Pairwise Alignment

As high precision is desirable for avoiding wasted work in subsequent stages of de novo assembly,
BELLA filters candidate read pairs by performing fast, near linear-time pairwise seed-and-extend
alignments.

As opposed to approaches that rely on sketches or minimizers, such as Minimap2 and MHAP,
seed-and-extend alignment can be performed directly using the k-mers from BELLA’s overlap
stage. BELLA’s alignment module is based on our high-performance seed-and-extend banded-
alignment, which uses a narrow adaptive band that appreciably improves performance reducing
the search space for the optimal alignment.

Our binning mechanism returns at most two seed k-mers, which are used as inputs to the seed-
and-extend x-drop alignment. For each read pair in the overlap matrix, the alignment is extended
from one- or two-seed k-mers until the alignment score drops x points below the best score seen
so far. Once the alignment is complete, if the best score is lower than a threshold n, the pair of

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1: Data sets used for evaluation. Data sets above the line are real data, while data sets below the line
have been generated using PBSIM (Ono et al., 2012). Download: portal.nersc.gov/project/m1982/bella/

Short Name Species and Strain Fastq Size

E.coli (Sample) 30X Escherichia coli MG1655 strain 266 MB
E.coli 100X Escherichia coli MG1655 strain 929 MB
C.elegans 40X Caenorhabditis elegans Bristol mutant strain 8.90 GB

P. aeruginosa 30X Pseudomonas aeruginosa PAO1 359 MB
V. vulnificus 30X Vibrio vulnificus YJ016 288 MB
A. baumannii 30X Acinetobacter baumannii 248 MB
C.elegans 20X Caenorhabditis elegans 3.75 GB

sequences is discarded.
Since a fixed alignment score threshold might not capture true alignments, we use an adaptive

threshold, calculated according to the estimated overlap between a given pair of reads. The choice
of the scoring matrix used in the pairwise alignment step can justify the alignment score threshold
being a linear function of the estimated overlap length.

Given an estimated overlap region of length L and the probability p = q2 of getting a correct
base on both sequences, we would expect m = p · L correct matches within that overlap region.
The alignment score χ can be written as follows:

χ = αm− β(L−m) = αpL− β(L− pL) (4)

where m is the number of matches, L is the length of the overlap region, α is the value associated
with a match in the scoring matrix while β is the penalty for mismatch or a gap/indel (α, β > 0).
Given these assumptions, we define the ratio ϕ between χ and the estimated overlap length L as:

ϕ =
χ

L
= αp− β(1− p). (5)

The expected value of ϕ is equal to 2 · p − 1, if an exact alignment algorithm is used. We
would like to define a cutoff in the form of (1 − δ)ϕ, so that we retain pairs over this cutoff as
true alignments and discard remaining pairs. We use a Chernoff bound (Chernoff et al., 1952;
Hoeffding, 1963) to define the value of δ, proving that there is only a small probability of missing
a true overlap of length L ≥ 2000 bp (which is the minimum overlap length for a sequence to be
considered a true-positive) when using the above-defined cutoff. We derived the following Chernoff
bound:

Pr[X ≤ (1− δ)µx] ≤ e−δ2pL. (6)

Given two sequences that indeed overlap by L = 2000, the probability of their alignment score
being below the mean by more than 10% (δ = 0.1) is ≤ 5.30 × 10−7. The derivation of the
above formula is reported in Supplementary Material. BELLA achieved high values of recall and
precision among state-of-the-art software tools, with an x-drop value of x = 50 and an adaptive
threshold derived from the scoring matrix and the with δ = 0.1 cutoff rate.

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

4 Evaluation

Table 1 lists the data sets used for evaluation. The selected genomes have varying size and
complexity since analysis results are sensitive to these features (Li et al., 2012).

As for performance metrics, we use recall, precision, F1 score, and running time. The recall is
defined as the fraction of true positives of the aligner/overlapper over the total size of the ground
truth; precision is the fraction of true positives of the aligner/overlapper over the total number of
elements found by the aligner/overlapper. F1 score is the harmonic average of precision and recall.

We consider a read pair as true-positive if the sequences align for at least 2 kb in the reference
genome. We derived the threshold t = 2 kb from the procedure proposed by Li (2016), and
generated the ground truth using Minimap2. A detailed description of our evaluation procedure
and ground truth generation can be found in Supplementary Material.

We also report preliminary assembly results on simulated data sets, obtained by coupling the
overlappers/aligners with the Miniasm assembler (Li, 2016). As assembly quality metrics, we
include the number of contigs, the number of misassemblies, N50, and the total assembly length.
A contig is defined as a set of overlapping reads that together represent a consensus region of the
genome. Misassemblies are the set of positions in the contigs whose flanking sequences map more
than 1kbps away from each other. N50 is a measure of the assembly contiguity and is defined as
the minimum contig length needed to cover 50% of the genome.

5 Results

BELLA is evaluated against several state-of-the-art software for long-read overlap detection and
alignment, using both synthetic and real PacBio data sets. The synthetic data sets were generated
using PBSIM (Ono et al., 2012) with an error rate of 15%. Notably, the advantage of synthetic
data is that the ground truth is known. Table 2 and Table 3 show results on synthetic and real
data sets, respectively, in terms of accuracy and runtime. The last column of each table indicates
whether the respective overlapper also performs nucleotide-level alignment on overlapping reads.
Table 4 illustrates assembly results on simulate data sets. Each overlapper was coupled with
Miniasm assembler (Li, 2016).

Table 2 shows that MECAT trades off recall for precision, achieving the highest precision
but missing a large number of the true overlaps. In contrast, BELLA, Minimap2, and BLASR
were consistently strong (typically over 80%) in both precision and recall, but BLASR had a
much higher computational cost (2.6× slower than BELLA on average). BELLA’s F1 score is
consistently higher than competitor software with the exception of Minimap2, which had a slight
improvement of 1.1% on three out of four data sets, while BELLA had an improvement of 1.2%
over Miniamp2 on C. elegans 20X. Minimap2 was the fastest tool for synthetic data, performing
only overlapping and not alignment.

Table 3 shows that, although BLASR performed reasonably well on the synthetic data sets, it
achieved lower recall than other software on real data sets. BLASR did not run on C. elegans 40X
as its latest version (v5.1) does not accept fastq larger than 4 GB1. DALIGNER proved to be
the fastest of the tools on E. coli 30X and E. coli 100X, but its performance decreases drastically
when moving to a larger data set where DALIGNER has the worst running time, 2.5× slower than
BELLA that also performs alignment. BELLA’s F1 score outperformed competitor software with
the exception of Minimap2 on E. coli 100X.

1https://github.com/PacificBiosciences/pbbioconda/issues/46

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 2: Recall, precision, F1 score, and time comparison (synthetic data). The last column indicates
if the tool computes alignments. Bold font indicates best performance and underlined font indicates the
second-best. DALIGNER did not run with synthetic data sets.

Data Set Overlapper Recall Precision F1 Score Time (s) Alignment

P. aeruginosa 30X BELLA 97.66 89.68 93.50 140.43 Y
BLASR 86.86 90.54 88.66 230.97 Y
MECAT 38.40 95.20 54.72 21.76 N
Minimap2 99.10 88.83 93.69 17.76 N
MHAP 72.68 63.42 67.74 72.72 N

V. vulnificus 30X BELLA 97.27 84.05 90.18 42.76 Y
BLASR 87.31 84.74 86.01 179.51 Y
MECAT 43.53 88.89 58.44 17.20 N
Minimap2 96.71 89.33 92.87 12.93 N
MHAP 74.52 45.10 56.19 70.21 N

A. baumannii 30X BELLA 97.54 84.90 90.78 44.69 Y
BLASR 89.51 84.58 86.98 152.76 Y
MECAT 46.31 90.39 61.25 15.65 N
Minimap2 96.89 85.79 91.01 10.06 N
MHAP 76.88 28.79 41.89 69.02 N

C. elegans 20X BELLA 91.80 88.02 89.87 2,352.24 Y
BLASR 95.61 78.19 86.02 3,655.12 Y
MECAT 13.45 95.09 23.57 222.10 N
Minimap2 95.76 82.84 88.83 194.77 N
MHAP 82.57 6.41 11.90 5,353.30 N

Table 4 shows that BELLA significantly improved assembly quality with respect to competitor
software. MECAT produced fewer contigs than BELLA on C. elegans 20X, but its N50 and
assembly length are significantly smaller, meaning MECAT did not retain sufficiently many true
overlaps to perform the assembly. Miniasm did not produce any assembly when coupled with
MHAP and BLASR.

6 Discussion

BELLA proposes a computationally efficient and highly accurate approach for overlapping and
aligning noisy long reads, based on mathematical models that minimize the cost of overlap detec-
tion while maximizing the retention of true overlaps. Tables 2 and 3 show BELLA’s competitive
accuracy compared to state-of-the-art software, demonstrating the effectiveness of the methodolo-
gies we introduced and implemented within BELLA. Our runtime is within the average of compet-
itive software, which is noteworthy given that BELLA performs nucleotide-level alignments that
are sufficiently accurate to facilitate downstream analysis.

On synthetic data, BELLA achieves both high recall and precision, consistently among the
best. On real data, recall and precision are generally lower than for synthetic data, nevertheless,
BELLA’s F1 scores remain amongst the best, showing performance stability which is often missing
in competitor software. Notably, BELLA has a 49.16% higher F1 score than Minimap2 for C.
elegans 40X. Overall, a good performer on one data set becomes one of the worst on some other

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 3: Recall, precision, F1 score, and time comparison (real data). The last column indicates whether
the considered aligner does actual alignment or just overlap detection. BLASR result for C. elegans 40X is
not reported as BLASR v5.1 does not accept fastq larger than 4 GB.

Data Set Overlapper Recall Precision F1 Score Time (s) Alignment

E. coli (Sample) BELLA 82.66 85.69 84.15 60.94 Y
DALIGNER 89.97 62.62 73.84 8.70 Y
BLASR 77.64 79.64 78.63 160.05 Y
MECAT 78.41 78.71 78.56 24.45 N
Minimap2 91.40 76.36 83.21 16.57 N
MHAP 79.71 66.93 72.76 43.67 N

E. coli BELLA 65.08 71.22 68.01 374.37 Y
DALIGNER 82.18 54.50 65.54 58.50 Y
BLASR 35.41 72.01 47.48 715.19 Y
MECAT 54.61 72.69 62.37 84.21 N
Minimap2 80.68 62.30 70.30 107.76 N
MHAP 67.84 44.60 53.81 287.66 N

C. elegans 40X BELLA 75.43 73.81 74.61 9,042.36 Y
DALIGNER 62.81 58.66 60.67 22,797.50 Y
MECAT 73.05 75.27 74.14 733.79 N
Minimap2 94.13 34.06 50.02 1,733.26 N

MHAP 86.63 5.31 10.01 9,102.23 N

data set whereas BELLA’s F1 score is consistently within 1.7% of the top entry.
Tables 2 and 3 show that BELLA achieves higher values of F1 score on synthetic data compared

to real data. The way ground truth is generated could explain such behavior. For synthetic data,
the ground truth comes directly with the data set itself. Thus, we know the exact location from
which a read originates in the reference genome and which other reads overlap with it. For real
data, the read locations in the reference are determined by mapping the reads to the reference
using Minimap2 in its “mapping mode”, as detailed in our Supplementary Material. Intuitively,
such procedure is suboptimal as there is no guarantee that Minimap2 correctly locates every
single read. BELLA could potentially find a better set of true overlaps than those identified by
Minimap2. Given a uniformly covered genome, we observed that Minimap2 and other long read
mappers tend to map reads to “hotspots” within a genome instead of mapping them uniformly
across the genome. This results in uneven coverage and overestimation of overlaps by a factor of
1.14×, as shown in the Supplementary Material. Recall above a certain point on real data would
mean the overlapper is overestimating the overlap cardinality as well. Hence, it is possible that
BELLA’s true accuracy on real data is higher in reality. We plan to investigate these issues deeper
in the future.

Table 4 gives an insight into the beneficial impact of BELLA as part of a de novo assembly
pipeline. Our methodologies, such as the reliable k-mer procedure, sensibly improve the assembly
contiguity when compared to MECAT and Minimap2. Importantly, Miniasm did not produce any
output when using either MHAP or BLASR, which leads us to emphasize that an assembler is
often built with a particular overlapping tool in mind, is programmed to take advantage of that
tool’s methodologies. We plan to build our assembler upon BELLA to fully exploit its potential.

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 4: Preliminary assembly result of synthetic data sets. Overlappers’ outputs have been translated in
PAF format and paired with Miniasm (Li, 2016) assembler. DALIGNER did not run with synthetic data
sets. Miniasm did not produce any output when paired with BLASR and MHAP.

Data Set Overlapper Contigs N50 Total Length Misassemblies

P. aeruginosa 30X BELLA 39 299,124 6,539,838 0
6,264,404 bp MECAT 130 30,078 3,123,445 0

Minimap2 118 84,638 6,368,698 0

V. vulnificus 30X BELLA 39 201,956 5,319,876 0
5,126,696 bp MECAT 101 30,132 2,585,336 0

Minimap2 105 58,711 4,941,291 0

A. baumannii 30X BELLA 35 185,443 4,486,557 0
4,335,793 bp MECAT 88 33,248 2,234,729 0

Minimap2 93 61,967 4,092,102 0

C. elegans 20X BELLA 2,792 35,782 82,763,749 0
100,286,401 bp MECAT 366 10,661 2,398,741 0

Minimap2 2,875 19,894 49,724,174 0

7 Conclusion

Long-read sequencing technologies enable highly accurate reconstruction of complex genomes.
Read overlapping is a major computational bottleneck in long-read genomic analysis pipelines
such as genome and metagenome assembly.

We presented BELLA, a computationally efficient and highly accurate long-read to long-read
aligner and overlapper. BELLA uses a k-mer based approach to detect overlaps between noisy, long
reads. We demonstrated the feasibility of the k-mer based approach through a mathematical model
based on Markov chains. BELLA provides a novel algorithm for pruning k-mers that are unlikely
to be useful in overlap detection and whose presence would only incur unnecessary computational
costs. Our reliable k-mers detection algorithm explicitly maximizes the probability of retaining
k-mers that belong to unique regions of the genome.

BELLA achieves fast overlapping without sketching using sparse matrix-matrix multiplica-
tion (SpGEMM), implemented utilizing high-performance software and libraries developed for this
sparse matrix subroutine. Any novel sparse matrix format and multiplication algorithm would
be applicable to overlap detection and enable continued performance improvements. We coupled
BELLA’s overlap detection with our newly developed seed-and-extend banded-alignment algo-
rithm. The choice of the optimal k-mer seed occurs through our binning mechanism, where k-mer
positions within a read pair are used to estimate the length of the overlap and to “bin” k-mers to
form a consensus.

We developed and implemented a new method to separate true alignments from false positives
depending on the alignment score. This method demonstrates that the probability of false positives
decreases exponentially as the overlap length between sequences increases.

BELLA achieves consistently high values of accuracy compared to state-of-the-art tools on
both synthetic and real data, while being performance competitive. BELLA appreciably improves
assembly results on synthetic data, validating our approach. Future work includes a further char-
acterization of real data features, performance improvements, and the development of an assembler
built on BELLA.

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

Acknowledgements

We thank Heng Li for his help with Minimap2 and Miniasm, Rob Egan and Steven Hofmeyr for
valuable discussions, and NECST Laboratory, Elizabeth Koning, and Ed Younis for key collabo-
rations.

Funding

This work is supported by the Advanced Scientific Computing Research (ASCR) program within
the Office of Science of the DOE under contract number DE-AC02-05CH11231. We used resources
of the NERSC supported by the Office of Science of the DOE under Contract No. DEAC02-
05CH11231. This research was also supported by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear
Security Administration.

References

Angluin, D. and Valiant, L. G. (1979). Fast probabilistic algorithms for hamiltonian circuits and
matchings. Journal of Computer and system Sciences, 18(2), 155–193.

Berlin, K., Koren, S., Chin, C.-S., Drake, J. P., Landolin, J. M., and Phillippy, A. M. (2015).
Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nature
biotechnology , 33(6), 623–630.

Buluç, A., Mattson, T., McMillan, S., Moreira, J., and Yang, C. (2017). Design of the graphblas
API for C. In IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 643–652. IEEE.

Carvalho, A. B., Dupim, E. G., and Goldstein, G. (2016). Improved assembly of noisy long reads
by k-mer validation. Genome research, 26(12), 1710–1720.

Chaisson, M. J. and Tesler, G. (2012). Mapping single molecule sequencing reads using basic local
alignment with successive refinement (BLASR): application and theory. BMC bioinformatics,
13(1), 238.

Chernoff, H. et al. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. The Annals of Mathematical Statistics, 23(4), 493–507.

Chu, J., Mohamadi, H., Warren, R. L., Yang, C., and Birol, I. (2016). Innovations and challenges
in detecting long read overlaps: an evaluation of the state-of-the-art. Bioinformatics, 33(8),
1261–1270.

Deveci, M., Trott, C., and Rajamanickam, S. (2017). Performance-portable sparse matrix-matrix
multiplication for many-core architectures. In IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), pages 693–702. IEEE.

Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P.,
Bettman, B., et al. (2009). Real-time DNA sequencing from single polymerase molecules. Sci-
ence, 323(5910), 133–138.

Frith, M. C., Hamada, M., and Horton, P. (2010). Parameters for accurate genome alignment.
BMC bioinformatics, 11(1), 80.

Giordano, F., Aigrain, L., Quail, M. A., Coupland, P., Bonfield, J. K., Davies, R. M., Tischler,
G., Jackson, D. K., Keane, T. M., Li, J., et al. (2017). De novo yeast genome assemblies from
MinION, PacBio and MiSeq platforms. Scientific reports, 7(1), 3935.

14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

Goodwin, S., Gurtowski, J., Ethe-Sayers, S., Deshpande, P., Schatz, M. C., and McCombie, W. R.
(2015). Oxford nanopore sequencing, hybrid error correction, and de novo assembly of a eukary-
otic genome. Genome research, 25(11), 1750–1756.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of
the American statistical association, 58(301), 13–30.

Jain, C., Zhang, H., Dilthey, A., and Aluru, S. (2019). Validating paired-end read alignments in
sequence graphs. bioRxiv , page 682799.

Kepner, J. and Gilbert, J. (2011). Graph algorithms in the language of linear algebra. SIAM.

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy, A. M. (2017).
Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat sepa-
ration. Genome research, 27(5), 722–736.

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv
preprint arXiv:1303.3997 .

Li, H. (2016). Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
Bioinformatics, 32(14), 2103–2110.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,
and Durbin, R. (2009). The sequence alignment/map format and samtools. Bioinformatics,
25(16), 2078–2079.

Li, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., Zhang, H., Gan, J., Li, N., Hu, X., Liu, B., et al.
(2012). Comparison of the two major classes of assembly algorithms: overlap–layout–consensus
and de-bruijn-graph. Briefings in functional genomics, 11(1), 25–37.

Lin, Y., Yuan, J., Kolmogorov, M., Shen, M. W., Chaisson, M., and Pevzner, P. A. (2016).
Assembly of long error-prone reads using de bruijn graphs. Proceedings of the National Academy
of Sciences, 113(52), E8396–E8405.

Markov, A. (1971). Extension of the limit theorems of probability theory to a sum of variables
connected in a chain.

Myers, G. (2014). Efficient local alignment discovery amongst noisy long reads. In International
Workshop on Algorithms in Bioinformatics, pages 52–67. Springer.

Nagarajan, N. and Pop, M. (2009). Parametric complexity of sequence assembly: theory and
applications to next generation sequencing. Journal of computational biology , 16(7), 897–908.

Nagasaka, Y., Matsuoka, S., Azad, A., and Buluç, A. (2019). Performance optimization, modeling
and analysis of sparse matrix-matrix products on multi-core and many-core processors. Parallel
Computing , page 102545.

Nethercote, N., Walsh, R., and Fitzhardinge, J. (2006). Building workload characterization tools
with valgrind. Invited tutorial, IEEE International Symposium on Workload Characterization
(IISWC 2006).

Ono, Y., Asai, K., and Hamada, M. (2012). Pbsim: Pacbio reads simulator—toward accurate
genome assembly. Bioinformatics, 29(1), 119–121.

Phillippy, A. M., Schatz, M. C., and Pop, M. (2008). Genome assembly forensics: finding the
elusive mis-assembly. Genome biology , 9(3), R55.

Sedlazeck, F. J., Rescheneder, P., Smolka, M., Fang, H., Nattestad, M., von Haeseler, A., and
Schatz, M. C. (2018). Accurate detection of complex structural variations using single-molecule
sequencing. Nature methods, 15(6), 461.

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

Simpson, J. T. and Durbin, R. (2012). Efficient de novo assembly of large genomes using com-
pressed data structures. Genome research, 22(3), 549–556.

Zhang, W., Chen, J., Yang, Y., Tang, Y., Shang, J., and Shen, B. (2011). A practical comparison
of de novo genome assembly software tools for next-generation sequencing technologies. PloS
one, 6(3), e17915.

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Material

S1 Overlap Length Definition

Given two sequences s1 and s2 sharing a k-mer k1,2 of length k as illustrated in Figure 3, we first
check if k1,2∈s1 = k1,2∈s2 since BELLA stores only the lexicographical smaller k-mer between itself
and its reverse complement. If k1,2∈s1 6= k1,2∈s2 , we reverse complement s1 and update k1,2∈s1
location accordingly,

new start(k1,2∈s1) = length(s1)− old start(k1,2∈s1)− k

Then, we define α as the starting position of k1,2 on s1, and, similarly, µ as the starting position
of k1,2 on s2, β as the difference between the ending position of k1,2 on s1 and the length of s1,
and λ as the difference between the ending position of k1,2 on s2 and the length of s2.

The overlap length estimate L is computed as follows,

L = min(α, µ) + k +min(β, λ)

Notably, PacBio long-read data has high insertion rates. Nevertheless, errors are approximately
evenly distributed within reads (Giordano et al., 2017). Hence, we would expect roughly the
same number of insertions in s1 and s2, within their overlap region. This implies our overlap
approximation takes into consideration insertions and accounts for them, on average.

S2 Overlapping Feasibility

Figure 4 illustrates the probabilities of finding one correct shared k-mer between two reads by
varying the value of k, the error rate, and the overlap length L. The probability of a k-mer being
correct decreases approximately geometrically as its length increases. With decreasing error rate,
however, a larger k would be preferable since it would decrease the amount of k-mers coming from
repetitive regions of the genome. For a given a minimum overlap length τ , our model favors the
selection of the largest k-mer length with sufficiently high probability (≈ 80%) to find a correct
seed for an overlap of length τ , while not increasing the runtime by choosing an excessively small
k. Notice that an overwhelming majority of the overlaps will be longer than τ , so the ultimate
recall will be significantly higher than 80%.

Assuming that we are interested in an overlap of length L ≥ 2000 as defined in our ground
truth2, our model in Figure 4 would suggest a k-mer length of 17 for a data set with error rate
≈ 15%. Figure 5 suggests that k = 17 offers a desirable trade-off between high recall and precision
and low runtime for a data set generated with an error rate of ≈ 15%.

S3 Chernoff Bound for Overlap Detection

We will use a Chernoff bound (Chernoff et al., 1952; Hoeffding, 1963) to define the value of δ.
This way, we will prove that there is a very small probability of missing a true overlap of sufficient
length L when using the (1− δ)ϕ cutoff.

Let Z be a sum of independent random variables {Zi}, with E[Z] = µz; we assume for simplicity
that Zi ∈ {0, 1}, for all i ≤ L. The Chernoff bound defines an upper bound of the probability of
Z to deviate of a certain quantity δ from its expected value. Specifically we use a corollary of the
multiplicative Chernoff bound (Angluin and Valiant, 1979), which is defined for 0 ≤ δ ≤ 1 as:

2Like other parameters of BELLA, this can be adjusted in the command line to detect shorter overlaps, potentially
resulting in lower precision and higher recall

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

kα β

μ λ

L

s1
s2

Figure 3: The overlap length estimate L is computed starting from a seed location as the sum of the seed
length k, the smallest left margin (α), and the smallest right margin (λ).

Pr[Z ≤ (1− δ)µz] ≤ e
−δ2µz

2 . (7)

In order to obtain the Chernoff bound for the ratio ϕ, we consider a random variable Xi ∈
{−β, α} such that:

Xi =

{
α, with probability p

−β, with probability 1− p
(8)

where α, β > 0 still are the values associated to a match and to a mismatch or a gap/indel in the
scoring matrix, respectively; its expected value E[Xi] is exactly equal to ϕ = αp− β(1− p). Since
the Chernoff bound is defined for a sum of independent random variables Zi ∈ {0, 1}, we need to
move from Xi ∈ {−β, α} to Zi ∈ {0, 1}. Therefore, we define a new random variable Yi = Xi + β
as a linear transformation of Xi, which can assume values {0, α+ β}. Given E[Yi] = E[Xi] + β =
(α+ β)p, we can normalize Yi to obtain the desired random variable Zi:

Zi =
Xi + β

α+ β
, where Zi ∈ {0, 1}. (9)

From the linearity of expectation, we have

E[Z] = E

[
X + β

α+ β

]
=
E[X] + βL

α+ β
=

(2p− 1)L+ βL

α+ β
. (10)

Substituting Eq. 9 and Eq. 10 in Eq. 7 and simplifying using our scoring matrix of α, β = 1, we
obtain the final expression:

Pr[X ≤ (1− δ)µx] ≤ e−δ2pL, with E[X] = µx. (11)

To interpret this bound, consider an error rate of 15%. Given two sequences that indeed overlap
by L = 2000, the probability of their alignment score being below the mean by more than 10%
(δ = 0.1) is ≤ 5.30× 10−7.

S4 Reliable Bounds Computation

Algorithm 2 and Algorithm 3 illustrates the pseudo-code used to compute the lower and upper
bound, respectively, for our reliable range. The lower bound l is the smaller m value after which the
cumulative sum exceeds a user-defined threshold epsilon, while the upper bound u is the largest
value of m after which the cumulative sum exceeds epsilon.

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4: Outcome of the proposed model. The probability of success is set to p = 0.85, p = 0.90, and
p = 0.95 representing error rates e of 0.15, 0.10, and 0.05.

Runtime
Precision
Recall

ru
nt

im
e

(s
)

0

100

200

300

400

percentage (%
)

60

70

80

90

100

k-mer length
12 13 14 15 16 17 18 19 20 21

A. baumannii 30X Performance Varying K-mer Length

Figure 5: Recall, precision, and runtime varying the k-mer length for the A. baumannii 30X synthetic
data set generated with an error rate of 15%.

S5 Error Rate of the Input Read Set

The error probability Perr of a quality score Q is computed for each position of a read as proposed
by Ono et al. (Ono et al., 2012):

Perr = 10
−Q
10

The error rate e of a given data set is then computed averaging the error probability Perr over the
entire read set.

19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 2 Reliable k-mer range: Selection of the lower bound (l)

1: procedure l← LowerBound(d, e, k) . d: depth, e: error rate, k: k-mer length
2: sum ← 0 . Cumulative sum
3: m← 2 . The k-mer multiplicity in the input
4: while (sum < epsilon) do
5: probability ← P (d, e, k,m)
6: sum ← sum + probability
7: m← m+ 1
8: end while
9: l← m− 1

10: return l . The lower bound
11: end procedure

Algorithm 3 Reliable k-mer range: Selection of the upper bound (u)

1: procedure u← UpperBound(d, e, k) . d: depth, e: error rate, k: k-mer length
2: sum ← 0 . Cumulative sum
3: m← d . The k-mer multiplicity in the input
4: while (sum < epsilon) do
5: probability ← P (d, e, k,m)
6: sum ← sum + probability
7: m← m− 1
8: end while
9: u← m+ 1

10: return u . The upper bound
11: end procedure

S6 X-Drop Value

The choice of k, the x-drop value, and the alignment score threshold, all influence the final recall and
precision. Our theoretical model for tuning these parameters assumes the typical read error-rates
of high-throughput PacBio sequencing (10−15%). These errors are randomly distributed, and the
majority of them are indels, erroneous insertions or deletions of nucleotides (Giordano et al., 2017).
Small values of x decrease the runtime but can potentially miss true overlaps in erroneous PacBio
sequences. For example with x = 3, just 3 consecutive insertions on one sequence would cause the
exclusion of a true overlapping pair from the output. Up to a certain point, increasing the value
of x increases the number of true positives and make it easier to differentiate true alignments from
false positives. Our SIMD seed-and-extend alignment with the adaptive band allows us to use x
values ∈ [15, 100] without significant differences in the alignment runtime. However, higher values
of x is not always better (Frith et al., 2010). Consider two sequences of the type S1 = R1− A− R2

and S2 = R2− B− R2 where R1 and R2 are two repetitive regions of the genome. A large x value
would allow the pairwise alignment algorithm to jump over A and B regions that are from different
sections of the genome, potentially causing false positives depending on the relative length of A/B
region to R1/R2 regions. For all our experiments, we used x = 50 with the exception of C. elegans
40X that we ran with x = 20 due to its lower error rate (≈ 13%).

20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

(R1,R2) = pair of sequences

τ = minimum overlap to be considered a true positive

EVALUATION PROCEDURE DIAGRAM

For each (R1,R2) in
OVERLAPPER output

OVERLAPPER(R1,R2) < τ

TRUTH(R1,R2) ≥ τ FALSE NEGATIVE

TRUTH(R1,R2) < τ TRUE NEGATIVE

TRUTH(R1,R2) ≥ τ TRUE POSITIVE

OVERLAPPER(R1,R2) ≥ τ

TRUTH(R1,R2) < τ FALSE POSITIVE

Figure 6: Diagram summarizing the evaluation procedure. (R1, R2) represents a pair of sequences, while
τ is the threshold defining a true-positive overlap. τ is set to 2, 000 bp in our default setting.

S7 Output Format

BELLA outputs alignments in a format similar to BLASR/MHAP (Chaisson and Tesler, 2012;
Berlin et al., 2015), which outputs .m4 files. For each pair of reads that pass both the overlapping
and alignment stage filters, the output includes a line with the respective (a) the reads identifiers,
(b) the number of shared k-mers, (c) the alignment score, (d) the overlap length estimate, (e)
the strand information (n if the reads belong to the same strand, c if they are not, following
DALIGNER (Myers, 2014) convention), (f) the start and end positions of the alignment in the
first read, (g) the start and end positions of the alignment in the second read, and (h) the lengths
of the reads.

S8 Evaluation Procedure

We applied two different procedures to obtain values of recall and precision, one for real data and
one for synthetic data. For each genome, a file containing the alignment positions of the input
reads in the corresponding reference genome represents the ground truth.

The definition of ground truth is valid for both real and synthetic data. However, the ground
truth generation procedure differs for the two categories of data as described in the following
sections.

S8.1 Synthetic Data Set

Generating ground truth is simpler when dealing with synthetic data, and we accomplished it by
running the read simulator of Pacific Biosciences, PBSIM (Ono et al., 2012). The output of the
simulator comprises the following files: one (or more, depending on the size of the genome) files
in fastq format (i.e. the input file of BELLA and other software) and one (or more) files in the
multiple-alignment format (MAF). The MAF file stores the information about where reads in the
genome were synthesized; it is the equivalent of the single-mapped read-to-reference alignment
ground truth generated for the real data sets using Minimap2. In this case, the exact location
where a read was created is known, and therefore only single-mapped ground truth exists. We
processed the MAF file (for synthetic data) and the two ground truth files (for real data) to extract

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

the information required to compute the number of true overlaps: the read identifiers and the start
and end positions in the genome.

The information stored in the ground truth was used to (a) compute the number of true over-
laps, which constitutes the denominator in the formula to calculate recall and (b) store the reads
information about their sub-reference sequence, and the start and end position in the reference. If
the genome has more than one chromosome, we define the sub-reference sequence as the chromo-
some to which the read belongs; otherwise, the sub-reference sequence is the same for all the reads
in a set. For each tool, we discarded self-paired reads (i.e., alignments of reads to themselves).
Subsequently, we used the information stored in the ground truth to distinguish true positives
from other read pairs. As previously defined, a read pair is considered a true positive if the two
sequences align for at least τ = 2 kb, considering the start and end positions of their alignment in
the reference genome (reported in the ground truth).

First, we estimated the overlap length from the information contained in the output of the
considered tool, as described in Section S1. For this estimate, we used the length of the sequences,
and the start and end overlap position on each sequence. If the pair does not satisfy this condition,
but the pair is overlapping according to the ground truth, the pair it then counted as a false
positive. If the pair does not appear in the ground truth, it is then counted as a true negative.
If the overlap estimate is greater or equal to τ , then the pair is counted as a true positive if it is
an overlap according to the ground truth, otherwise it is counted as a false positive. Given that a
tool can report multiple locations for a given read-read pair, the overlap estimation is computed
on the longest overlap a read-read pair presents in the output file of the considered tool. This
choice maximizes the retention of true positives. This way, each read-read pair can contribute at
most one to the total number of true positives, and one to the total number of identified overlaps.
Diagram in Figure 6 summarizes the above described evaluation procedure.

S8.2 Real Data Set

The procedure to generate the ground truth for real data is inspired by the one presented by Heng
Li (Li, 2016), with one main difference. Our procedure generates two different ground truth files
for real data (instead of one as in Li’s approach): a single-mapped file and a multi-mapped one;
Li’s ground truth coincides with our single-mapped file. We used single-mapped ground truths to
obtain the results shown in Table 2 and Table 3 in our main paper.

Following, we also consider the multi-mapped case because it is not always possible to be certain
with real data, whether a read originated from one part of the genome or another, especially in the
presence of repeats and high error rates. Hence, choosing a single mapping of a read could lead
to the erroneous exclusion of valid read-to-reference alignments from the ground truth. It is our
belief that a good overlapper/aligner should also be able to find correct overlaps that correspond
to multi-mapped locations in the genome, as they could be useful for dealing with repeats in later
stages of genome assembly. Therefore, the accuracy of each software was evaluated using the
multi-mapped ground truth as well, as shown in Table 5. Naturally, the recall of any software
would be lower (and its precision higher) if it were tested against multi-mapped ground truth,
compared to if it were tested against single-mapped ground truth, since the former is a super-set
of the latter.

We mapped sequences against the reference genome by using both BWA-MEM and Minimap2
as we wanted to use the tool that minimizes the amount of incorrect (or missing) mapping positions;
erroneous mappings would negatively affect our evaluation on real data sets. Table 6 suggests that
Minimap2 may be a more suitable tool to map long reads to reference. Consequently, we evaluated
the output of the overlappers against ground truth generated with Minimap2 to obtain the results.

22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 5: Recall, precision, and F1 score comparison (real data) with multi-mapped ground truth. The last
column indicates whether the considered aligner does actual alignment or just overlap detection. Precision,
recall, and F1 score are reported in percentage. Bold font indicates best performance and underlined font
indicates second-best performance. BLASR result for C. elegans 40X is not reported as BLASR v5.1 does
not accept fastq larger than 4 GB.

Data Set Overlapper Recall Precision F1 Score Time (s) Alignment

E. coli (Sample) BELLA 73.15 97.03 83.41 60.94 Y
DALIGNER 86.01 76.59 81.03 8.70 Y
BLASR 72.60 95.29 82.41 160.05 Y
MECAT 72.46 93.06 81.48 24.45 N
Minimap2 87.44 93.47 90.35 16.57 N
MHAP 74.33 79.86 76.99 43.67 N

E. coli BELLA 51.51 94.57 66.69 374.37 Y
DALIGNER 70.36 78.30 74.12 58.50 Y
BLASR 28.35 96.74 43.85 715.19 Y
MECAT 43.06 96.17 59.48 84.21 N
Minimap2 70.02 90.72 79.03 107.76 N
MHAP 56.74 62.59 59.52 287.66 N

C. elegans 40X BELLA 66.54 86.39 75.17 9,042.36 Y
DALIGNER 59.66 73.93 66.03 22,797.50 Y
MECAT 66.28 90.61 76.56 733.79 N
Minimap2 88.00 42.25 57.09 1,733.26 N

MHAP 81.72 6.65 12.29 9,102.23 N

S8.3 Ground Truth Generation for Real Data

As with the original procedure presented by (Li, 2016), reads were aligned against the reference
genome using BWA-MEM 0.7.17-r1188 (Li, 2013) with the following commands:

(1) bwa index <reference>.fasta

(2) bwa mem -x pacbio <reference>.fasta <input>.fastq >

<output>.sam

When using Minimap2 to map sequences to reference, the command is the following:

(3) minimap2 -ax map-pb <reference>.fasta

<input>.fastq > <output>.sam

The outputs of both BWA-MEM and Minimap2 were filtered in order to exclude non-mapped reads
and alignments with mapping-quality lower that 10. The filtering was done using Samtools (Li
et al., 2009) with the following command:

(4) samtools view -h -Sq 10 -F 4 <output>.sam >

<multi-mapped>.sam

The output <multi-mapped>.sam obtained from the above operation constitutes the multi-mapped

23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 6: Comparison between BWA-MEM and Minimap2 in mapping against reference. The table shows
recall and precision of whole set of tools when their outputs are compared against ground truth generated
using Minimap2 or using BWA-MEM. The last two columns reports the percentage change of recall and
precision when Minimap2 is used as ground truth instead of BWA-MEM. Brackets refer to negative values.
BLASR result for C. elegans 40X is not reported as BLASR v5.1 does not accept fastq larger than 4 GB.

Minimap2 BWA-MEM Percent Variance
Data Set Tool Recall Precision Recall Precision Recall Precision

E. coli (Sample) BELLA 82.66 85.69 85.44 79.76 (3.25) 7.43
DALIGNER 89.97 62.62 90.48 56.70 (0.56) 10.44
BLASR 77.64 79.64 78.94 72.90 (1.67) 8.46
MECAT 78.41 78.71 80.30 72.58 (2.41) 7.79
Minimap2 91.40 76.36 91.97 69.18 (0.62) 9.40
MHAP 79.71 66.93 80.93 61.18 (1.53) 8.59

E. coli BELLA 65.08 71.22 69.06 63.25 (5.76) 12.60
DALIGNER 82.18 54.50 84.36 46.84 (2.58) 16.35
BLASR 35.41 72.01 37.69 64.16 (6.44) 10.90
MECAT 54.61 72.69 58.56 65.25 (7.23) 10.24
Minimap2 80.68 62.30 82.03 53.02 (1.67) 14.90
MHAP 67.84 44.60 70.61 38.86 (4.08) 12.87

C. elegans 40X BELLA 75.43 73.81 75.48 64.36 (0.07) 14.68
DALIGNER 62.81 58.66 60.27 49.04 4.04 19.62
MECAT 73.05 75.27 71.20 63.92 2.53 15.08
Minimap2 94.13 34.06 91.49 28.84 2.80 15.33
MHAP 86.63 5.31 87.98 4.70 (1.53) 12.97

ground truth. The single-mapped ground truth <single-mapped>.sam was obtained by applying
a second filtering step, using the following command:

(5) samtools view -h <multi-mapped>.sam | grep -v -e

’XA:Z:’ -e

’SA:Z:’ | samtools view -S > <single-mapped>.sam

through which command sequences mapped to multiple locations of the genome are removed,
outputting only single-mapped sequences.

S8.4 Minimap2 versus BWA-MEM Reference Alignment

Table 6 shows recall and precision of each tool when its performance is evaluated toward a ground
truth generated using both BWA-MEM and Minimap2. Precision significantly increases when
Minimap2 is used to generate the ground truth, while the loss in recall is negligible. Overall,
the results suggest that Minimap2 is more effective in mapping sequences to reference, reducing
the number of missing alignments with respect to BWA-MEM. The author of both Minimap2
and BWA-MEM himself stated3 that Minimap2 is better than BWA-MEM to align sequences to
reference when long-read data is used.

3https://lh3.github.io/2018/04/02/minimap2-and-the-future-of-bwa

24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 7: Comparison of ground truths generated using Minimap2, BLASR, and nglmr versus the true
ground truth for synthetic data. The comparison is based on the number of overlaps reported as “true
overlaps”. PBSIM indicates the true ground truth. BLASR’s result is not reported for C. elegans 20X as it
exceeded the runtime limit of 48h.

Data Set Oracle Overlaps Cardinality Difference

P. aeruginosa 30X PBSIM 831,984 -
Minimap2 953,680 +14.62%
BLASR 953,852 +14.64%
ngmlr 950,114 +14.20%

V. vulnificus 30X PBSIM 692,576 -
Minimap2 642,996 −07.15%
BLASR 934,410 +34.92%
ngmlr 610,358 −11.87%

A. baumannii 30X PBSIM 577,970 -
Minimap2 653,624 +13.09%
BLASR 654,832 +13.30%
ngmlr 647,632 +12.05%

C. elegans 20X PBSIM 5,945,580 -
Minimap2 6,777,820 +14.00%
ngmlr 6,659,504 +12.01%

S8.5 Minimap2 and Simulated Data Reference Alignment

Table 7 compares the ground truth overlap cardinalities for synthetic data when such ground
truth is generated using the real data procedure explained above against the actual synthetic data
ground truth. Table 7 shows that Minimap2 is prone to overestimate the number of true overlaps
with the exception of the V. vulnificus 30X data set. For comparison, we ran other two mapping
software, BLASR (Chaisson and Tesler, 2012) and ngmlr (Sedlazeck et al., 2018). Table 7 suggests
that BLASR and ngmlr also tend to overestimate the ground truth cardinality.

S8.6 Output Translation to PAF Format

Miniasm assembler takes as input files in PAF format4. Thus, we had to translate each overlapper
output format into PAF with the exception of Minimap2 which already uses that format.

The PAF format is defined as follow:

1. Query sequence name

2. Query sequence length

3. Query start (0-based)

4. Query end (0-based)

5. Relative strand: “+” or “-”

6. Target sequence name

7. Target sequence length

8. Target start on original strand (0-based)

9. Target end on original strand (0-based)

10. Number of residue matches

11. Alignment block length

12. Mapping quality (0−255; 255 for missing)

4https://github.com/lh3/miniasm/blob/master/PAF.md

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

BELLA’s output format contains all the necessary information with the exception of the map-
ping quality (12), which is set to 255, and the number of residue matches m (10), which is estimated
using the number of shared k-mers within a read pair. More formally,

ratem =
matches

max(Q, T)
, m =

log(1
ratem

)

k

where matches indicates the number of shared k-mers within a read pair, Q and T correspond to
the alignment length on the query and target sequence, respectively, and k is the k-mer length.

MECAT required the estimation of both (10) and (11). The alignment block length (11)
defined as “the total number of sequence matches, mismatches, insertions and deletions in the
alignment” was estimated using the start/end alignment information on the two sequences following
the description in Section 3. MECAT’s output includes the percentage of identity between the two
sequences, hence we used it to estimate the number of residue matches.

Finally, MHAP and BLASR use the m4 format5. As for MECAT, the alignment block length
(11) was estimated using the start/end alignment information on the two sequences. The m4 format
contains the alignment score that, however, cannot be directly used as an estimate for matches.
Li6 writes that if the alignment is not performed, the alignment block length and the residual
matches are still required, but their values may be highly inaccurate. Consequently, the number
of residual matches was approximated by multiplying the alignment block length times the error
rate.

S9 Experimental Setting

The evaluation of competing software software was performed using MECAT 1.0, Minimap2 2.7,
BLASR v5.1, MHAP 2.1.3, and DALIGNER 1.0, supported by DAZZDB v1.0. BLASR was run
with the following settings: --nproc 80 --maxLCPLength 16 --minMatch 12 -m 4 --bestn 50 --noSplit

Subreads, where nproc specifies the number of threads used to run BLASR, maxLCPLength indi-
cates that the alignment of a read to the reference is stopped when its length reaches, 16 in our
case (this command is useful when the query is part of the reference, which is the case when
computing pairwise alignment for de novo assembly), minMatch is the minimum seed length, m
indicates which file format of the output is used, bestn is the number of best alignments re-
ported, and noSplitSubreads does not split input sequences at adapters; MHAP was run with:
--settings 3 --store-full-id --num-threads 80, where 3 is the “sensitive mode” (Berlin et al., 2015)
and store-full- id stores sequences by their original identifier instead of a numerical index;
MHAP was also run using 80 threads, as indicated by num-threads.

We collected the results on a dual-socket computer with two 20-core Intel Xeon Gold 6148
CPU (“Skylake”) processors, each running at 2.40 GHz with 384 GB DDR4 2400 MHz memory,
using 2 threads per core (80 threads total). In order to run MHAP v2.1.3 on C. elegans 40X and
C. elegans 20X, we increased the Java heap space to fit our largest machine, since the default 32
GB setting (used for all the other data sets) led to out-of-memory failures.

Finally, DALIGNER results are only reported for real PacBio data because it requires single
cell PacBio sequencing data (Myers, 2014). For all of the simulated data sets, DALIGNER failed-
fast, producing the associated error, “Pacbio header line format error”. Our attempts to
reformat the simulated data (to “fool” DALIGNER) failed with the same error.

5https://github.com/PacificBiosciences/blasr/wiki/Blasr-Output-Format
6https://github.com/lh3/miniasm/blob/master/PAF.md

26

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

I/O (1)
K-mer Counting (2)

Sparse Matrix Construction (3)
Sparse Matrix Multiply (4)

Pairwise Alignment (5)
Other (6)

C
om

pu
ta

tio
n

(%
)

0

20

40

60

80

100

P. aeruginosa 30X

V. vulnificus 30X

A. baumannii 30X

C. elegans 20X

C. elegans 40X

E. coli 30X

E. coli 100X

Figure 7: BELLA’s runtime breakdown. The runtime is divided into (from the top of the bar): (1) I/O,
(2) k-mer counting using a Bloom filter and a multithreaded hash table, (3) sparse matrix construction, (4)
sparse matrix multiplication, which is BELLA’s overlap detection, (5) nucleotide-level pairwise alignment,
and (6) other.

Table 8: Peak memory usage for two representative data sets. The numbers are reported in GB. MHAP’s
results are not reported as it exceeded the maximum time limit of 48h.

Dataset BELLA DALIGNER BLASR MECAT Minimap2

E. coli (Sample) 30X 6.2 10.5 3.2 10.0 1.5
E. coli 100X 8.9 19.8 6.5 20.0 4.7

S10 Memory Usage

Table 8 presents a comparison of the relative memory consumption of each software tool on two
representative data sets. The memory usage information was collected with Valgrind (Nethercote
et al., 2006) on dedicated dual socket compute nodes, with up to 128GB RAM and a 16-core
Haswell CPU per socket. The Valgrind version was 3.15.0, and the following command was used:
valgrind --tool=massif --pages-as-heap=yes. Each tool was compiled on the described platform
with -g (as required by Valgrind); otherwise, no changes were made in the compilation procedure
from that used for the results in Section S9, with one exception. MHAP was compiled with the
addition of java -Djava.compiler=NONE. DALIGNER encountered early segmentation faults when
run with 2 threads per core (-T64), due to its per-thread memory demands. The results shown
were collected with -T32.

S11 Performance Breakdown of BELLA

Figure 7 illustrates the runtime breakdown of BELLA as a percentage of the total runtime. Pairwise
alignment dominates our runtime, while sparse matrix construction, which includes the creation
of both A and AT, and multiplication take only a tiny percentage of our computation, proving

27

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

P. aeruginosa 30X
Linear scaling1X

40X

Ti
m

e
(s

)

102

103

104

Cores
1 4 8 24 36 48 80

P. aeruginosa 30X Strong Scaling

Figure 8: Scaling of BELLA with increasing number of cores on a dual-socket computer with two 20-core
Intel Xeon Gold 6148 CPU (“Skylake”) processors, each running at 2.40GHz with 384GB DDR4 2400 MHz
memory.

the efficiency of our approach for overlap detection.
Interestingly, sparse matrix multiplication and semiring abstraction could offer a path for

efficient parallelization of many applications in computational biology other than overlap detec-
tion (Jain et al., 2019).

S12 Scalability

Figure 8 shows the strong scaling curves of BELLA for the representative P. aeruginosa 30X data
set to measure its parallel performance. The data was collected on the same compute nodes as those
described in Section S9. The 80-way thread parallelism is achieved by exploiting hyper-threading
as each node has 40 cores and each core supports 2 hyper-threads.

In strong scaling, the problem size stays fixed but the number of processing elements is in-
creased. In strong scaling, a program is considered to scale linearly if the speedup is equal to the
number of processing elements used, corresponding to the number of threads in our case. Given the
amount of time to complete a given run using one thread is t1 and the amount of time to complete
the same run with n threads is tn, we can define the strong scaling efficiency (as a percentage of
linear) as:

t1
(n · tn)

· 100 (12)

BELLA with 80-way thread parallelism had a strong scaling efficiency of 50.07% and a speedup
of 40× for this representative data set.

28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2020. ; https://doi.org/10.1101/464420doi: bioRxiv preprint

https://doi.org/10.1101/464420
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Proposed Algorithm
	Methods
	Evaluation
	Results
	Discussion
	Conclusion
	Overlap Length Definition
	Overlapping Feasibility
	Chernoff Bound for Overlap Detection
	Reliable Bounds Computation
	Error Rate of the Input Read Set
	X-Drop Value
	Output Format
	Evaluation Procedure
	Synthetic Data Set
	Real Data Set
	Ground Truth Generation for Real Data
	Minimap2 versus BWA-MEM Reference Alignment
	Minimap2 and Simulated Data Reference Alignment
	Output Translation to PAF Format

	Experimental Setting
	Memory Usage
	Performance Breakdown of BELLA
	Scalability

