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1. SUMMARY 
An important aspect of age-related research is to find proteins in human blood that can be 

used to track physiological processes of aging. Here, we have used a multiplexed affinity 
proteomics approach to search for the presence of age-associated protein levels in human body 
fluids. First, serum samples from 156 subjects aged 50-92 years were explored using a 
comprehensive bead array assay including 7,258 antibodies. We identified 16 age-associated 
profiles (adjusted P < 0.05) and followed up on the most significantly age-associated profiles in 
eight additional study sets (n = 4,044 individuals) analyzing both serum and plasma. Meta-analysis 
highlighted a consistent increase with age (P = 5.37 × 10-6) for variants of histidine-rich 
glycoprotein (HRG), which we confirmed by antibody validation assays and genome wide 
association studies. Higher levels of HRG, which is a plasma glycoprotein produced by the liver, 
also increased the risk of mortality during about 8.5 years follow-up (interquartile range = 7.7-9.3) 
after blood sampling at a hazard ratio = 1.25 per standard deviation (P = 6.45 × 10-5). Our multi-
cohort affinity proteomics analysis found that blood levels of the multi-purpose HRG variants were 
associated with age and all-cause mortality. This combination suggests that elevated HRG levels 
could serve as an accessible molecular indicator for biological aging. 
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2. INTRODUCTION 
Aging is the single most dominant risk factor of common diseases of elderly and death in 

the human population (López-Otín, Blasco, Partridge, Serrano, & Kroemer, 2013). Molecular 
insights into aging could enable direct identification of future treatments for various diseases and 
would increase our understanding of longevity and related mechanisms. However, many of the 
underlying molecular processes and changes in humans still remain poorly understood (López-
Otín et al., 2013). Aging is most often studied using animal models or cell lines (López-Otín et al., 
2013), despite the vast differences in lifespans (2 weeks to 100 years) (Gorbunova, Seluanov, 
Zhang, Gladyshev, & Vijg, 2014). Findings from these model organisms should preferably be 
translated into studies on humans. Biological age of humans or the prediction of mortality has 
already been investigated via DNA methylation, telomere length, proteomic studies, mining of 
clinical records (Ganna & Ingelsson, 2015; Jylhävä, Pedersen, & Hägg, 2017), and some studies 
showed several candidates for these traits (Barron, Lara, White, & Mathers, 2015; Ganna & 
Ingelsson, 2015; Marioni et al., 2015). Recently rejuvenation factors were found in mouse blood 
(Katsimpardi et al., 2014), which suggest the potential to find aging governing molecules in human 
blood. In this study, we aim to search for novel proteins aging predictor in blood associated with 
both age and mortality. This poses a challenge to the analytical methods in terms of sample 
complexity and availability. 

To study proteins at a wider scale, there are currently two major technological concepts 
available for measuring the proteome: mass spectrometry (MS) and affinity-based proteomics 
(Ayoglu et al., 2011). Both approaches have been used to study the plasma proteome (Schwenk et 
al., 2017), offering a unique window into human health and diseases. Even though affinity 
proteomics has suffered from a lack of binding reagents to the proteome (Stoevesandt & Taussig, 
2012), antibody resources such as the Human Protein Atlas (HPA) (Uhlén et al., 2015) or aptamer-
based platforms (Emilsson et al., 2018), now offer the possibility to apply affinity proteomics for 
broader discovery projects. The capacities to conduct near population-based studies implementing 
also genome-wide association studies (GWAS) is very attractive, which has been demonstrated 
using different plasma proteomics assays (Melzer et al., 2008; Suhre et al., 2017). Several 
interesting connections between proteins and genetic variants in humans have recently been 
identified in large scale cohort studies (Emilsson et al., 2018; Sun et al., 2018). The two-omics 
approach have indeed provided novel insights into the links between the distant molecular systems, 
but also indirect validation to mitigate uncertainty in the molecular assays. 

Utilizing the in-house developed antibody assays based on the suspension bead arrays 
(Schwenk, Igel, Neiman, et al., 2010) we aimed to profile serum and plasma from a large number 
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of individuals, studying the changes in age-related plasma protein levels. Our strategy was to 
explore, filter and rank plasma profiles associated with age in extended sets of samples and to 
confirm antibody selectivity by applying different validation assays (Supporting Figure 1). 
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3. RESULTS 
We analyzed human serum and plasma samples of 4200 subjects for blood proteins 

associated with age. Using affinity proteomic assays initially based on a large set of antibody 
reagents, protein profiling was conducted with nine sets of samples to determine the most 
consistent age associations. Our aim was to describe proteins present in serum and plasma that 
could serve as indicators of biological age to increase our understanding of age-related phenotypes. 

Screening for age-associated profiles 
Age-associated protein profiles were first investigated in a set of 156 human subjects 

selected in 5-year age intervals from a Swedish twin cohort using our proteomic assays (Table 1). 
The sex-matched samples from the study set included 30 monozygotic (MZ) twin pairs (age 50-
70). The average intraclass correlation within pairs of antibody profiles was small (ICC = 0.13) so 
twins were treated as unrelated. Minimal effects of the twin relationship were corroborated by a 
linear mixed model that considered the dependency. 

Assays using a total of 7,258 HPA antibodies were applied to profile age-associated 
proteins in serum. For this screening, target inclusion criteria were purely dependent on availability 
of antibodies but not due to their target antigens (Byström et al., 2014). This set of antibodies 
comprised targets from 6,370 protein-encoding genes (about 32% of the non-redundant human 
proteome) and profiles were obtained using antibody suspension bead arrays (Drobin, Nilsson, & 
Schwenk, 2013), which provided up to 384 profiles on 384 samples per batch. The acquired data 
was preprocessed through quality control including outlier removal and normalizations to account 
for experimental variation across individual samples, assay plates and data batches (details in 
Experimental procedures). Linear regression models were then used to determine the protein 
profiles that changed monotonically with increasing age. The models revealed 16 out of 7258 
(adjusted P < 0.05) protein profiles that were age associated when screening sera of individuals at 
the age of 50 to 92. 

Study sets to replicate and confirm the discovered age-associations  
Next, we aimed at following up on this screening phase and focused on validating the most 

significant indications, accepting that other previously published age-associated proteins will not 
be included. Because the age range of set 1 covered life expectancy in Sweden (84 years for women 
and 80 years for men in 2015 (Statistics Sweden, 2016)) we considered it more likely that findings 
from this set might be related with accelerated ageing and mortality. Concentrating on the three 
most significant findings from set 1 (Table 2), we investigated eight additional sample sets (set 2-
9) (Table 1). Out of 4,044 subjects in total, 829 subjects were from non-diseased control groups. 
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The entire set of subjects were from 3 to 93 years old at blood draw. Blood samples had been 
prepared either as serum or plasma (Table 1, Supporting Figure 2), hence differences originating 
from these preparation types were likely. Twelve sera in the otherwise plasma sample set 2 were 
not included in the meta analyses. Sample sets 6 to 9 (729 subjects) were from four independent 
studies (Table 1)(Baldassarre et al., 2010; Gabrielson et al., 2017; Odeberg et al., 2014; Samnegård 
et al., 2005). Two other sample sets (set 4 and 5) included 100 subjects that were selected for 
cancer-related studies and derived from the same twin cohort as set 1 (Lichtenstein et al., 2002; 
Magnusson et al., 2013). Besides one single subject, there was no overlap between these and the 
individuals analyzed during the discovery. The sample set 3 (2999 subjects) was again chosen 
from the population-based twin cohort (Lichtenstein et al., 2002; Magnusson et al., 2013), in which 
disease status was not considered during recruitment. Almost all (98.5%, all except forty-four) 
subjects were not included in sample set 1. 

Discovery and confirmation of age-association of HRG in serum and plasma 
Protein profiles were generated by using antibody bead arrays, as this platform allows to 

combine antibodies towards different targets whilst consuming only minute amounts of samples. 
Our analysis revealed consistent age-associated trends for HPA045005 across the eight sample 
sets for replication (Supporting Figure 3). Accounting for differences in age ranges and spectra, 
the combined effect of age on HPA045005 in the 9 sample sets was estimated using a random 
effects model and showed consistent association across sample sets (meta-analysis, P = 5.37 × 10-

6, Figure 1). Since the observed trends two other candidate profiles, generated by HPA039928 and 
HPA029931, could not be replicated to the same degree in all study sets as for HPA045005 
(Supporting Figure 3), we chose to focus our efforts on HPA045005. 

Focusing on HPA045005, of which the profile was most significantly associated and 
replicated, we investigated if the described protein levels in the circulation were controlled by 
genetic components. Employing GWAS with sample set 3 (N = 2308), a locus in chromosome 
3q27.3 was solely found to be associated with the antibody profile (P < 1.13 × 10-9 
= 0.01 / 8,833,947) among ~8.8M genetic variants imputed from or genotyped by Illumina 
BeadChip for >700K single nucleotide variants (Figure 2A). The locus spans two genes, FETUB 
and HRG, in the human genome (Figure 2B). The most significantly associated genetic variant in 
the locus was the single nucleotide polymorphism (SNP) of rs9898 (P = 2.35 × 10-97, minor allele 
frequency (MAF) = 0.32, increment per number of minor allele (β) = 0.15), which is a missense 
variant that induces the amino-acid sequence change from proline to serine in the histidine rich 
glycoprotein (HRG). Among the top 99 genome-wide significant SNPs (P < 1.13 × 10-9) having 
RefSNPs (rs) number, four SNPs (rs1042464, rs2228243, rs10770) including rs9898 are non-
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synonymous and two SNPs (rs3890864 and rs56376528) are located near (<2kbp) to transcription 
start site (Supporting Table 1). All are located in exons or upstream of HRG. This GWAS result 
indicates that the antibody describes the protein levels of HRG, a protein secreted by the liver and 
found in abundance in blood (Morgan, Koskelo, Koenig, & Conway, 1978). Associations of 
plasma HRG levels to SNPs have also been found in previous plasma profiling studies (Suhre et 
al., 2017). 

Next, we confirmed the binding of HPA045005 to HRG by using a sandwich 
immunoassay. Beads with HPA045005, an additional anti-HRG antibody (HPA054598), as well 
as negative controls were combined to detect HRG. When analyzing a full-length recombinant 
HRG in serial dilution experiments, we found that pairing both HPA045005 and HPA054598 with 
a biotinylated version of HPA054598 allowed us to detect HRG in a concentration dependent 
manner (Supporting Figure 4A). Here, the signals obtained from both sandwich assay pairs was 
substantially higher than the internal negative controls. To further elucidate the selectivity of 
HPA045005 over other proteins, we used a protein microarray (Sjoberg et al., 2012). Besides the 
antigen used to generate HPA045005, the array contained 12,412 other protein fragments. In this 
analysis HPA045005 exclusively bound to its corresponding antigen (Supporting Figure 4B). This 
indicated that the antibody does not generally cross-react in an unspecific manner, which points at 
a selective recognition of abundant HRG in serum and plasma. This molecular analysis supports 
the GWAS findings that there is an affinity of HPA045005 to the secreted liver HRG, when using 
the antibody in bead-based assays for the analysis of serum and plasma samples. 

In addition to HPA045005, the GWAS with sample set 3 included several other antibodies 
of which one monoclonal binder (BSI0137) targeted the HRG protein. For BSI0137 there was one 
locus in the gene HRG which was strongly associated with the antibody’s profile (P < 1 × 10-300, 
Supporting Figure 5). Interestingly, the identified locus included all four non-synonymous SNPs 
previously observed to associate with HPA045005. However, the most significant SNPs was not 
rs9898 but rs1042464, and the slopes of correlating BSI0137 with these SNPs were indeed opposed 
to those for HPA045005 (Figure 2C). Applying probabilistic identification of causal SNPs (PICS) 
method (Farh et al., 2015), we confirmed that it was highly unlikely to observe rs9898 as the most 
significantly associated SNP with HPA045005 when rs1042464 was the causal SNP (none in 
100000 permutations), while the significance of rs1042464 was within possible range assuming 
rs9898 was causal (Supporting Figure 6). With the facts that rs9898 causes HRG to contain either 
Pro186 or Ser186 and that HPA045005 levels increased with the number of allele C in dosage 
dependent manner, the PICS analysis revealed a differential HRG affinity of HPA045005: 
HPA045005 has a preferred affinity to HRG with Pro186. 
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Mortality association and prediction 
Finding the age-association levels of HRG variants lead us to study further aging-related 

aspect. We therefore accessed the Swedish death registry that listed information whether the 
subjects were still alive or not with a follow-up time of ~8.5 years after donating the serum 
samples. We chose the largest sample set of the subjects at mid to old ages that spanned the average 
life expectancy in Sweden (sample set 3, N=2973, 48-93 years old) in order to gain statistical 
power needed for the analysis of the death, which was a relatively rare event. To test for all-cause 
mortality, a Cox proportional hazards model with age as the time scale was used. The Cox model 
was further adjusted for the effects of sex and revealed that the HRG variant levels obtained by 
HPA045005 were significantly associated with the mortality during follow up (inter-quartile range 
(IQR) = 7.7-9.3; P = 1.13 × 10-4), whereas HRG levels determined by BSI0137, with no 
correlation with HPA045005 (R2 = 0.006), were not associated to mortality (P = 0.57) and age (P 
= 0.43). As protein variant levels increase with age, the HRG value of HPA045005 was 
standardized using a linear regression model for age and age squared for each sex, followed by 
scaling in order to account for the linear and quadratic effects of age and to let the hazard ratio 
(HR) quantifiable that was estimated by the survival model. The hazards model using the 
standardized HRG value affirmed the association (number of deaths=362, P = 6.45 × 10-5), 
estimating that the risk of all-cause mortality increased 1.25 times per standard deviation (SD) of 
the HRG values compared to persons at the same age and sex. In the model accounting for potential 
genetic effect of the associated SNP, rs9898, estimated HR of HRG was even higher to 1.31 per 
SD with barely changed significance (P = 7.75 × 10-5), despite smaller number of samples (N = 
2307). Noteworthy, the SNP itself was not associated to mortality (P = 0.69). No evident difference 
was observed when stratifying by the genotype of the SNP on HR of HRG, while linear association 
of age with non-standardized HRG was stronger as the number of T allele increased (Supporting 
Table 2). A Cox model stratified by sex suggested stronger association in women (N = 1602, 
deaths = 160, P = 2.13 × 10-5, HR = 1.35 per SD) than in men (N = 1371, deaths = 202, P = 0.059, 
HR = 1.15 per SD). The comparison of the extreme subsets with standardized HRG levels of the 
upper and lower quartile demonstrated that the difference of median age at death was 1.8 years in 
favor of the bottom quarter (P = 3.87 × 10-3, HR = 1.54, Figure 3). The difference was 1.9 years in 
men (86.9 years vs. 85.0), while 0.6 years in women (89.6 vs. 89.0; Supporting Figure 7). The 
difference of life expectancy at the age of 45 between the two extreme quarters was 3.7 years in 
women (87.3 vs. 91.0), while 2.8 years in men (83.9 vs 86.7), assuming age-at-death follows 
Weibull distribution (Supporting Table 3). Potential influence of general inflammation on survival 
were also tested by models including clinically measured C-reactive protein (CRP) values. As for 
HRG, two Cox models were fitted to 1) CRP and 2) age-adjusted CRP. The latter was obtained 
using same linear model as HRG including the adjustment for same covariate. The outcome of 
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P = 0.024 (N = 2971, HR = 1.07 per SD) and P = 0.023 (HR = 1.01) was far less significant than 
for HRG. Next, we included CRP as a covariate in the Cox model for HRG in order to determine 
if inflammation in general would have an influence of HRG-related mortality. The resulting CRP-
adjusted HRG association reduce the significance only from P = 6.45 × 10-5 to P = 1.05 × 10-4. 
(HR = from 1.25 to 1.24 per SD) We also confirmed that none of the hazard models violated the 
proportionality assumption of the Cox model. The predictive power of HRG levels together with 
age for all-cause mortality was tested using a Cox model with the time from sample collection as 
the time scale. The Harrell's C-index of the model was 0.766. 
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4. DISCUSSION 

HRG, a multi-functioning protein in plasma 
We analyzed the age-association of proteins with antibody-based assays in blood prepared 

as serum or plasma, and found increasing levels of HRG to be consistently associated with age. 
GWAS and sandwich assays confirmed binding of HRG. Using another anti-HRG antibody we 
demonstrated a differential affinity to variants of HRG, of which one was the protein captured by 
the antibody in the exploratory discovery antibody assay. 

According to mRNA sequencing data of human tissues, HRG is exclusively expressed in 
liver (Uhlén et al., 2015). HRG has been known and described as an abundant protein in human 
blood plasma (Morgan et al., 1978; Poon, Patel, Davis, Parish, & Hulett, 2011). It has been 
characterized to interact with diverse molecules including heparin, immunoglobulin G (IgG), Zn2+, 
and complement components (Poon et al., 2011). HRG in plasma is known be involved not only 
in immune response toward foreign substances and clearance of dead cells, but also in vascular 
biology including anti-coagulation (Poon et al., 2011). HRG has functional similarities with CRP, 
such as coagulation and inflammation (Poon et al., 2011), which is another indicator of aging and 
mortality (Barron et al., 2015). HRG levels have previously been correlated and linked to blood 
ABO type and age (Drasin & Sahud, 1996). It has been also found as a biomarker of preeclampsia, 
which entails angiogenic imbalance and defective coagulation control (Bolin, Akerud, Hansson, 
& Akerud, 2011). But, because of its molecular composition and abundance, HRG has also been 
assigned to many different biological processes. Hence it is yet difficult to pinpoint and postulate 
the most plausible mechanism of increasing HRG levels in the process of aging. 

In the gene of HRG, there are at least 4 genetic variants relatively abundant (MAF > 10%) 
and these lead to different amino acid at these 4 positions. Dealing with variants generated by 
different combinations of those genetic variants, our GWAS analysis revealed the associations of 
both antibodies’ profiles with those non-synonymous SNPs. The PICS analysis provided 
indications about which amino acid residue of the HRG may affect the antibody recognition. Using 
this novel approach, we found that HPA045005 preferred the HRG with Pro186 over the variant 
with Ser186, which is located on the N2 region of HRG (Poon et al., 2011). We know some 
individuals can express one protein variant only. No single genetic variant around HRG reached 
genome-wide significance for mortality risk in a study including the TwinGene cohort (Ganna et 
al., 2013). Thus, we could postulate that detecting the abundance of HRG with HPA045005 
revealed changes related to biological age that were linked to the residue Pro186. Interestingly, 
two of the neighboring residues are amino acids with functional groups: Asp184 is a possible N-
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glycosylation site and a glutathione modification has been implicated for Cys185 (Kassaar et al., 
2014). In rabbits, the latter modification and possible plasmin cleavage sites at Arg298 and Arg414 
haven been linked angiogenesis. Hence, it is plausible that changes occurring on these positions 
may also be dependent whether the variant carries a Pro186 or Ser186. Proline is classified as a 
non-polar amino acid, known to disrupt the formation of alpha helices and beta sheets but often 
found in loops and turns. Serine, on the other hand, is a polar amino acid, know to form hydrogen 
bonds with other residues and a possible site for O-glycosylation. While further investigations of 
the molecular details will be needed, we speculate that the different physiochemical properties of 
proline and serine could also indicate that the HRG variants interact at different affinity and 
selectivity with other proteins. This could possibly point at that the variants participation in 
different physiological processes. 

Limitation and variation 
Our study was cross-sectional and the ages of the participants covered those age ranges of 

average lifespan in many of the profiled sample sets, including both serum and plasma. There is 
still limited information available to interpret the trend of increasing of HRG levels as advanced 
age reflected longitudinal change within individual subjects. On the other hand, those gradual 
alterations were repeatedly observed in multiple independent study sets derived from different 
Swedish cohorts, which provides strong indications that the association of HRG with age was 
confirmed. As we also found that the elevated level of HRG comparing to same-aged peers was 
correlated with higher risk of mortality, the age-dependent diversity may imply a time-wise 
transition along individual ages, possibly biological ages. We observed variation in the degree of 
the age-dependent transition, which is visible in Figure 2. To some extent, the variation can be 
explained by the shift of signal range in each assay, which was primarily developed to screen for 
possible associations and not standardized to determine absolute abundance levels. Seeing that the 
estimated slopes from sample sets 2, 3, and 9 were relatively lower than the values from the other 
sets, some parts of the variation might originate from the difference in age range and sample 
source, collection and selection procedures. For example, the individuals in the sample sets 2, 7 
and 9 were substantially younger (median age 40, 52 and 54 years, respectively) compared to all 
others (~65 years old). The sample sets 2, 3, and 9 were near population-based, while the others 
were healthy individuals except those in the sample set 1, in which older women and men were 
overrepresented due to same number selection per age group. 

Significance as a potential predictor of mortality 
Several indicators in blood were found predictive for mortality risk in previous studies and 

Barron et al. (2015) showed three markers, CRP, N-terminal pro brain natriuretic peptide (NT-
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proBNP), and white blood cell (WBC) count, were statistically significant in meta-analyses 
(Barron et al., 2015). The HR estimate of HRG in this study (1.54 between top and bottom quarters) 
was comparable with the combined estimate in the meta-analysis (1.42 for CRP, 1.43 for NP-
proBNP, and 1.36 for WBC count). In a previous study, CRP was linked to mortality risk in a 
follow-up duration (median 8.9 years) similar to our study. HR per SD of CRP was estimated to 
1.18 (Schnabel et al., 2013), which is slightly lower than our estimate of 1.25 from HRG. Our 
HRG estimate was also slightly higher than the HR of DNA methylation (1.09 - 1.21) (Marioni et 
al., 2015). Comparing with the questionnaire-derived measures examined in Ganna and Ingelsson's 
study, HRG (C-index = 0.766 with age) marginally outperformed the top predictors (max C-
index = 0.74 including age) in the extensive population-based mortality study (Ganna & Ingelsson, 
2015). 

Other recent affinity proteomics approaches have also shown age related signatures of 
aging, highlighting GDF15 as well as other proteins of coagulation system (Tanaka et al., 2018). 
While that study acknowledged the need for further validation, we have conducted extensive effort 
to confirm our observations across many different cohorts. Our strategy, on the other hand, was 
not to include previously known age-related proteins, hence did not shortlist antibodies that could 
be useful for screening plasma for these markers by using our method. 

In conclusion, increased blood levels of HRG variants in older humans was discovered and 
adequately replicated in multiple sample sets by affinity proteomics. Appropriate molecular 
approaches were employed to characterize the identity of the protein to pave the way to develop 
targeted assays for expanding the analysis of our primary data. The supporting evidence of HRG 
serving as a predictive indicator for all-cause mortality within 8.5 years after blood draw suggests 
that levels of HRG variants in blood could be used as an aging indicator. 
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5. EXPERIMENTAL PROCEDURES 

Cohort design and sample selection 

a) Sample set 1 from TwinGene 
A population wide collection of blood from 12,614 twins born between 1911-1958 has 

been undertaken in a project called TwinGene. The primary aim of the TwinGene project has been 
to systematically transform the oldest cohorts of the Swedish Twin Registry (STR) into a 
molecular-genetic resource (Magnusson et al., 2013). From 2004 to 2008, a total of 21,500 twins 
(~200 twin pairs per month) were contacted by the invitation to the study containing information 
of it and its purpose, also consent forms and health questionnaire. The study population was limited 
to those participating in the Screening Across the Lifespan Twin Study (SALT) which was a 
telephone interview study conducted in 1998-2002 (Lichtenstein et al., 2002). Other inclusion 
criteria were that both twins in the pair had to be alive and living in Sweden. Subjects were 
excluded from the study who had declined to participate in future studies or been enrolled in other 
STR DNA sampling projects. When the signed consent forms returned, blood-sampling equipment 
was sent to the subjects, who were asked to visit local health-care facilities on the morning, after 
fasting from 20:00 the previous night, from Monday to Thursday and not the day prior to a national 
holiday. This was to ensure that the sample tube would be delivered to the Karolinska Institutet 
(KI) Biobank by the following morning by overnight mail. After arrival, the serum was stored in 
liquid nitrogen. 

The contribution for sample set 1 of serum samples from the TwinGene study consisted of: 
A) samples from 96 unrelated twins distributed in groups of 12 subjects (6 males and 6 females) 
in each age strata 50, 55, 60, 65, 70, 75, 80 and 85 years of age. The width of the age intervals was 
approximately +/- 3 months, and B) samples from 60 MZ twins (30 complete pairs) distributed in 
groups of 12 (3 male pairs, 3 female pairs) in each age strata of 50, 55, 60, 65 and 70 years of age. 
The width of the age intervals was approximately +/- 3 months. 

b) Sample set 2 from LifeGene 
Life Gene is a prospective cohort study that includes collection of plasma and serum, tests 

of physical performance, as well as questionnaire responses regarding a wide range of lifestyle 
factors, health behaviors and symptoms (Almqvist et al., 2011). Participants respond to a web-
based questionnaire and book time for a visit to a LifeGene test center, at which blood samples are 
taken. EDTA plasma was processed at the test center as follows: the EDTA tube with a gel plug 
was centrifuged, put into -20ºC prior to shipment in a cold chain. All samples were sent to KI 
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Biobank for further separation into aliquots in REMP plates and frozen at -70ºC. All participants 
or, in the case of children under the age of 11, their guardians, provided signed consent. 

The sample set 2 cohort consisted of 5 male and 5 female samples randomly chosen from 
each of the ages <5, 10, 15, 20, 25, 30, 35, 40, 45, 50 and 55 (+/- 3 months). For 12 participants, 
serum was also available. 

c) Sample sets 3, 4, and 5 from TwinGene 
Sample sets 3, 4, and 5 were selected from the same cohort, TwinGene (Magnusson et al., 

2013), as for sample set 1 (described above). Out of 132 microtiter 96-well plates for storage of 
TwinGene samples, the twelve plates having the largest age span (>20 years) among samples in a 
plate and another randomly chosen twenty plates comprising a sufficient number of samples (>91) 
were selected. Sample set 3 consisted of the three thousand samples in the selected 32 storage 
places. The data of one individual was removed in the analyses because age of the subject is 
missing. Independently from the sample selection, sample sets 4 and 5 were age and gender 
matched controls for breast and prostate cancer studies, respectively. The mortality data was 
obtained by connecting individuals in TwinGene to the data in the Swedish tax authorities by 
personal identification number. The data was updated on 2015-01-10. Clinical blood chemistry 
assessments of hs-CRP of the samples in TwinGene was performed using Syncron LX System 
(Beckham Coulter). 

d) Sample sets 6 to 9 
The sample sets 6 to 9 are described in Supporting Text. 

e) Ethics 
All the studies were approved by the Ethics Board of the correspondent hospital or 

institution, and conducted in agreement with the Declaration of Helsinki. The ethical approval 
document numbers are 2007/644-31/2 for TwinGene, 2009/615-31/1 for LifeGene, 03-115 and 
2017/404-32 for IMPROVE, 95-397 and 02-091 for SCARF, EPN 2009/762 and LU 298-91 for 
CHAPS, and 2010/958-31/1 for Karma. All subjects, or their guardians, provided their informed 
consent to participation in individual studies. 

Data acquisition - Assay design and SBA procedure 
All 372 samples from sample sets 1 and 2 together were randomly allocated into wells in 

four 96-well plates. One sample from each sample set was loaded into two more wells as a repeated 
control within a plate. Another sample in each cohort was transferred to two more wells of two 
different plates as a control to examine inter-plate variation. The data of each of those 4 samples 
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was combined by taking mean of three measures. All the human materials were biotinylated 
together with four negative controls that contained only buffer. For the entire 19 assays for 
discovery stage, the samples were labeled two times. 

The selected antibodies were divided into collections of 384 antibodies including positive 
and negative controls, anti-albumin and no antibody, respectively. These antibodies were then 
coupled onto beads and used to create a suspension bead array (SBA). For discovery, the selection 
of the affinity binders for one SBA was determined by technical reasons such as the available 
amount. Every antibody in an SBA was coupled with beads with a different colour code as detailed 
together with the assay procedure in the Supporting Information and as described earlier (Drobin 
et al., 2013). 

Quality control and preprocessing 
All values in an assay (with 384 antibodies) of the samples seemingly failed were removed. 

The criteria were 1) median bead counts < 20, 2) median MFIs < median of buffer only sample, 
and 3) outlier(s) detected by robust PCA using ‘rrcov’ R package (version 1.3-4)(Hubert, 
Rousseeuw, & Branden, 2005). Because serum and plasma showed considerable dissimilarity, as 
expected (Supporting Figure 2)(Schwenk, Igel, Kato, et al., 2010), the obtained data was split by 
the blood preparation type. Probabilistic quotient normalization (PQN) was applied to minimize 
sample-wise fluctuation (Dieterle, Ross, Schlotterbeck, & Senn, 2006). The effects of the 96-well 
plates were minimized by Multi-MA method (Hong, Lee, Nilsson, Pawitan, & Schwenk, 2016). 
More details are available in Supporting Text. 

Data acquisition of replication sample sets 
Data of other replication samples (sample sets 3-9) were acquired using the same protocol 

with a few variations. For each original study for sample sets 4-8, the samples were distributed 
into plates together with patient samples. The 383 other antibodies selected for each of the intended 
studies were included in the assays. Experiment and data preprocessing were conducted together 
with those additional samples and antibodies. Data of disease-free controls and for HPA045005 
were extracted from the processed full data sets. Likewise, we obtained the data of the other top 2 
candidates shown in Table 2. 

Other experimental details 
Experimental details on antibody selection, bead array assays, genome-wide association 

study, sandwich immunoassays, and protein microarray analysis are available in Supporting Text. 
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Statistical analysis 
The preprocessed intensity data was log-transformed ahead of following analyses. To 

control family-wise error rate, Bonferroni method was employed in adjusting P-values unless 
otherwise specified. The linear association of an antibody signal level with age was tested with 
ordinary linear regression using R. The meta-analysis was conducted using the inverse variance 
method with between-study variance estimated by DerSimonian-Laird model (DerSimonian & 
Laird, 1986), which was implemented in the R-package “meta”. We used a linear mixed model to 
address the correlation between twins where the response variable was the normalized antibody 
measurement and age was a fixed covariate. This model was performed using the R-package 
“lme4”. For the association test for mortality, Cox proportional hazards model was fitted to the 
survival data with age as the time-scale and right censoring at the age on the updated date of death 
information (Thiébaut & Bénichou, 2004). In the survival analysis for two group comparison, the 
subjects in sample set 3 were divided into two groups, top and bottom quarters by the standardized 
HRG values, which were the scaled residuals of linear model where the normalized MFIs of HRG 
were regressed on age and age squared for women and for men, separately. The hazard models 
were adjusted for sex if applicable and for CRP as described above. The proportionality 
assumption of the models was tested using Schoenfeld residuals (Grambsch & Therneau, 1994). 
Survival analyses including computation of Harrell's C-index (Harrell, Califf, Pryor, Lee, & 
Rosati, 1982) were conducted using the R packages "survival" and "eha". 
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10. TABLES 

Table 1. Sample sets  

Study set Age  
[yr] 

Sex  
(F : M) 

Sample 
Type Indication* Cohort 

name References 

Set 1 50 – 92 78 : 78 Serum Population TwinGene (Lichtenstein et al., 2002; 
Magnusson et al., 2013) 

Set 2 3 – 6 6 : 6 Serum Population LifeGene (Almqvist et al., 2011) 9 – 63 102 : 102 Plasma Population 
Set 3 48 – 93 1613 : 1386 

Serum 
Population 

TwinGene (Lichtenstein et al., 2002; 
Magnusson et al., 2013) Set 4 51 – 86 50 : 0 Breast cancer 

Set 5 56 – 75 0 : 50 Prostate cancer 
Set 6 55 – 78 16 : 27 Plasma Cardiovascular disease IMPROVE (Baldassarre et al., 2010) 

Set 7 41 – 60 12 : 31 Plasma Myocardial 
infarction SCARF (Samnegård et al., 2005) 

Set 8 48 – 73 20 : 23 Plasma Acute coronary heart 
syndrome CHAPS (Odeberg et al., 2014) 

Set 9 40 – 73 600 : 0 Plasma Mammography KARMA (Gabrielson et al., 2017) 
 
* Subjects included in the presented study did not include subjects diagnosed with the disease of the 
indication area, but the subjects assigned as controls for the different disease cohorts. 

Table 2.  Antibody profiles with strongest association to age 
HPA ID FDR FDR – Twin† Within-pair correlation‡ 
HPA045005 3.92×10-11 4.07×10-10 0.428 
HPA039928 6.83×10-10 2.15×10-9 0.312 
HPA029931 1.00×10-5 5.30×10-5 0.404 

 

† The false discovery rate (FDR) of the linear mixed effects model with random effects of twin pair. 
‡Intraclass correlation coefficient between within-pair of 30 twin pairs.  
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11. FIGURE LEGENDS 
 

Figure 1. Meta-analysis from 9 different sample sets 
In the forest plot, the numbers in parenthesis indicate the age range of the included subjects. For 
each sample set, the estimated effect from the linear regression model, 95% confidence interval of 
it, and study weight in the meta-analysis are shown as a tick, a line, and a grey box, respectively, 
in the middle. The numeric value of the effect is clarified at the right side. 

Figure 2. GWAS results of the age-associated plasma profile 
(A) Manhattan plot. The significance of association between genotypes and HPA045005 profiles 
is presented vertically. The dashed guide line marks the stringent threshold of P-value for GWAS, 
which is P=0.01 after Bonferroni correction. One peak in chromosome 3 indicates strong 
association of a locus with the molecular phenotype. (B) LocusZoom (Pruim et al., 2010) on 
associated locus. The illustration shows the elements of chromosome 3 associated with 
HPA045005 profiles. Zooming in on the peak of the Manhattan plot in (A), the genes around the 
locus are presented together with the associated SNPs. (C) Box plots to show the association 
between genotypes of rs9898 and two antibody profiles, HPA045005 and BSI0137. The trends 
were opposite. 

Figure 3. Survival analysis comparing upper and lower quarters of HRG levels 
The individuals of sample set 3 were divided into four subsets by the quartiles of HRG levels. 
Differential mortality across follow-up time is illustrated by the survival curves. Some detailed 
statistics related to this survival analysis are presented in Supporting Table 3. 
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12. FIGURES 
 

Figure 1.  
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Figure 2.  
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Figure 3.  
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