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Abstract

Vaccines have greatly reduced the burden of infectious disease, ranking in their
impact on global health second only after clean water. Most vaccines confer
protection by the production of antibodies with binding affinity for the antigen,
which is the main effector function of B cells. This results in short term changes
in the B Cell receptor (BCR) repertoire when an immune response is launched,
and long term changes when immunity is conferred. Analysis of antibodies in
the serum is usually used to evaluate vaccine response, however this is limited
and therefore the investigation of the BCR repertoire provides far more detail for
the analysis of vaccine response. Here, we introduce a novel Bayesian model to
describe the observed distribution of BCR sequences and the pattern of sharing
across time and between individuals, with the goal to identify vaccine-specific
BCR sequences. We use data from two studies to assess the model and estimate
that we can identify vaccine-specific sequences with 69% sensitivity.

Introduction

The array of potential foreign antigens that the human immune system must
provide protection against is vast, and an individual’s B Cell receptor (BCR)
repertoire is correspondingly huge; it is estimated that a human adult has over
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1013 theoretically possible BCRs [1], of which as many as 1011 may be real-
ized [2]. This diversity is primarily generated through recombination, junctional
diversity, and somatic mutation of the V, D and J segments of the immunoglob-
ulin heavy chain genes (IgH) [2], combined with selection to avoid self-reactivity
and to increase antigen specificity. The BCR repertoire of a healthy individual
is constantly evolving, through the generation of novel naive B cells, and by
the maturation and activation of B cells stimulated by ongoing challenges of
pathogens and other antigens. As a result, an individual’s BCR repertoire is
unique and dynamic, and is influenced by age, health and infection history as
well as genetic background [3].

Upon stimulation, B cells undergo a process of proliferation and hyper-
mutation, resulting in the selection of clones with improved antigen binding
and the ability to mount an effective immune response. The process of hyper-
mutation targets specific regions, and subsequent selection provides a further
focusing of sequence changes. The short genomic region in which most of these
changes occur, and which is thought to play a key role in determining anti-
gen binding specificity, is termed the Complementarity Determining Region 3
(CDR3) [4, 5]. Next generation sequencing (NGS) makes it possible to capture
the CDR3 across a large sample of cells, providing a sparse but high-resolution
snapshot of the BCR repertoire, and forming a starting point to study immune
response and B-cell-mediated disease [6].

Vaccination provides a controlled and easily administered stimulus that can
be used to study this complex system [7]. An increase in clonality has been
observed in the post-vaccination BCR repertoire, which has been related to the
proliferation of B cells and the production of active plasma cells [8–14]. An
increase in the sequences shared between individuals, referred to as the public
repertoire or stereotyped BCRs, has also been observed, and there is mounting
evidence that this public repertoire is at least partly due to convergent evolution
in different individuals responding to the same stimulus [10,14–18].

These observations suggest that by identifying similarities between the BCR
repertoires of a group of individuals that have received a vaccine stimulus, it
may be possible to identify B cells specific to the vaccine. However, while the
most conspicuous of these signals could be shown to be likely due to a conver-
gent response to the same antigen in multiple individuals [19], it is much harder
to link more subtle signals to vaccine response using ad-hoc classification meth-
ods. To address this, we here develop a statistical model for the abundance of
BCRs over time in multiple individuals, which integrates the signals of increased
expression, clonality, and sharing across individuals. We use this model to clas-
sify BCRs into three classes depending on the inferred states of their B cell
hosts, namely non-responders (background, bg), those responding to a stimulus
other than the vaccine (non-specific, ns), and those responding to the vaccine
(vaccine-specific, vs).

Here we show that the sequences classified as vaccine-specific by our model
have distinct time profiles and patterns of sharing between individuals, and are
enriched for sequences derived from B cells that were experimentally enriched
for vaccine specificity. Moreover, we show that sequences identified as vaccine-

2

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2018. ; https://doi.org/10.1101/464792doi: bioRxiv preprint 

https://doi.org/10.1101/464792
http://creativecommons.org/licenses/by-nc-nd/4.0/


specific cluster in large groups of high sequence similarity, a pattern that is not
seen in otherwise similar sets of sequences.

Methods

BCR Repertoire Vaccine Study Data Sets

We use two publicly available data sets, one from a study involving a hepatitis-
B vaccine [20] and one from astudy on an influenza vaccine [10]. We describe
these two data sets below. Both data sets capture the somatically rearranged
VDJ region in B cells, in particular the highly variable CDR3 region on which
we will focus.

Hepatitis B

In the study by Galson and colleagues [20], 5 subjects were given a booster
vaccine against hepatitis B (HepB) following an earlier primary course of HepB
vaccination. Samples were taken on days 0, 7, 14, 21 and 28 relative to the day
of vaccination. Total B cells were sorted and sequenced in all samples. We refer
to this data set as the hepatitis B data set.

In addition, cells were sorted for HepB surface antigen specificity at the same
time points post-vaccination, and then sequenced. These cells are enriched with
those we are seeking to identify using our modelling approach, and provides
a way to validate our method. We refer to these data as the HBsAG+ data
set. Both data sets are publicly available on the Short Read Archive (accession
PRJNA308641).

Sequences were generated on the Illumina platform using an RNA sequenc-
ing protocol, and the nucleotide sequences analysed. Targeting RNA means
that highly abundant sequences may derive either from multiple B cells from
a clonal subpopulation, or from one or a small number of with high IgH gene
expression, such as plasma cells that are actively secreting antibodies. Although
we cannot distinguish between these two possibilities, both classes of cells are
likely signifiers of immune response, and are therefore of interest.

Influenza

We also analyze data from subjects that were vaccinated against influenza in a
study by Jackson and colleagues [10]. Samples were taken on days 0, 7 and 21
relative to vaccination. We analyzed a subset of 7 subjects that were deemed
to be “seroconverters” based on vaccine-specific ELISA assays. This will be
referred to as the influenza data set.

In addition, the authors also collected plasmablasts on day 7 in 5 of the
subjects. These are also likely to be enriched for B cells responding to the
vaccine and therefore provide an additional source of evaluation for our method.
The sequences derived from these cells are referred to as the plasmablast data
set. All data is publicly available on dbGaP (accession phs000760.v.1.p1).
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The Roche 454 platform was used to perform DNA sequencing of the somat-
ically recombined IgH locus, using primers for the relatively conserved FR2 IgH
V gene segment, and a conserved J gene segment, and we analyse the amino
acid sequences. Targeting DNA ensures that sequences with high abundance
are representative of clonally expanded B cells, rather than of cells exhibiting
high mRNA expression. However, active plasma cells with high secretion rate
would still be counted individually.

Clustering

We combined sequences into clusters, in order mainly to correct for read errors,
as well as to group together some highly similar sequences that likely target
the same epitope. This removes some noise associated with read error and
strengthens signals by treating multiple sequences all of which target the same
epitope as a single cluster, whilst also reducing the computational burden. Each
cluster consists of a single identifying CDR3 sequence, the cluster centre, and
its’ set of neighbouring CDR3 sequences; for two sequences to be considered
neighbours, they must be of the same length and be highly similar, which we
define as greater than 85% similarity for nucleotide sequences as in the hepatitis
B data set, or 90% similarity for amino acid sequences as in the influenza data
set. The clustering was performed in a greedy manner, by iteratively identifying
a cluster centre as the sequence with the greatest number of neighbours from
among all unclustered sequences, and assigning it and its unclustered neighbours
to a new cluster. This is a computationally efficient approach to clustering which
allows us to cluster very large data sets. However, the model presented here is
not dependent on the clustering algorithm used, and any alternative clustering
method could also be used as input.

Within each data set, we clustered sequences from all samples and time
points together, but kept track of sample- and time-specific counts to enable
the analysis of time dynamics and between-individual sharing. We now consider
each cluster to be representative of the sequence i at its centre, and make no
distinction between clusters and the individual sequences which form the cluster
centres. In addition we shall use i to refer to the B cell(s) or B cell clone that
the cluster represents. We define the sequence abundance, denoted by xist, as
the number of sequences assigned to the cluster represented by sequence i for
a participant s at time point t, and the total sequence abundance as the total
number of sequences assigned to the cluster across all samples,

∑
st xist.

Model

We introduce a hierarchical Bayesian model to describe the abundance of BCR
sequences (or alternatively, CDR3 sequences) across individuals inoculated with
the same vaccine, and across multiple time points. The data are abundances,
xist, as introduced above. The goal of modeling these data is to identify vaccine-
specific sequences from among a large number of non-vaccine-specific sequences,
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while accounting for the sparse sampling of the sequences and for the highly
stochastic nature of the biological process that generates them.

One identifying feature of vaccine-specific sequences that we want to model
is their abundance profile. We expect to observe no vaccine-specific sequences
pre-vaccination (or very few, in the case of a primer-boost design such as for the
HepB data set), while post-vaccination we expect to observe high abundances
due to clonal expansion of stimulated B cells, the presence of plasma cells with
high transcription activity, or both. A second feature that helps to characterise
vaccine-specific sequences is their tendency to be shared across individuals, due
to convergent evolution.

To describe the model we introduce some notation. As above let i denote a
sequence, and denote by Ω the space of all sequences. We partition this set as
Ω = Ωbg ∪Ωvs∪Ωns, where the disjunct subsets represent background sequences
not responding to any stimulus; vaccine-specific sequences responding to the
vaccine stimulus; and sequences responding to a non-specific stimulus other
than the vaccine respectively. These subsets (and their sizes) are unknown, and
the classification of a particular sequence i is given by a discrete random variable
γi ∈ {bg, vs, ns}, so that i ∈ Ωγi .

Next, the presence of a particular B cell (or cluster of B cells) i in a partici-
pant s is encoded by a second discrete random variable zis, which takes on the
value 0 when i is absent from the BCR repertoire of individual s at any time
point, and 1 when i is present in the individual (though not necessarily present
in any sample taken from this individual). The variable z aims to account for the
sparsity resulting from the diversity of BCR repertoires from different individu-
als. The distribution of zis is dependent on γi, to allow modeling the increased
probability that vaccine-specific sequences are shared between individuals.

The actual abundances xist of sequence i in individual s at a time point
t are assumed to be independent conditional on γi and zis, and are modeled
by a mixture of three distributions representing three outcomes, modeled by a
third discrete random variable eist whose distribution depends on γi, zis and t.
First, the relevant B cell or cells may be absent from individual s (if zis = 0)
or may have escaped sampling. In this case xist is distributed as a point mass
at 0. Second, if B cells have been sampled, they may be neither clonal nor
plasma B cells, and would therefore contribute a small number of sequences to
the data set. In this case xist is modeled as a negative Binomial distribution.
The remaining case is that the sampled B cell or cells are either plasma cells,
or cells sampled from a large clonal population (or both), in which case they
are expected to contribute a large number of sequences. In this case xist is
modeled as a discretised generalized Pareto distribution [21]. This distribution
of abundances is illustrated in Figure 1a. The mixture distribution of sequence
counts xist is given by p(xist|eist,θ), where θ is the vector of parameters of the
negative Binomial and generalized Pareto distributions.

The resulting joint probability for a dataset x, latent variables e, z and
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(a) Tree diagram in which each leaf repre-
sents a generative distribution for sequence
abundances. The probability of following
each path is dependent on the classification
of the sequence and the presence of the se-
quence in the individual.
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(b) Partial graphical representation of
model using plate notation. For clar-
ity hyperparameters are not shown;
Figure S1 shows a complete diagram.

parameters γ,θ under this model is given by

p(θ,γ, z, e,x) = p(θ)

∏
i

p(γi)
∏
s

p(zis|γi)
∏
t

p(eist|γi, zis, t)p(xist|eist,θ) (1)

The relationship between the variables in the model is shown in Figure 1b. Non-
informative priors p(θ) and p(γ) are placed on the parameters; this allows these
parameters to be learnt from the data, and therefore allows the model to be
applied to a range of data sets, for instance RNA sequencing and DNA sequenc-
ing. Full details of the model and priors are provided in the supplementary
materials.

We restrict i to range over only those sequences which are observed at least
once in the dataset, rather than the 1013 sequences that are theoretically pos-
sible. Therefore, for K sequences, we have that 1 ≤ i ≤ K. This simplifies
model fitting, but will result in parameter estimates which are specific to each
individual data set, and therefore affected by features such as the number of
individuals. This should be kept in mind when interpreting the results.
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Inference

The model is fitted to each data set using an E-M algorithm; see the supple-
mentary materials for details.

Restrictions on parameter values allow us to encode additional structure
and to link parameters hierarchically. Firstly we assume that there is no time-
dependence for the abundances of B cells classified as background or as non-
specific responders. We further assume that for the vaccine-specific cells, the
pre-vaccination abundances (at t = 0) follow the same distribution as B cells
classified as background, while post-vaccination these cells follow the same abun-
dance distribution as B cells classified as non-specific responders. Third, we
assume that the probability of a sequence being observed in a subject is the
same for B cells classified as background and those classified as a non-specific
response. In effect this assumes that non-specific responders are or have been
responding to private stimuli, rather than for instance earlier common infections.

The uncertainty in the inferred model parameters is negligible in compari-
son to the biological noise because of the large amount of data. Rather than
reporting this spurious precision, we report the parameter estimates without
error bars, but we note that errors due to model misspecification are likely to
be substantial. We report the inferred probability of a sequence belonging to
each category, Γclass for class ∈ {bg, vs, ns}. We also report, for each class, the
probability that a sequence is observed given that a corresponding B cell of that
class is present in an individual, pclass. Finally, we report for each class the
inferred probability that a sequence is being observed at high frequency, ωclass.

Sequence similarity

To compare the within-set similarity of sequences between subsets of sequences
of any length, we use the Levenshtein (or “edit”) distance as implemented in [22].
Specifically, given a subset of sequences, we compute a measure of within-set
similarity the mean of the Levenshtein distances between all pairs of sequences
in the subset. To assess significance we use bootstrapping: we calculate the
mean Levenshtein distance between a randomly selected subset of the same size,
and compare the resulting null distribution of means to calculate the empirical
p-value.

Results

Hepatitis B data set

We fitted the model to the hepatitis B data set, and obtained a good fit (see
Figure S2 for the QQ plot) with key parameter estimates given in Table 1.
The value of Γclass show that most sequences are assigned to the background
population, with only a small fraction responding to any stimuli. (This is also
seen from the numbers shown in Table 2.) Sequences classified as vaccine specific
are highly likely to be shared between multiple individuals, reflected in a high
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estimate of pvs, and the high estimate of ωvs mean they are also more likely to
be seen at high frequencies than those classified as background.

Γclass pclass ωclass
class bg ns vs bg; ns vs bg; vst=0 ns; vst>0

.992 .005 .003 .216 .970 .006 .277

Table 1: Fitted parameters to the hepatitis B data set. Γ, the probability of
a sequence belonging to each class; p, the probability of a sequence from each
class being observed in an individual; ω, the probability of an observed sequence
in each class being seen at high abundance.

For each of the three classes of sequence, the relative abundance of those
sequences within individuals and the number of individuals sharing them over
time are illustrated in Figure 2. The vaccine specific sequences are seen at lower
frequencies at day 0 compared to subsequent time points, but still at higher
frequencies than sequences classified as background. The number of individuals
sharing the vaccine specific sequences increases over time up to a peak at day 14
after which sequence sharing declines again, whereas in the other classes there
is no significant trend in sharing across time points, as expected.

The total number of sequences allocated to each class and the mean total
abundance of sequences from all samples within each class are shown in table 2.
Sequences are overwhelmingly classified as background, while of the remainder,
similar numbers of sequences classified as non-specific responders and vaccine-
specific responders. Sequences classified as background all have very low abun-
dance, often consisting of a single sequence observed in a single individual at a
single time point. Sequences classified as non-specific form the largest clusters,
and are often seen at high frequency across all time points.

We next compared the hepatitis B data set with the HBsAG+ data. Se-
quences from the hepatitis B data set were considered present in the HBsAG+
data set if there is a sequence in the HBsAG+ data which would be assigned
to the same cluster. The number of sequences from the hepatitis B data set
that are present in the HBsAG+ data set, along with their abundances, are also
given in Table 2. 60,215 (5.9%) of the sequences classified as background were
also present in the HBsAg+ data set, however a much larger fraction (69%)
of those classified as vaccine-specific were also seen in the HBsAG+ sequences.
The HBsAG+ data set contains a large number of erroneously captured cells,
with the specificity of staining estimated to be around 50% [20], however these
erroneously captured cells are likely to be those present in high abundance in
the whole repertoire (and therefore in the hepatitis B data set) due to ran-
dom chance. The difference in enrichment between the background and vaccine
specific categories will therefore be partly driven by the different average clus-
ter sizes of background sequences (2.62) compared to vaccine-specific sequences
(10.8). However, the fraction of non-specific responders observed in the HB-
sAG+ set (29%) is intermediate between that of background and vaccine-specific
sequences, despite non-specific responders having a substantially larger average
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Figure 2: Mean sequence relative abundance at each time point in each classi-
fication (A), and the mean number of individuals sharing a sequence over time
in each classification (B), for the hepatitis B data set

cluster size than sequences from either of these classes (89.3), indicating that
the method is capturing a subset that is truly enriched with vaccine-specific
sequences.

The average abundance of all sequences classified as vaccine specific which
are also found in HBsAG+ is similar to the average abundance of all vaccine
specific sequences (10.7 in comparison to 10.8). In contrast, in the background
and non-specific categories, the average sequence abundance is far higher for
those sequences which are also present in the HBsAG+ data set (an increase
from 2.62 to 3.45 in background sequences, and 89.3 to 147.1 in vaccine specific
sequences). This further suggests that the sequences identified as vaccine specific
which are also found in the HBsAG+ data set are truly binding the antigen
rather than being selected at random with a size bias.

We next looked at sequence similarity between clusters within each class of
sequences. Using the Levenshtein distance, we found that sequences classified
as vaccine specific were significantly more similar to each other than those of
sequences classified as background sequence (p < 0.001 based on 1,000 simu-
lations; supplementary material). This is further illustrated in petri-dish plots
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Classification All sequences HBsAG+ sequences

Number Abundance (sd) Number Abundance (sd)
Background 1,026,523 2.62 (31) 60,215 3.45 (44)
Non-specific 5,123 89.3 (748) 1,500 147.1 (1,084)

Vaccine-specific 2,976 10.8 (174) 2,055 10.7 (190)

Table 2: Number of sequences allocated to each category across all samples and
the mean total sequence abundance across all samples, in the whole data set
and in the subset also labelled as HBsAG+.

(Figure 3); here cluster centres were connected by edges if their Levenshtein dis-
tance was less than 20% of the sequence length in order to highlight the greater
degree of sequence similarity in vaccine specific sequences. Vaccine specific
sequences show cliques, and filament structures suggestive of directional selec-
tion, while non-responders and particularly background clusters show much less
between-cluster similarity.

A B C

Figure 3: Similarity between sequences classified as background (A), non-specific
response (B) and vaccine-specific (C). Each point corresponds to a sequence;
sequences are connected if their Levenshtein distance is less than n/5 where n
is the sequence length. All vaccine-specific sequences are shown and a length-
matched, random sample of the same number of sequences from the background
and non-specific sequences are shown.
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Influenza data set

Fitting the model to the Influenza data set, we again obtain a good QQ plot (see
Figure S4) indicating an acceptable model fit, despite considerable differences in
the two data sets. Key parameter estimates and an overview of the classification
results are given in Tables 3 and 4, and again show that most sequences are
classified as belonging to the background population, with only a small fraction
classified as responding to any stimuli. However, in this data set, sequences
classified as vaccine specific are no more likely to be seen in multiple individuals
than those classified as background. Another difference is that the model assigns
vanishing weight to the possibility that background sequences are observed at
high abundance.

Γclass pclass ωclass
class bg ns vs bg; ns vs bg; vst=0 ns; vst>0

.947 .001 .051 .144 .144 0 .486

Table 3: Fitted parameters to the influenza data set.

The sequence abundance and number of individuals sharing sequences over
time are illustrated in Figure 4, for each classification. The vaccine specific
sequences show a distinct sequence abundance profile, with a sharp increase
post-vaccination which reduces over time, whereas the background sequences
show little change over time. The average number of individuals sharing a
sequence is below one for all categories at all time points, indicating that most
sequences are only seen in single individuals and not at multiple time points.

The number of sequences allocated to each class and the sequence abundance
within each class are shown in Table 4. The majority of sequences are classified
as background with a small number being classified as vaccine specific, and only
23 classified as being part of a non-specific response. The sequences classified
as vaccine-specific are also typically more abundant.

We then compared the sequences in the influenza data set to those obtained
from plasmablasts collected post vaccination. Again, a sequence from the in-
fluenza data set was considered to be present in the plasmablast data set if there
exists a sequence in the plasmablast data set which would be assigned to the
same cluster (Table 2). Of the 436 sequences in the plasmablast data set, 14 are
found to be present in the influenza data set, of which 3 would be classified as
vaccine specific. These results are considerably less striking as for the hepatitis
B data set, although vaccine-specific sequences are still borderline significantly
enriched within the monoclonal antibody sequences compared to background
sequences (p = 0.03, two-tailed Chi-squared test).

The sequences classified as vaccine specific in the influenza data set were also
found to be more similar than expected by random chance (p < 0.001 based on
1,000 simulations; see Supplementary material). This is illustrated in Figure 5 in
which sequences (represented by points) are joined if their Levenshtein distance
is less than n/3, where n is the sequence length. Note that this threshold was
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Figure 4: Mean sequence relative abundance at each time point in each classi-
fication (A), and the mean number of individuals sharing a sequence over time
in each classification (B) for the influenza data set.

Classification All sequences Plasmablast

Number Abundance (sd) Number

Background 27,120 1.45 (1.06) 11
Non-specific 23 5.52 (0.85) 0

Vaccine-specific 1,463 2.51 (1.54) 3

Table 4: Number of sequences allocated to each category across all samples, the
mean total sequence abundance across all samples, and number of sequences
also found in the plasmablast data set from each classification.

chosen to highlight the greater sequence similarity present in vaccine specific
sequences and is more stringent than that used for the hepatitis B data set
because the viral data consist of amino acid sequences.
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CBA

Figure 5: Similarity between sequences classified as background (A), non-specific
response (B) and vaccine-specific (C). Each point corresponds to a sequence;
sequences are connected if their Levenshtein distance is less than n/3 where n is
the sequence length. All vaccine-specific and non-specific sequences are shown
and a random sample from the background which is length and size matched
with the vaccine-specific sequences.

Discussion

The B cell response to vaccination is complex and is typically captured in indi-
viduals who are also exposed to multiple other stimuli. Therefore distinguishing
B cells responding to the vaccine from the many other B cells responding to other
stimuli or not responding at all is challenging. We introduce a model that aims
to describe patterns of sequence abundance over time, convergent evolution in
different individuals, and the sampling process of B cells, most of which occur
at low abundance, from BCR sequences generated pre- and post-vaccination.
These patterns are different between B cells that respond to the vaccine stimu-
lus, B cells that respond to a stimulus other than the vaccine, and the bulk of
non-responding B cells. By using a mixture model to describe the pattern of
sequence abundance for each of these cases separately, we are able to classify
sequences as either background, non-specific or vaccine specific.

Vaccine specific sequences are identified with an estimated 69% sensitivity,
based on sequences classified as vaccine specific in the hepatitis B data set and
their concordance with sequences experimentally identified as vaccine specific in
the HBsAG+ data set. The HBsAG+ data set is more likely to contain those
sequences present in high abundance in the whole repertoire, due to random
chance and a relatively low specificity. This is reflected in the sequences classified
as background and as non-specific, in which the average abundance of sequences
seen in these categories and in the HBsAG+ data set is higher than the average
abundance of all sequences in these categories. However, this over representation
of highly abundant sequences is not seen in the cells classified as vaccine specific,
suggesting they are indeed binding the vaccine and supporting our estimate of
sensitivity.
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The influenza data set was compared to the set of sequences from plas-
mablasts collected post vaccination. However, only 14 of these plasmablast
sequences were identified in the influenza set making any estimate of sensitivity
from this data set unreliable. Of these plasmablast sequences, 21% were classi-
fied as vaccine specific; this is a similar amount to those identified by [10] as in
clonally expanded lineages and therefore likely to be responding to the vaccine.

This model incorporates both the signal of sequence abundance as well as
sharing between individuals. Considering either of these signals in isolation
would not be sufficient to identify vaccine-specific sequences. The sequences we
identify as vaccine specific are often highly abundant, but the average sequence
abundance is modest, with the non-specific response category containing the
most abundant sequences. Of these plasmabalst sequences, 21% were classified
as vaccine specific; this is a similar amount to those identified by [10] as in
clonally expanded lineages and therefore likely to be responding to the vaccine.

This model incorporates both the signal of sequence abundance as well as
sharing between individuals. Considering either of these signals in isolation
would not identify as many vaccine-specific sequences with a high sensitivity.
Although the sequences we identify as vaccine specific are often highly abundant,
their average sequence abundance is modest, with the non-specific response cate-
gory containging the most abundant sequences. Similarly whilst some sequences
identified as vaccine specific were shared between multiple individuals, many
were only seen in a single participant. It is only by combining these two signals
through the use of a flexible model that we are able to identify the more subtle
signatures of vaccine response.

We see evidence for convergent evolution in the hepatitis B data set, with
those sequences identified as vaccine specific being much more likely to be seen
in multiple individuals. Despite a convergent response to the influenza vaccine
being observed by others [10, 17], this pattern is not seen in the influenza data
set, in which the probability of a vaccine specific sequence being observed in an
individual is similar to that for the background sequences. There are several
potential explanations for this. Firstly, in the influenza data set, the signal
of sharing among individuals may have been overwhelmed by the abundance
signal; many more potentially vaccine specific cells are identified here than in
previous studies. Secondly, the influenza data set captures a smaller number
of sequences from DNA, whereas the hepatitis B data set captures a larger
number of sequences from RNA, so there may be less sharing present in the
influenza data set in part due to random chance and in part due to the lack
of overrepresentation of highly activated (often plasma cells) B cells. Thirdly,
the hepatitis B vaccine was administered as a booster whereas the influenza
was a primary inoculation, therefore some optimisation of the vaccine antigen
binding is likely to have already occurred after the initial hepatitis B vaccine,
increasing the chance that independent individuals converge upon the same
optimal antigen binding. Lastly, the complexity of binding epitopes of either of
the vaccines is unknown, and the lack of convergent evolution could be explained
by a much higher epitope complexity of the influenza vaccine compared to that
of the hepatitis B vaccine. This would result in a more diffuse immune response

14

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2018. ; https://doi.org/10.1101/464792doi: bioRxiv preprint 

https://doi.org/10.1101/464792
http://creativecommons.org/licenses/by-nc-nd/4.0/


on the BCR repertoire level, making it harder to identify.
In both the hepatitis B and the influenza data sets, it is likely that the se-

quences show more underlying structure than is accounted for using our cluster-
ing approach which only considers highly similar sequences of the same length.
The sequences identified as vaccine specific show greater similarity than ex-
pected by random chance when utilising the Levenshtein distance, which allows
for sequences of different lengths. A possible explanation for this is that there
could be a motif shared between sequences of different lengths which could be
driving binding specificity. It is possible that by allowing for more complex sim-
ilarity relationships, larger groups which are more obviously responding to the
vaccine may emerge, however current methods are too computationally intensive
to allow for complex comparisons of all sequences from all samples.

Here we focus on the signals of sequence abundance and sharing between
individuals to identify vaccine specific sequences. The flexibility of the model
allows for data sets to be analysed which differed in vaccination strategy, sam-
pling time points, sequencing platforms and nucleic acids targeted. However
there are many sequences which are likely incorrectly classified, for instance
since random PCR bias can result in large numbers of sequences, if these oc-
cur in samples taken at the peak of the vaccine response, they would likely be
incorrectly labelled as vaccine specific. Alternatively, vaccination may trigger
a non-specific B cell response, B cells involved in this response would have an
abundance profile which follows that expected of sequences responding to the
vaccine and would therefore likely be misclassified. The inclusion of additional
signals, such as hyper-mutation, would improve our model and our estimates of
sensitivity.
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