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Abstract

The history of a trait within a lineage may influence its future evolutionary trajec-2

tory, but macroevolutionary theory of this process is not well developed. For example,

consider the simple binary trait of living in cave versus surface habitat. The longer4

a species has been cave-dwelling, the more may accumulated loss of vision, pigmen-

tation, and defense restrict future adaptation if the species encounters the surface6

environment. However, the Markov model of discrete trait evolution that is widely

adopted in phylogenetics does not allow the rate of cave-to-surface transition to de-8

crease with longer duration as a cave-dweller. Here, we describe three models of

evolution that remove this ‘memory-less’ constraint, using a renewal process to gen-10

eralize beyond the typical Poisson process of discrete trait macroevolution. We then

show how the two-state renewal process can be used for inference, and we investi-12

gate the potential of phylogenetic comparative data to reveal different influences of

trait duration, or ‘memory’ in trait evolution. We hope that such approaches may14

open new avenues for modeling trait evolution and for broad comparative tests of

hypotheses that some traits become entrenched.16
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Introduction

One style of studying trait macroevolution is to investigate commonalities in how a trait evolves18

across diverse lineages. By abstracting away the ecological and evolutionary processes that act

on short timescales, a single question can be posed across hundreds of species and millions of20

years. For example, one big question is whether the evolution of certain traits is irreversible (Bull

and Charnov 1985). Existing models of transitions among categorical trait values can test this22

question on phylogenetic data (Lewis 2001; Nosil and Mooers 2005; Goldberg and Igić 2008),

focusing on the emergent pattern of trait evolution asymmetry while sweeping aside details like24

how it is caused by asymmetry in selective regime shifts or in the capacity to adapt to such

shifts. Similarly, phylogenetic comparative methods are available to ask many other questions26

about trait macroevolution, such as whether traits change more rapidly in some clades than

others (O’Meara et al. 2006; Beaulieu et al. 2013), or whether traits tend to change more during28

speciation than within single lineages (Bokma 2008; Goldberg and Igić 2012; Magnuson-Ford

and Otto 2012). Such abstracted models have been very useful, both because they are simple30

enough to be interpreted broadly and because they can be fit statistically to large phylogenetic

datasets. But traits may also evolve in emergent modes that are not captured by existing models.32

Here, we suggest that a different dynamic of trait evolution may also be widely applicable and

mathematically tractable.34

Our focal question is, does the length of time a lineage has held a trait value affect the chance

of the trait changing in the future? At the macroevolutionary scale, we envision this pattern36

as the result of two components. In the first component, time spent in one state may lead to

increased fit to that state. One possible mechanism is an accumulation of adaptive changes. For38

example, flowers can become increasingly suited to long-tongued pollinators via gradual elon-

gation of nectar spurs and petal color changes from purple to red to white (Whittall and Hodges40

2007). Or focusing on the genetic level, fusions that unite loci determining sex with loci experi-

encing sexually antagonistic selection can eventually create heteromorphic sex chromosomes in42

species with separate male and female individuals (Charlesworth 2015). Another possible mech-

anism is gradual degradation through disuse. For example, vision genes are downregulated44

in recently-derived cave-dwelling fish populations and accumulate loss-of-function mutations in

older cavefish species (Niemiller et al. 2013; McGaugh et al. 2014). In the second component,46

increased commitment to one state may reduce the chance of changing to another state. In par-
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ticular, it could take longer to reverse the evolution of more extensive adaptations or losses. This48

logic seems reasonable and has some theoretical basis (Marshall et al. 1994), but well-supported

empirical examples are elusive. For the sex chromosome example above, flowering plant species50

with heteromorphic sex chromosomes appear less likely to transition back to hermaphroditism

than do other dioecious species (Goldberg et al. 2017). For the other examples above, the logic52

would be that species with longer nectar spurs would be less able to change to short-tongued

pollinators when the pollination environment shifted to bees, or cavefishes with more exten-54

sive loss of vision and pigmentation would be less able to establish surface populations when

washed into aboveground habitats. More broadly, macroevolutionary studies frequently focus on56

widely-recorded and ecologically-important traits (e.g., diet, habitat, reproductive or life history

strategy) that are underlain by an assortment of morphological, physiological, and behavioral58

attributes with complex genetic bases. If these attributes accumulate gradually and inhibit sub-

sequent changes in the focal trait, it may be common for the history of a trait within a lineage to60

affect its propensity for evolutionary change in the future.

Although it seems intuitively reasonable that a lineage’s duration in one state could affect62

the chance of change to another state, this dynamic is absent from the model that dominates

phylogenetic studies of discrete trait evolution. In the existing model, evolutionary changes64

between states occur as jumps with specified probabilities (Pagel 1994; Lewis 2001). Variations

on the theme are numerous. State space can be structured to accommodate everything from66

codons to geographic ranges to correlations between multiple traits, rates of state change can

depend on time or clade, and trait evolution can interact with the speciation-extinction process68

(Felsenstein 1981; Goldman and Yang 1994; Pagel 1994; Ree et al. 2005; Maddison et al. 2007). One

core assumption remains throughout all these variants, however: the length of time that a lineage70

has possessed its state does not affect the probability that it will change state. That is, these are all

‘memory-less’ Markov models. Recent non-Markovian models for lineage diversification allow72

the age of a lineage to influence its probabilities of speciation or extinction (Stadler 2013; Hagen

et al. 2015; Alexander et al. 2016). For trait evolution, however, the only previous non-Markovian74

model is the threshold model (Felsenstein 2005), which we discuss in detail below.

Here, we present models that incorporate the dynamic of ‘memory’ in trait macroevolution.76

We retain the abstract simplicity of representing evolution as jumps between discrete states, but

we add the possibility that these jumps are affected by how long a lineage has held its state.78

First we derive mathematical forms for the memory dynamic from simple assumptions about its
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underlying cause. Then we investigate whether phylogenetic comparative data can reveal the80

signature of memory in trait macroevolution. We close by discussing how future work could

further open this macroevolutionary idea to empirical study.82

Models

Renewal process84

For modeling the evolution of discrete-valued traits on a phylogeny, a continuous-time Markov

chain is by far the most common approach (Felsenstein 1981; Pagel 1994; Lewis 2001). In this86

model, the chance of a change in state depends only on the rate parameters and the current

value of the state. For example, if the trait can take either state A or B, the model is described by88

two parameters: qAB is the instantaneous rate at which a lineage in state A flips to state B, and

qBA is the instantaneous rate for the reverse trait flip. (Throughout, we will consider only binary90

traits, so a ‘flip’ is a change to the other state.) The trait flips from state A to B follow a Poisson

process in this model, and the waiting time until the next flip has an exponential probability92

distribution with mean 1/qAB (and similarly for flips from B to A).

Our goal is to build a model in which the instantaneous rate of a trait flipping depends on94

how long the lineage has held that state. This requires removing the ‘memory-less’ property

of the Markov and Poisson processes, rendering the waiting times no longer exponentially dis-96

tributed. The renewal process is the generalization of the Poisson process to any distribution of

waiting times, provided they are still independent and identically distributed (Ross 2010, Ch. 7).98

Each trait flip constitutes a ‘renewal,’ and the time until the next flip depends on the time since

the last renewal. Our derivations will consider only the symmetric case in which transitions from100

A to B have the same distribution as from B to A. Future work could relax this assumption by

using an alternating renewal process.102

The ‘hazard function’ describes the instantaneous rate of an event occurring. In our context,

this is the chance of a flip occurring at time t given that the previous flip was at time 0 (fig. 1).104

In terms of the probability density function (PDF) of the waiting times, f (t), and its cumulative

distribution function (CDF), F(t), the hazard function is h(t) = f (t)/[1− F(t)]. For the usual106

Poisson process of trait flips, the hazard function is flat, e.g., h(t) = qAB. Under the idea that

extended commitment to one state inhibits evolutionary transitions to another state, we would108

like a trait evolution model with a declining hazard function, so h(t) decreases with t. There
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could perhaps be other situations in which an increasing hazard function is appropriate, and our110

derivations also allow for this. For example, a parasite may be more likely to switch hosts after

enough time has passed that its current host has adapted to reduce its efficacy.112

The renewal process in general can operate with any hazard function. What is an appropriate

renewal function for trait evolution? We next describe three models that abstract the process of114

trait evolution with different forms of ‘memory.’ We derive the hazard function for each and then

compare across models.116

Threshold models

There is currently one phylogenetic model of discrete trait evolution that inherently causes the118

duration in one state to affect the chance of flipping to the other state: the Threshold model

(Felsenstein 2005). This model tracks the evolution of an unobserved continuous-valued quantity120

called the ‘liability.’ The observed discrete-valued trait takes state A when the liability is below a

certain threshold value and state B when it is above the threshold (fig. 2A). This model represents122

the situation in which a trait can only take discrete observable states, such as presence or absence,

but a large number of genetic and environmental factors together determine the state (Wright124

1934).

It is intuitive that memory is built into the evolution of such a trait. The longer the state has126

remained A, the farther is the liability expected to have wandered from the threshold, making a

transition to B less likely. The Threshold model has been used to compute correlations between128

traits (Felsenstein 2005) and to infer ancestral states (Revell 2014). Here we relate the Threshold

model to a renewal process of trait evolution to better understand its memory properties.130

The original threshold trait model describes normally-distributed liability values (Wright

1934), and a Brownian motion process was later used for the evolution of the liability (Felsenstein132

2005). The Brownian motion formulation is, however, not suited to our goal of modeling the time

to the next trait flip. If t1 is the time at which the trait value crosses the threshold into a particular134

state and t2 is the next time that the trait returns to the threshold and flips back to the previous

state, then for any ε > 0 we have that P(t2 < t1 + ε) = 1. That is, the probability of returning to136

the threshold is one even over a vanishingly small amount of time. Thus, although the Brownian

motion formulation used by Felsenstein (2005) works well for other applications of the Threshold138

model, we need an alternative formulation to compute a meaningful distribution of times until

the next trait flip.140
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Random walk model

We describe a different model for the liability, which retains the spirit of the Threshold model142

but avoids the artificial pathological path properties of Brownian motion. Consider a one-

dimensional random walk in which steps of size one to the left or the right are equally likely,144

and the waiting time between steps is exponentially distributed with rate θ. For convenience, we

place the threshold at 0.5: the trait thus flips from A to B when the liability steps from 0 to 1,146

vice versa for the other direction, and the liability spends no time directly on the threshold.

We are interested in the probability distribution of τ, the amount of time it takes to flip

to B if A has just been acquired. (It is the same for flips in the reverse direction because our

random walk is symmetric, but we pick one case for clarity.) Let fτ and Fτ be the PDF and CDF,

respectively, of τ. Let N be the number of steps taken by the random walk before hitting 1 for

the first time, starting from 0; this is the number of steps between threshold crossings. Then for

positive integers i, the probability mass function of N is given by (Lalley 2016)

P(N = i) = 21−i(i + 1)−1
(

i− 2
i−1

2

)
, if i is odd,

and P(N = i) = 0 for all even values of i due to the parity of the random walk.148

The times between steps of our random walk are exponentially distributed with rate θ, so

the time τ can be interpreted as a sum of N independent exponential random variables each

with rate θ, where N is itself a random variable. The sum of independent identical exponential

random variables has a Gamma distribution (Ross 2010, Ch. 5). Therefore, conditioned on N

taking some particular value i, the distribution of time to the next flip is τ = Yi where Yi is a

Gamma random variable with shape parameter i and rate parameter θ. Allowing for all possible

values of N, we can then write the PDF or CDF of τ as a mixture of PDFs or CDFs of the Yi, for

i = 1, 2, . . .. The hazard function of τ thus becomes

hτ(x) =
fτ(x)

1− Fτ(x)
=

∑∞
i=1 fYi(x)P(N = i)

1−∑∞
i=1 FYi(x)P(N = i)

. (1)

The hazard function for the symmetric random walk Threshold model (eq. [1]) is illustrated in

figure 3A. The rate of flips to state B always decreases with time spent in A. The steepness of that150

decrease is determined by the distribution of times between steps. With larger values of θ, the

time between steps is smaller, so the liability quickly wanders farther from the threshold and a152
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flip to the other state rapidly becomes less likely. When the time spent in A is longer, the random

walk is more likely to have already wandered far from its starting point, so waiting additional154

time does not significantly affect the rate of flipping to B. In this regime, the dependence on θ

also decreases due to the following compensatory mechanism: for fixed time, larger values of156

θ result in the walk being farther from the threshold, requiring more steps to return taken at a

faster rate, while smaller values of θ are associated with the walk being closer to the threshold,158

requiring fewer steps to return but taken at a slower rate.

Multi-state models160

Another way to conceptualize a process that produces memory in trait evolution is an accumu-

lation of changes in other traits (‘subtraits’) that support the focal trait. For example, if the focal162

trait is diet type, a species may become increasingly more adapted to eating insects as it acquires

the behavioral, morphological, and physiological attributes that allow it to find, catch, and digest164

that type of prey. Alternatively, the subtraits could represent accumulated losses of function in

genes that are no longer under selection, such as functional eyes or pigmentation once a species166

becomes cave-dwelling. Even if it would be possible to observe these subtraits, perhaps not all

have been identified or included in a dataset focused on the main trait of interest. We will there-168

fore assume that only the focal trait, with values A or B, is observed, and not the values of the

subtraits (called Ai and Bi for i = 0, 1, . . .).170

Structured multi-state Markov models have previously been used to describe the macroevo-

lution of subtraits within focal traits. For example, Zenil-Ferguson et al. (2017) considered tran-172

sitions between two states, herbaceous and woody, while simultaneously modeling changes in

chromosome number within each state. All the modeled states are observable in this case, be-174

cause they are combinations of growth form and chromosome number. In contrast, Beaulieu and

O’Meara (2016) add a hidden state to a model of binary trait evolution, so that each observed176

state is represented as two hidden substates between which transitions are possible. Applying

this model to plant breeding systems, Freyman and Höhna (in review) found the hidden state to178

represent a memory process: lineages evolved from A to one hidden state of B and then to the

other hidden state of B. (The hidden states were indistinguishable phenotypically, but they had180

different effects on lineage diversification.) Tarasov (in review) describes other arrangements of

multi-state Markov models for the evolution of traits with hidden or hierarchical aspects.182

We next describe two multi-state models explicitly structured to represent memory in trait

8

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2018. ; https://doi.org/10.1101/465971doi: bioRxiv preprint 

https://doi.org/10.1101/465971
http://creativecommons.org/licenses/by-nc-nd/4.0/


evolution (fig. 2BC). In each, we assume that as time passes, a lineage evolves through a sequence184

of substates that underly the focal trait. In the examples mentioned above, this could represent

increasing adaptation to an insectivore diet or increasing loss of function within a cave environ-186

ment. Both of our multi-state models exhibit memory when the rate of flipping to the other focal

state depends on the current substate. The two models differ in the effect that a flip in the focal188

trait has on the value of the subtrait. In the Reset model (fig. 2B), the subtrait value that accumu-

lated in the previous focal state is reset because it is irrelevant when that focal trait changes. For190

example, progression through insectivore subtraits might involve gradually gaining the ability

to distinguish palatable from noxious insect prey, but this subtrait may have no cost or benefit192

when the predominant food changes to seeds. In the Retain model (fig. 2C), the subtrait value

that accumulated in the previous focal state is retained and thus has an immediate effect when194

the focal trait changes. For example, progression through cave subtraits might involve gradually

losing functional eyes, and that reduced vision would still be present in a lineage that just tran-196

sitioned to surface habitat. We explain each model further below, but in essence the distinction

is whether increased entrenchment in one focal state is undone immediately or gradually upon198

transition to the other state. Real traits might exhibit some mix of these two dynamics, but it is

informative to consider their separate effects. For each model, we derive their hazard functions200

in order to compare their memory properties.

Reset model202

We first consider the case where a flip to the other observed state causes the unobserved subtrait

to ‘reset’ its values. Consider a small example with three subtraits (fig. 2B; though our derivation204

can easily be generalized to more subtraits). Suppose that progressive commitment to A is rep-

resented as transitions from A0 to A1 to A2, each taking place after an exponentially-distributed206

waiting time with rate ρ. From any of these substates Ai, the species may transition to the first

substate of the other observed state, B0. We assume that these flips also have exponential waiting208

times, but with rates ηi that depend on the initial substate, i = 0, 1, 2. Thus, when η0 > η1 > η2,

lineages that have progressed to later substates (Ai for larger i) are less likely to flip to state B.210

Our goal is to determine the distribution of τ, the time it takes to flip to B after entering A. In

this Reset model, τ describes the time to enter B0 after having just arrived in A0. (Our symmetry212

assumptions ensure the answer is the same for flips from B to A.)

To derive the distribution of τ, we consider all the possible paths a lineage could take from
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A0 to B0. For three substates, these are: A0 → B0, A0 → A1 → B0, and A0 → A1 → A2 → B0.

Define the random variable Y as the substate of A just before the flip to B. For the three paths

above, Y = 0, 1, or 2, respectively. In addition, define independent random variables for the

transition time to the next substate, Zi ∼ exp(ρ) (for i = 1, 2), and for the next flip to the other

state, Qi ∼ exp(ηi) (for i = 0, 1, 2). Then we can rewrite τ in terms of these random variables,

conditioned on Y:

τ ∼


Q0 if Y = 0

Z1 + Q1 if Y = 1

Z1 + Z2 + Q2 if Y = 2.

We next define random variables representing renewal times for each of the possible paths:

D0 ≡ Q0, D1 ≡ Z1 + Q1, D2 ≡ Z1 + Z2 + Q2. Then we obtain the PDF and CDF of each Di:

fD0(x) = η0e−η0x

FD0(x) = 1− e−η0x

fD1(x) =
η1ρ

η1 − ρ
(e−ρx − e−η1x)

FD1(x) = 1− ρ

ρ− η1
e−η1x +

η1

ρ− η1
e−ρx

fD2(x) =
e−ρxη2ρ2

C2 (Cx− e−Cx − 1) [defining C = η2 − ρ]

FD2(x) =
η2

C
(1− e−ρx(ρx + 1))− ρ2

C2 (1− e−η2x) +
η2ρ

C2 (e−ρx − 1)

provided η1 6= ρ; otherwise D1 is distributed as a Gamma random variable with shape 2 and rate214

ρ.

In addition to the above expressions for the renewal time along each possible path, we need

to know how likely it is to take each path. The conditioning probabilities are the probabilities of

each path from A0 to B0, i.e., the probabilities that Y = i:

P(Y = 0) = P(Q0 < Z1) =
η0

η0 + ρ

P(Y = 1) = P(Q0 > Z1, Q1 < Z2) =
ρ

η0 + ρ

η1

η1 + ρ

P(Y = 2) =
ρ

η0 + ρ

ρ

η1 + ρ
.

10
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The PDF and CDF of τ are then obtained as the distributions for each possible path weighted

by the probability of taking that path,

fτ(x) = P(Y = 0) fD0(x) + P(Y = 1) fD1(x) + P(Y = 2) fD2(x) (2a)

Fτ(x) = P(Y = 0)FD0(x) + P(Y = 1)FD1(x) + P(Y = 2)FD2(x), (2b)

from which we obtain the hazard function,

hτ(x) = fτ(x)/[1− Fτ(x)]. (2c)

216

Examples of the hazard function for the Retain model (eq. [2]) are illustrated in figure 3B.

A variety of hazard function shapes are possible even when it is increasingly hard to leave218

subsequent substates (η0 > η1 > η2). When no time has passed in A, the rate of flipping to B is

always η0/(η0 + ρ), which is the probability of transitioning to B rather than to A1. When a long220

time has passed in A, the rate of flipping to B is always η2 because there is no other option for

a transition out of A2 (in this example with only three subtraits). For intermediate durations in222

A, the shape is determined by the weighted contributions of each possible path to B. This allows

for hazard functions that are not monotonically decreasing. This may be surprising at first, but224

recall that the duration in A is influenced not only by the time to transition from A0 to A1 and

so on, but also by the time to flip to B, and the combined effect may not be entirely intuitively226

obvious. For example, an initial increase in the hazard function results if the rate of progressing

within the current observed state (from A0 to A1, with rate ρ) is higher than the rate of flipping228

to the other observed state (from A0 to B0, with rate η0), because the dynamics can be initially

drawn into a longer overall path from A to B by first taking a step to A1.230

Retain model

We next consider the case where a species ‘retains’ the value of its subtrait when flipping to the232

other observed state. In contrast to the Threshold and Reset conceptualizations of memory in

trait evolution, this Retain model cannot be described by a two-state renewal process. Instead,234

a different renewal process is needed for each substate. To see this, consider again the example

with three subtrait values (fig. 2C). As before, transitions to successive substates (Ai → Ai+1)236
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take place after an exponential waiting time with rate ρ. In contrast to the Reset model, in the

Retain model Ai transitions to Bi instead of to B0 for i = 0, 1, 2, so the lineage retains the A-238

adapted subtraits even after the transition to B. Again, these flips from Ai to Bi take place after

an exponential amount of time with rate ηi, and η0 > η1 > η2 if flips to B become increasingly240

difficult with greater commitment to A. (Because subtrait evolution while in B undoes changes

accrued while in A, we might wish to label and order the rates ηi differently for flips from B to242

A, as indicated by the gray arrows in fig. 2C.)

In the Retain model, let τi be the the time it takes to flip to B, starting from state Ai. For the

starting state of A0, τ0 has the same distribution as the renewal time in the Reset model (eq. [2]).

However, τ1 has a different distribution. Recall the random variable Y which tracks the substate

at the time of the trait flip. When the initial state is A1, Y can only take values 1 or 2, so τ1 can

be written as

τ1 ∼


Q1 if Y = 1

Z2 + Q2 if Y = 2

with conditioning probabilities

P(Y = 1) = P(Q1 < Z2) =
η1

η1 + ρ

P(Y = 1) = P(Q1 > Z2) =
ρ

η1 + ρ
.

Then we have the PDF and CDF of τ1:

fτ1(x) = P(Y = 1)η1e−η1x + P(Y = 2)
η2ρ

η2 − ρ
(e−ρx − e−η2x)

Fτ1(x) = P(Y = 1)(1− e−η1x) + P(Y = 2)
(

1− ρ

ρ− η2
e−η2x +

η2

ρ− η2
e−ρx

)
.

Lastly, τ2 is simply an exponential random variable with rate η2, with the corresponding constant244

hazard function.

Because the renewal time for flips from A to B depends on the substate held upon arrival246

into A, the renewal process must be modified to explicitly account for all the substates. A two-

state renewal process will not suffice. There is thus no single hazard function that describes flips248

between A and B in the Retain model. For example, in figure 4 we see that the hazard functions
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for arrival in A0 match those of the Reset model with the same parameters (comparing fig. 4A250

with fig. 3B), but that for those same parameters, the hazard functions for arrival in A1 and A2

are different. Similar to the Reset model, as the duration in A increases, it becomes more likely252

that the flip to B will occur from the last substate, A2, so the hazard rates all approach η2.

Choice of renewal function254

All three models considered above contain the idea that changes in many unobserved compo-

nents accumulate to inhibit changes in the focal binary trait. Each model represents this process256

differently, however, and we found that the effect is not always the same. The most consistent

outcome is a hazard function that declines steeply at first and then more gradually, so that the258

effect of memory on trait evolution is strongest shortly after a trait change. This is true always

for the Threshold model, but only sometimes for the Reset and Retain models. In these latter260

models, even if the rate of flipping from A to B declines as subtrait changes accumulate, the haz-

ard function itself need not be strictly decreasing. The Reset model could be fit to phylogenetic262

data with existing multi-state Markov methods. If this is done, however, our results show that

finding ηi > ηi+1 (for i = 0, 1, . . .) would be insufficient to conclude that the rate of flips to the264

other state simply declines with duration in the state.

The above models provide a sense of what a hazard function should look like to be consistent266

with some abstract mechanisms for how memory may enter trait evolution. Rather than model

such mechanisms, however, one could instead work simply with a two-state renewal process268

and directly specify the mathematical form of the renewal function. This approach would not

capture the Retain model, as explained above. However, choosing, say, a Gamma distribution for270

the renewal function would roughly capture the shape of the hazard seen under the Threshold

model and many cases of the Reset model. It also includes as a special case the Poisson model272

with exponentially-distributed waiting times. Examples are shown in figure 1. We take this

approach of directly specifying the renewal function in the next section, when we turn to fitting274

the renewal process to data.

Inference276

We now consider the question of whether memory in trait evolution can be inferred from phy-

logenetic comparative data. First, we derive the likelihood of tip character states given the tree278
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and a renewal model of trait evolution. Then, we present a small set of simulation results to test

the efficacy of this approach. That is, we investigate whether a Poisson process can be distin-280

guished from a more general renewal process for trait evolution based on commonly-available

phylogenetic data.282

Likelihood

To calculate the likelihood of observed tip states on a phylogeny, we employ the pruning algo-284

rithm (Felsenstein 1981). Working from the tips of the tree toward the root, this algorithm com-

bines the probabilities of state changes along each branch while summing over possible states286

at each node. For any model using this algorithm, the key quantity is the transition probability

function. Given that a lineage is in state s0 at time t, the transition probability Ps0,s1(t, t + v) is the288

probability that the lineage is in state s1 at time t + v. We next derive this transition probability

for the renewal model.290

Our derivation assumes that there are two possible states, and that transitions between them

are governed by the same renewal process in each direction. We further assume that we specify292

directly the renewal function, with PDF f and CDF F.

To begin, suppose a renewal occurs right at time t, creating state s0 (fig. 5A). The probability

of ending up in state s1 at v units of time later is

ζs0,s1(v) ≡

∑∞
i=0 F2i(v)− F2i+1(v) when s1 = s0

∑∞
i=0 F2i+1(v)− F2i+2(v) when s1 6= s0.

(3)

The first case describes an even number of flips during that time, and the second case describes294

an odd number of flips. The following property of the renewal process is used in equation (3):

If a renewal occurs at time 0, let N(t) be the number of renewals until time t. Then P(N(t) =296

n) = Fn(t)− Fn+1(t), where Fn(t) is the CDF for the sum of n independent copies of the renewal

process (Ross 2010, eq. 7.3). That is, Fn(t) is the probability that n or more renewals have occurred298

by time t, and it is the n-fold convolution of F with itself. (Note that this convolution is trivial

for the Gamma distribution, which is another reason we suggested above that it could be used300

as the renewal function.)

However, it is in general not the case that a renewal occurs right at time t. Let τ be the amount

of time elapsed from t to the next renewal; this is the residual time (fig. 5B). The PDF of τ is given
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by

fτ(x, t) = f (t + x) +
∫ t

0
f (u + x)m′(t− u)du, (4)

where m(t) = E[N(t)] is the expected value, and m′(t) = dm/dt is the probability that there was302

a renewal between times t and t + dt. In equation (4), the first term applies when no renewal has

happened at all (since time 0), and the second term applies when there was a previous renewal304

(at time t − u). This second term integrates over all times that previous renewal could have

happened, weighting each by the probability of a renewal then.306

If we assume that the trait evolution process is in the limiting regime, we can simplify equa-

tion (4):

lim
t→∞

fτ(x, t)→ 1− F(x)
µ

≡ fτ(x), (5)

where µ is the mean of the distribution F. Under this limit, the first term in equation (4) goes to

zero because at least one renewal would have happened by t. Also, the density of renewal events,308

m′(t), goes to its mean value of 1/µ, the reciprocal of the mean time between renewals. Thus, we

have dropped the dependence on the absolute time t, so that fτ can be interpreted as the amount310

of time we wait until the next renewal, regardless of the current time. In the following we will

retain the assumption that we are concerned only with the limiting regime t→ ∞, which means312

assuming that the trait evolution process has run for a long time before the root of the tree.

We now construct the transition probabilities. One possibility is that the first renewal after

time t occurs before or at time t + v (fig. 5B). In this case, we must also consider subsequent

renewals that may or may not occur by t + v. Then, the probability of observing state s1 at time

t + v, conditioned on knowing s0 at time t, is given by:

Ps0,s1(v|τ ≤ v) =
1

Fτ(v)

∫ v

0
ζs!

0,s1
(v− r) fτ(r)dr. (6a)

The notation s!
i means the state that is not si, and Fτ is the CDF of τ. We have dropped the314

t dependence from the above equation based on the limiting approximation of the PDF of τ

(eq. [5]).316

The other possibility is that the first renewal after time t happens after time t + v. Then,

Ps0,s1(v|τ > v) = δs0,s1 , (6b)

where the Kronecker δ function is 1 if the states are equal and 0 otherwise.
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Putting these two possibilities (eq. [6]) together, the probability of observing state s1 at v units

of time after observing s0 is given by:

Ps0,s1(v) = Ps0,s1(v|τ ≤ v)P(τ ≤ v) + Ps0,s1(v|τ > v)P(τ > v)

=
∫ v

0
ζs!

0,s1
(v− r) fτ(r)dr + [1− Fτ(v)] δs0,s1 .

(7)

Armed with the transition probability function for our renewal model (eq. [7]), we can use the318

pruning algorithm to compute the likelihood of the tip state data given the tree and the model,

conditional on the state at the root (Felsenstein 1981). Because we have assumed that transitions320

between the states are symmetric, and that the trait evolution process has been running for a

long time before the root, each root state is equally probable. The full likelihood is thus the sum322

of the conditional likelihoods with weight one-half each.

Simulation tests324

In principle, the likelihood function derived in the previous section could be used to infer the

parameters of the two-state symmetric renewal process model from phylogenetic data. To test326

how well this might work in practice, we implemented the likelihood calculation and used it for

parameter estimation on simulated data. The limited results we report here give a rough sense328

of the feasibility of identifying memory in trait evolution from phylogenetic data, though they

are by no means a comprehensive assessment.330

For our inference model, we chose a Gamma distribution for the renewal function. The central

inference question is thus whether the ‘shape’ parameter of this distribution is distinguishable332

from 1. If not, a Poisson model is sufficient to explain the data, and there is no evidence for

memory in the macroevolution of the trait (fig. 1i). If 0 < shape < 1, memory works in the ex-334

pected direction, with flips in the trait becoming more difficult the longer a state is held (fig. 1ii).

If instead shape > 1, memory works in the opposite direction, with flips in the trait becoming336

increasingly likely (fig. 1iii).

In our testing procedure, we first simulated a large phylogeny under a simple birth-death338

model (500 tips, speciation rate 10× larger than extinction rate, tree scaled to a root age of

1). Then we simulated the evolution of a trait under the renewal process on that tree, using340

Gamma-distributed waiting times for flips of the binary trait. Our simulations and inference all

assume symmetric trait evolution, with flips from A to B governed by the same distribution as342
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flips from B to A. We then computed the likelihood of the tip state data on the tree using the

likelihood function derived above, again with a Gamma distribution for the renewal function.344

We used Bayesian inference to estimate the shape and rate parameters of each simulation of trait

evolution. We fit the model with Markov chain Monte Carlo (MCMC) using a slice sampler (Neal346

2003). We assigned a prior on each parameter that was exponential with rate − ln(1/2) = 0.693,

which gives equal weight to shape parameters less than or greater than 1 over the age of the348

tree, and which is also relatively uninformative over reasonable values of the rate parameter. To

visualize how the data provide information about the shape and rate parameters, we additionally350

computed the likelihood on gridded parameter space. This also serves as a check that maximum

likelihood parameter estimates are in general agreement with those from Bayesian inference. Our352

C and R code for all these procedures is included as Supplementary Material.

Our primary inference question is whether typical phylogenetic comparative data—a ‘known’354

tree and trait values for extant species—bear any signal of memory in the evolution of the trait.

We find that in many cases they do. Datasets simulated with a declining hazard function—so356

that trait flips become less likely with longer duration in a state—yielded estimates of the shape

parameter that were consistently close to the true value and less than 1, though the estimates358

were not always precise enough to exclude 1 (fig. 6, top row). Datasets simulated with flat or

increasing hazard functions yielded larger shape estimates, but these usually did not rule out a360

shape value of 1 with any confidence (fig. 6, middle and bottom rows). The hazard functions and

rate parameter estimates are shown in figures S1–S2.362

Estimates were less accurate and less precise when the true rate parameter was low (fig. 6, left

columns). With a low rate, flips are rarer overall so less of the total branch length on the tree lies364

shortly after a trait flip. Because the hazard function changes most rapidly shortly after a trait

flip, lower rates provide less potential to see the influence of trait duration on the instantaneous366

rate of change. Accuracy also appears to be worse for shape parameters larger than 1. Again, the

distinguishing portion of time is shortly after a flip, but this is when the rate is low (fig. 2iii) so368

there are few events to inform the value of the instantaneous rate.

Visualizing the likelihood function reveals that much uncertainty comes from parameter cor-370

relations (fig. S3). There is a ridge in the likelihood surface such that the data are explained

almost equally well by large shape and rate values, or by small shape and rate values. One372

explanation may be that the main distinguishable signal is of merely the average time between

renewals, which is governed by the ratio between shape and rate parameters for the Gamma374
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distribution choice of renewal times. For example, the three hazard functions shown in figure 1

have positively correlated parameters [shape and rate both low for (ii), both high for (iii), both376

intermediate for (i)] and roughly the same average value over the time interval shown. Fixing

the rate parameter to the true value sidesteps the correlation and yields greatly improved esti-378

mates of the shape parameter (consider a horizontal transect in fig. S3), but this type of extra

information may be difficult to obtain for real-world applications.380

In summary, the Threshold, Reset, and Retain models discussed earlier provide some general

guidance on the form the renewal function would take under various assumptions of the cause of382

memory in trait evolution. Based on that guidance, we chose one functional form for the renewal

function, simulated trait evolution under it, and tested whether those simulated phylogenetic384

data revealed whether the true hazard function was flat, decreasing, or increasing. We found

that phylogenetic comparative data do bear some signal of the shape of the hazard function,386

though precision and accuracy are not especially great. Thus, for future empirical studies, it may

be possible to estimate the strength of memory in trait macroevolution, but further work would388

be needed, as discussed below.

Discussion390

Here we have considered whether trait evolution on long timescales might not be ‘memory-less,’

such that the longer a lineage has held a trait value, the harder it is for that value to change. Our392

goal was to describe a new macroevolutionary model of trait evolution that incorporates sufficient

complexity to open up the study of this question, while retaining sufficient simplicity that it can394

represent evolution on many different lineages and be fit to phylogenetic data. We compared

different mathematical models that incorporate memory in trait evolution, and we showed how396

a fairly general model can be fit to a phylogeny. We found that phylogenetic comparative data

can in principle bear the signature of trait evolution memory, but that in practice there may be398

substantial uncertainty in the inference of this process. We end by discussing how future work

might build on our approach by extending the mathematics employed, the data provided, and400

the questions posed.
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Extending the mathematical framework402

Enhancing the mathematical models described above would open new possibilities for modeling

memory in trait evolution. In some applications, the substates of the Reset or Retain model might404

represent known subtraits or genetic changes. If this knowledge provided more specific guidance

on the difficulty of moving between substates, the transitions could be adjusted accordingly (e.g.,406

replacing ρ with ρi, or using a non-Poisson process). The allowed transitions could also be

altered, to provide, for example, a mix of the Reset and Retain dynamics.408

In many applications, trait evolution is expected to proceed differently in one direction than

another. All of our models could be extended to accommodate this change. For the Reset and410

Retain models, asymmetric flips in the focal trait could be introduced by adding parameters

(replacing ηi with ηAi and ηBi). For the Threshold model, an asymmetric random walk could be412

used. For inference with a directly-chosen renewal function, the likelihood calculation could be

expanded to allow an alternating renewal process.414

To infer from data whether there is memory in trait macroevolution, the key inference goal

is the value of the parameter that governs the presence of memory. In our simulation tests,416

this was the shape parameter of the Gamma distribution, but we found that its estimation was

confounded with the rate parameter. To avoid this problem of parameter correlations, it might418

be possible to choose a different renewal distribution in which only one parameter governs the

mean. Another reason to implement other functions for the renewal process is to capture hazard420

functions that represent different mechanisms of trait evolution. Such an extension would not

require a change to the likelihood derivation, but it would require changes to the software imple-422

mentation. In particular, the choice of Gamma distributed renewal times is convenient because

its n-fold convolution, which we used in the likelihood calculation, follows a simple parametric424

form. A compound Poisson distribution, for example, would also possess this property. Other-

wise, it may be possible to use more general classes of distributions if the n-fold convolution is426

precomputed numerically and stored for likelihood computations.

The threshold model is already in use, but its current phylogenetic applications are compu-428

tationally difficult because they integrate over all the possible values of the liability at each node

and tip (Felsenstein 2005; Revell 2014; Hiscott et al. 2016). Our approach is different: we work430

directly with the transition probabilities for the observed binary trait, not with the unobserved

liabilities. Therefore, using our likelihood function with the hazard function of the threshold432
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model, which we also computed, might provide a more efficient means of fitting the threshold

model to phylogenetic data.434

Extending the data in phylogenetic comparative analyses

The simulation tests we reported are a first indication of whether one could hope to infer the436

presence of memory in trait macroevolution from typical phylogenetic comparative data. We

find that there is indeed some signal, but that precision and accuracy may not be high. One tack438

for improving inference of the renewal process is to consider how other sources of information

could be incorporated into an analysis.440

Other studies have demonstrated that combining fossil information with phylogenetic anal-

yses can aid inference of trait evolution (Finarelli and Flynn 2006; Slater et al. 2012; Hunt 2013;442

Slater 2013). We thus tested briefly whether additional information about past states might im-

prove inference of the renewal process parameters. As an optimistic scenario, we considered the444

case where all species on a simulated birth-death tree are retained, whether or not they survive

to the present, along with their terminal trait values. We found that on a tree with half extant446

tips and half extinct tips, parameter estimates were better than when the same tree was pruned

to only extant tips, and that estimates were comparable to those on a different tree with the448

same total number of tips, all extant. (Detailed results are not shown. But more specifically, we

increased the extinction rate to half the speciation rate to obtain a simulated tree with 250 extant450

tips and 247 extinct tips. Then we simulated the binary trait on this tree with shape = 0.25 or 1.75

and rate = 3 and used all 497 taxa for inference. We compared this to inference on the same452

tree pruned to the 250 extant tips, and to our main results for the same parameter values on a

tree with 500 extant tips.) Thus, our brief tests indicate that fossil data do help by increasing the454

number of species with known state, but that the insight of extinct tips into past states does not

seem to provide a particular benefit.456

Besides tips representing extinct species, other kinds of historical information can anchor

trait values along the branches of the tree. In the ideal case, knowing the trait values along every458

lineage would pinpoint the times of every trait flip and provide complete information about

the renewal process. A useful next step would be to investigate whether a reasonable subset of460

this information on ancestral trait values could greatly improve inference of the renewal process.

Even if the past trait values of a lineage cannot be precisely dated, knowing the number of trait462

changes over a window of time could also be helpful. Other work on renewal processes with
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Gamma interarrival times shows that data on the number of renewals within the time period of464

observation can aid parameter inference (Miller and Bhat 1997).

Even for clades with no fossil record, other kinds of information can hint at past trait values.466

For example, the relative degree of degeneration in underlying genes might indicate that some

lineages have lost, say, functional eyes or blue flowers more recently than others (Niemiller et al.468

2013; Wessinger and Rausher 2015). Such an indication of how long a lineage has held its current

value of the focal trait could be incorporated by refining the binary tip state coding to the substate470

level in the Reset or Retain models, or perhaps by placing priors on transition times. This could

potentially improve inference of the renewal process.472

Extending questions about memory in trait evolution

Our focus has been on the mathematical form and phylogenetical signal of memory in trait474

evolution. The models presented here may, however, also be useful in other settings.

One question in molecular evolution is whether the rate of sequence evolution depends on476

the state of an ecological or morphological trait (Mayrose and Otto 2011; Levy Karin et al. 2017).

A renewal model could extend this question to whether the rate of sequence evolution increases478

after a change in the organismal trait, perhaps reflecting adaptation that is most rapid initially.

For example, one could use standard Poisson models for the organismal-level trait and for se-480

quence evolution, but additionally with the overall rate of base pair change following a renewal

process, based on the time since the last organismal trait flip. Such an application is likely to482

derive much more power from the many sites in a sequence: each site evolves under the same

model, and all have the same rate at a given time.484

The memory model of trait evolution could also be coupled with models of lineage diver-

sification. For example, increasing inability to adapt to a shift in selective regime could result486

in duration-dependent extinction. This resembles the model of Alexander et al. (2016), but the

critical factor is time since the last trait change rather than time since the lineage’s origination.488

An implementation would involve replacing transition probabilities with differential equations

for clade and extinction probabilities (as in Maddison et al. 2007).490

An initial motivation in developing the renewal model of trait evolution was that it might

alleviate problems of phylogenetic pseudoreplication in studying trait evolution. For testing492

correlations between two discrete-valued traits, or between one trait and lineage diversification

rates, existing methods draw ‘signal’ from all parts of the tree that exhibit the correlation, instead494
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of from the number of independent times that association has arisen (Maddison and FitzJohn

2015; Rabosky and Goldberg 2015). Perhaps a trait evolution model in which the time since the496

last change plays an important role would be less susceptible to this problem.

Finally, we will be curious to see if this approach to modeling trait evolution has utility in498

other areas of ecology and evolution. For example, consider a theoretical investigation of when

competitors can coexist on resources that change with time. A renewal process could capture the500

idea that the longer one participant has specialized on a single resource, the harder it is to switch

to another. The coexistence dynamics of such a model might differ from formulations with other502

inhibitions to resource switching.

Conclusion504

Our premise has been that the longer a lineage holds a trait value, the harder may become

evolution away from that value. This is, however, only a hypothesis. Evolution does indeed take506

time, but whether the ‘memory’ dynamic of trait evolution emerges at a macroevolutionary scale

depends on how elapsed time relates to extent of fit with the environment, and the degree to508

which increased fit to one regime inhibits evolution in a new direction. We hope that the present

work will enable broad comparative tests that complement system-specific investigations of these510

questions.
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Figure 1: Transitions from state A to state B may be (i) independent of how long a lineage has

held state A, (ii) less likely as A has been held for longer, or perhaps (iii) more likely as A has

been held for longer. Possible corresponding hazard functions are shown in the lower panel.

These are hazard functions of the Gamma distribution, which is specified by ‘shape’ and ‘rate’

parameters. The hazard is (i) flat when shape = 1, (ii) decreasing when 0 < shape < 1, or (iii)

increasing when shape > 1. The rate parameter is the value after a very long duration in A.
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A B

(A) (C)(B)Threshold Reset Retain

Figure 2: Three models for the evolution of a trait that can take observable states A or B. (A)

In the Threshold model, a liability value evolves on a continuous scale, and the corresponding

discrete state is determined by whether the liability is less than or greater than a threshold value.

(B) In the Reset model, changes accrue while a lineage holds a state, and flips to the other state

always reset the value to the corresponding initial substate (A0 or B0). (C) In the Retain model,

changes also accrue but in opposite directions for each state, and the substate value is retained

upon transition to the other observed state. In (B) and (C), dashed arrows show transitions

between unobserved substates (with rates ρ) and solid arrows show flips to the other observed

state (with rates ηi).
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Figure 3: Hazard functions for the Threshold and Reset models. (A) In the symmetric random

walk threshold model (fig. 2A), the rate of flips to state B always decreases with time spent in A

(eq. [1]). Larger values of θ correspond to less time between steps, so the liability more quickly

wanders away from the threshold. (B) In the model where the subtraits are reset upon a flip to

the other state (fig. 2B), a variety of hazard function shapes are possible even when η0 > η1 > η2

(eq. [2]). In many situations, the rate of flips to state B decreases with time spent in A. But when

progression within a state (at rate ρ) outpaces flips to the other state (rates ηi), the dynamics can

be drawn into a longer path from A to B.
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Figure 4: Hazard functions for the Retain model. For the scenario in which adaptation subtraits

are retained upon a flip in the focal trait (fig. 2C), the rate of flips to state B depends on whether

the initial substate was A0, A1, or A2 (panels A, B, and C, respectively). This precludes the use

of a two-state renewal process framework.
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{{{(A) (B)

Figure 5: Renewals on a single lineage, used to compute transition probabilities. The initial state

is s0 and the final state is s1. Renewals are labeled with stars, large and black for the focal event,

and small and gray for subsequent events that may or may not occur.
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Figure 6: Inference results for trait evolution simulations. In each panel, results are shown for 10

datasets, each simulated on a tree with 500 tips and a root age of 1. A Gamma distribution of

waiting times was used to simulate trait evolution, and its ‘shape’ and ‘rate’ parameter values are

shown in the panel labels. The hazard function is either decreasing (shape of 0.25, top row), flat

(shape of 1, middle row), or increasing (shape of 1.75, bottom row); these true values are marked

with black horizontal lines. The full hazard functions are plotted in figure S1. The key inference

question is whether the shape parameter is distinguishable from 1 (emphasized with a darker

gray guide line). Inference of the shape parameter is summarized here based on the MCMC

results, showing median values (points) and 90% credibility intervals (whiskers). Corresponding

estimates of the rate parameter are shown in figure S2.
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Figure S1: Hazard functions used for simulation tests reported in figure 6 and figure S2.
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Figure S2: More inference results for trait evolution simulations. For the same simulated datasets,

estimates of the shape parameter are shown in figure 6 and estimates of the rate parameter are

shown here.
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Figure S3: Log-likelihood surfaces for ten simulated datasets on trees with 500 tips. Datasets

are the first four for each shape value, with a rate value of 3, in figure 6 and figure S2. True

parameter values are marked with red triangles. Maximum likelihood estimates are marked

with green circles. Black contour line spacing is 1 log-likelihood unit, and the log-likelihood

values are normalized so that the maximum is 0. Green contours additionally mark the 50% and

95% likelihood ratio confidence intervals, computed with the chi-squared approximation.
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