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In recent years hundreds of novel RNA-binding proteins (RBPs)
have been identified leading to the discovery of novel RNA-
binding domains (RBDs). Furthermore, unstructured or dis-
ordered low-complexity regions of RBPs have been identified to
play an important role in interactions with nucleic acids. How-
ever, these advances in understanding RBPs are limited mainly
to eukaryotic species and we only have limited tools to faithfully
predict RNA-binders from bacteria. Here, we describe a sup-
port vector machine (SVM)-based method, called TriPepSVM,
for the classification of RNA-binding proteins and non-RBPs.
TriPepSVM applies string kernels to directly handle protein se-
quences using tri-peptide frequencies. Testing the method in
human and bacteria, we find that several RBP-enriched tri-
peptides occur more often in structurally disordered regions
of RBPs. TriPepSVM outperforms existing applications, which
consider classical structural features of RNA-binding or homol-
ogy, in the task of RBP prediction in both human and bacteria.
Finally, we predict 66 novel RBPs in Salmonella Typhimurium
and validate the bacterial proteins ClpX, DnaJ and UbiG to as-
sociate with RNA in vivo.
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Introduction
Gene regulation in eukaryotes occurs at several levels and
involves the action of transcription factors, chromatin, RNA-
binding proteins (RBPs) and other RNAs. RBPs and mes-
senger RNAs (mRNAs) form ribonucleoprotein complexes
(RNPs) by dynamic, transient interactions, which control
different steps in RNA metabolism, such as RNA stability,
degradation, splicing and polyadenylation. Numerous dis-
eases, such as neuropathies, cancer and metabolic disorders,
have also been linked to defects in RBPs expression and func-
tion (1–3).
Technological advances such as RNA Interactome Cap-
ture (RIC) has enabled proteome-wide identifications of
RBPs (4). RIC utilizes UV cross-linking to induce stable
RNA-protein interactions in living cells, followed by poly(A)
RNA selection via magnetic oligo d(T) beads and subse-
quent protein identification by mass-spectrometry. RIC stud-
ies yielded hundreds of novel RBPs in e.g. human HeLa
(5), HEK293 (6), Huh-7 (7) and in K562 (8) cells but also
in worm and yeast (7, 9), which do not harbor canonical
RBDs, as well as factors which were not previously asso-
ciated with RNA biology. Among them we find enzymes,

cell cycle regulators and dual specificity DNA-RNA binders,
including transcription factor and chromatin components (3).
The discovery of these unconventional RBPs without known
RNA-binding motifs suggests the existence of new modes of
RNA binding and the involvement of RBPs in previously un-
explored biological processes (10).
Intrinsically disordered regions (IDRs) are widespread in the
proteome and have been shown to be involved in regulatory
functions, including direct RNA binding (11). RBPs identi-
fied by RIC are highly enriched in disordered regions com-
pared to the whole human proteome and are characterized by
low complexity, repetitive amino acid sequences. In partic-
ular, a low content of bulky hydrophobic amino acids and
a prevalence of small, polar and charged amino acids are
found in unstructured regions of RBPs. These amino acids,
such as glycine (G), arginine (R) and lysine (K), as well as
the aromatic residue tyrosine (Y), form shared sequence pat-
terns among RBPs. For example RGG box binding motifs
and glycine/tyrosine boxes YGG are broadly used platforms
for RNA binding and can work alone or in combination with
classical RBDs (11).
The occurrence of IDRs within RBPs appears to be con-
served from yeast to humans. In earlier work, we defined
a core set of RBPs conserved from yeast to human and iden-
tified [K]- and [R]-rich tripeptide repeat motifs as conserved
across evolution, making IDRs plastic components of RBP
co-evolution (7). Importantly, we proposed that the number
of repeats in IDRs of RBPs considerably expands from yeast
to human, while the number of RBDs remains the same, link-
ing repeat motifs in IDRs of RBPs to the functional complex-
ity of regulation in higher eukaryotes.
Research over the past two decades has revealed extensive
post-transcriptional control in bacteria as well, with regula-
tory networks comprising RBPs and small non-coding RNAs
(sRNAs). Advances in RNA sequencing methods have en-
abled the discovery of new bacterial RBPs and showed that
bacterial RBPs are relatively simple, often possessing only
a few or even a single RBD per protein, which recognizes a
short RNA sequence (12). This is unlike eukaryotic RBPs,
whose modular architecture enables versatility and combina-
torial RBP-RNA interactions. Classical RBDs, such as the
S1 domain, cold-shock domain, Sm and Sm-like domains,
the double-stranded RNA binding domain, the K-homology
domain and others, are widespread among bacteria (12). One
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third of annotated bacterial RBPs are ribosomal proteins.
Other bacterial RBPs are involved in regulatory functions of
transcription termination, RNA synthesis, modification and
translation, like the well-known Hfq protein. The latter as-
sociates to sRNAs and leads to translational inhibition of the
targeted mRNA (13).

Since interactome capture relies on the use of oligo(dT) to
isolate proteins bound to mRNA, the method is not applica-
ble to bacterial species which generally lack polyadenylation
(except for degradation purposes). Although experimental
approaches have been developed recently to extend RBP cat-
alogs and to include RBPs not identified by RIC techniques
(14, 15), bacterial RBPs remain poorly annotated. There-
fore, computational approaches able to predict new RBPs in
both pro- and eukaryotes in the absence of experimental data
and in a proteome-wide manner are in high demand, in or-
der to narrow down the list of putative candidate RBPs for
further experimental investigation. Several in silico methods
have been developed to predict RBPs from primary sequence
and/or protein structure (16–19). Approaches that character-
ize RBPs by predicting RNA binding residues from known
protein-RNA structures are computationally expensive and
can be trained only on a small subset of RBPs with known
structure. Such methods do not generalize well to proteins
whose structure is still unknown, which is the case for most
bacterial RBPs.

Computational prediction tools such as SPOT-Seq (16),
RNApred (20), RBPPred (18), catRAPID (17) and APRICOT
(19), either derive sequence-structure features such as bio-
chemical properties and evolutionary conservation and train
a supervised classifier to distinguish RBPs from non-RBPs or
classify proteins based on whether they harbor a known RBD.
Gerstberger et al. define a set of 1542 human RBPs based on
whether those proteins harbor known RBDs or other RNA
binding motifs via both computational analysis and manual
curation (1). However, in silico methods that identify RBPs
based on known domains might have some limitations, as one
third of RBPs from recent experimental studies do not have
prior RNA-binding related homology or domain annotation.
Therefore such methods might generate a high percentage of
false negatives, i.e. RNA-binders which lack an RBD and
therefore are not predicted as such, as well as false positives,
RBPs with classified RBDs that perform non-RNA binding
functions (3). A recently developed method, SONAR, adopts
a completely different approach for RBP prediction and ex-
ploits the fact that proteins that interact with many others
RBPs from a protein-protein interaction (PPI) network are
more likely to be RBPs themselves (21). Although SONAR
is also suitable for the prediction of ’unconventional’ RBPs,
it heavily depends on the quality and depth of the underlying
PPI network and might generate false positive predictions for
those proteins that interact with other RBPs but are not RNA-
binding themselves.

The many newly characterized RBPs, their nontypical RBDs
(or the lack of them), as well as the observation that IDRs are
subject to strong sequence constraints under the form of con-
served amino acid triplets conserved in the RBPs, prompted

Fig. 1. TriPepSVM schematic. TriPepSVM is a support vector machine trained
on tri-peptide frequencies from RBPs and non-RBPs to discriminate between
these two protien classes. It can be applied to different species.

us to explore the possibility that RBPs might be confidently
predicted based purely on the occurrence of short amino acid
k-mers.
We set up to predict whether a protein is likely to be an RBP
or not based on primary sequence using a string kernel (spec-
trum kernel) support vector machine (SVM). The spectrum
kernel in combination with SVMs was first successfully in-
troduced by Leslie et al. in the context of protein family
classification (22). Support vector machine classifiers have
been used successfully in other biological tasks, for example
the identification of specific regulatory sequences (23) and in
RBP prediction as well, for example in RBPPred, which cre-
ates a feature representation based on several properties of
the protein.
In this paper we describe our newly developed RBP predic-
tion method TriPepSVM. It applies for the first time string
kernel support vector machines for RBP prediction. The
model uses exclusively k-mer counts to classify RBPs ver-
sus non-RBPs in potentially any species. It does not depend
on any prior biological information such as RBD annotation
or structure, and therefore allows RBP prediction in an un-
biased manner. We show that TriPepSVM performs better
than other methods in RBP prediction in human and the bac-
terium Salmonella Typhimurium. Our method recovers RBPs
characterized previously in RIC studies with high sensitivity
and finds both RBPs adopting classical RNA-binding archi-
tectures as well as RBPs lacking known RBDs.

MATERIALS AND METHODS
Data sets. In the following we describe the data collection
pipeline to derive annotated RNA-binding proteins and non-
RNA-binding proteins, which will constitute our positive and
negative data sets to train and evaluate TriPepSVM on human
and Salmonella. Our developed collection pipeline is based
on the UniprotKB database (24) and derives data automati-
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cally for a given taxon (see Supplementary Figure S1). We
used the taxon identifier 9606 to collect data for Homo sapi-
ens and taxon identifier 590 for the Salmonella clade.

Collection of annotated RNA-binding proteins. We utilize the
gene ontology database QuickGO (25) to collect annotated
RBPs from UniprotKB. We apply the term RNA-binding
(GO:0003723), also including all associated sub-terms, i.e.
tRNA binding, snRNA binding and poly(A) RNA binding. The
number of annotated RBPs in the QuickGO database is lim-
ited for some organisms, therefore our pipeline also supports
a recursive mode to collect positive data from all members of
a specified taxon or branch. For example, taxon 590 will re-
trieve annotation for all Salmonella strains. In order to avoid
introducing bias in our model from duplicate annotations or
paralogs in UniprotKB, the software CD-Hit (26) was used to
remove proteins with a sequence similarity higher than 75%.

Collection of non-RNA-bindig proteins. Since it is challenging
to define a non-RNA-binding protein, we developed a strict
filtering to generate the negative set for our method. We first
collect the whole Swiss-Prot proteome of a given taxon and
then remove all nucleotide-binding proteins in a step-wise
manner. First, we remove ambiguous proteins with an amino
acid sequence length smaller than 50 AA or greater than
6000 AA. Secondly, we utilize the Uniprot keyword database
and QuickGO annotations to remove annotated nucleotide-
binding proteins (adopted from (27); see full list in Supple-
mentary Table S4 and Table S5). Finally, we discard pro-
teins containing at least one annotated or potential RBD from
collected Pfam (28) domains (see Supplementary Table S6).
Similarly to the positive set, CD-Hit was used to remove re-
dundant protein sequences at 75% sequence identity.

Independent validation set from RIC studies. We collected a
set of experimentally confirmed RBPs from three indepen-
dent interactome capture studies (6–8) and from a review
on RBPs (3) to evaluate the sensitivity of our model in hu-
man. First, we excluded protein sequences that were al-
ready present in our training data set. Secondly, we evalu-
ated TriPepSVM on the human proteome independently for
all four data sets and then on their union. The sensitivity was
computed as the fraction of experimentally detected RBPs
which are also predicted by our model.

TriPepSVM prediction model. TriPepSVM is a discrim-
inative machine learning model based on Support Vector
Machines (SVMs) which is trained to classify RBPs versus
non-RBPs based on sequence content alone. SVMs are
a class of supervised learning algorithms which, given a
set of labelled training vectors (positive and negative input
examples) learn a linear decision boundary by finding the
optimal hyperplane to discriminate between the two classes
(29). The result is a linear classification rule that can be used
to classify new test points, in our case new protein sequences,
into one of the two classes, RBP or non-RBP. When using
a kernel in conjunction with an SVM, input points are
implicitly mapped into a high-dimensional vector space

where coordinates are given by feature values (22). The
SVM produces then a linear decision boundary in this high-
dimensional space. In our model we use the spectrum kernel
for classification, a linear kernel that allows the application
of SVMs to strings (and therefore to amino acid sequences).
Given a number k >= 1, the k-spectrum of an input sequence
is the set of all the k-length (continuous) sequences, also
called k-mers, that it contains. The high-dimensional feature
representation for a sequence x, Φ(x), is then a vector where
each entry counts the number of times each k-mer, from
a pool of |Σ|k possible k-mers from an alphabet of size
Σ, occurs in the given sequence. The k-spectrum kernel
is then the dot product between two sequence feature vectors:

Kk(x,y) =< Φk(x),Φk(y)> (1)

Model training. We randomly split the collected data into
training (90%) and testing (10%) data sets, and stratified the
data such that training and test data contain both roughly
the same ratio of positives to negatives. As both, training
and test sets are heavily imbalanced, i.e. they contain many
more negatives than positives, we chose a class-weighted
SVM (30) approach, which accounts for class imbalance by
weighting the cost parameter C differently for positive and
negative data points. The class-weighted SVM was used to-
gether with the spectrum kernel from the KeBABS-package
in R (31). To obtain the optimal values of the hyperparamters
k, the sub-string length and C, the SVM cost parameter, we
perform Cross Validation (CV, tuning function from the Ke-
BABS-package). CV splits the data into n equally sized sub-
sets. This is followed by n iterations in which n− 1 splits
are used for training and the i split is used as validation set to
compute the classifier performance (see Supplementary Fig-
ure S2). Since the training of the class weights, denoted with
W+ and W−, is not supported in the KeBABS-package, we
run a separate "outer" loop to select the optimal combination
of weights for the positive and the negative class. In other
words, for each tested combination of W+ and W− we test
a range of values for k and C in the CV loop and select at the
end the combination of hyper-parameters which maximizes
the model performance; here the model balanced accuracy
(see Supplementary Paragraph 1.3.3).

Feature importance scores. Since the spectrum kernel φ is a
linear kernel, we can obtain meaningful feature weights from
the solution of the SVM optimization problem, similar to
a linear regression scenario. The weight vector w for all
k-mers, whose entries are the single k-mer contributions to
the classification problem can be computed as:

w =
(

n∑
i=1

yiαiφk-mer(xi)
)
k-mer∈|Σ|k

(2)

for n points (xi,yi), where xi ∈Rm is am-dimensional data
point and yi ∈ {0,1} is the associated label. The values of α
are the results from the SVM optimization problem, and con-
tain non-zero values for important data points, the so-called
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support vectors, which are the points closest to the SVM de-
cision boundary (22).
Important k-mers show large absolute values in w and the
sign of the weight indicates to which class, positive or nega-
tive, a k-mer contributes to.

Application of existing methods for RBP classifica-
tion.We apply different RBP prediction tools for the per-
formance comparisons. We focus on approaches that al-
low for proteome-wide predictions, such as SPOT-Seq-RNA,
RNAPred and RBPPred. We excluded catRAPID because
the web-server does not allow submission of more than 100
protein sequences, making proteome-wide predictions unfea-
sible in this setting.

Pfam-Domain-Recognition. We collect profile Hidden
Markov Models (HMMs) for known RBDs from the Pfam
database (PFAM 27.0). We obtain 219 different HMMs (see
bold entries in Supplementary Table S6) annotated as ’RNA
binding/recognition’ in the Pfam description, quickGO
or Protein Data Bank (32). We then use the HMMER
software (33) for scanning the human/Salmonella proteom
for proteins containing at least one of the collected RBDs.
We run HMMER with default parameters, i.e. using an
E-value cutoff 6 10.

SPOT-Seq-RNA. SPOT-Seq-RNA is a template-based tech-
nique to predict RNA-binding potential of a query pro-
tein (16). It employs a library of non-redundant protein-RNA
complex structures and attempts to match a query sequence
to the protein structure in the protein-RNA complexes by
fold recognition. More specifically, SPOT-Seq-RNA requires
a protein sequence in FASTA format, it passes it to PSI-
BLAST to search for homologous sequences and to generate
a position-specific substitution matrix (PSSM). The PSSM is
used to predict several structural properties and the structural
profile is matched against the known templates to compute
a matching score (Z-score). Statistically significant matching
templates with low free energy of the RBP-RNA complex are
then used in order to assign a putative RNA binding function
to the query protein. We used a local version of the tool,
with E-value < 0.001 from PSI-BLAST, a minimum tem-
plate matching Z-score of at least 8.04 and maximum binding
free energy of -0.565, as proposed by the authors.

RNApred. RNApred is an SVM-based approach to predict
RBPs (20) and its application supports three different modes
based on: (i) amino acid composition only, (ii) evolution-
ary information under the form of a PSSM built from PSI-
BLAST and (iii) a combination of the previous two modes
with some additional refinements. Unfortunately mode (i) is
the only one that can be efficiently applied proteome-wide
from the RNApred web server (as the other two modes only
supported submission of one protein sequence per time) and
therefore this mode was chosen to apply to our test data set.

RBPPred. RBPPred is also based on Support Vector Ma-
chines for the classification task of RBPs versus non-
RBPs (18). Compared to the other earlier tools it uses

comprehensive feature representation which includes protein
physiochemical properties, as well as evolutionary informa-
tion under the form of a PSSM derived from PSI-BLAST,
similarly to SPOT-Seq-RNA. We downloaded the command
line version of RBPPred from the authors’ website and ap-
plied it on our test data set.

Performance metrics. The performance of all methods was
evaluated using two metrics: the area under the receiving op-
erating characteristics curve (AUROC) and the area under the
precision-recall curve (AUPR). Both metrics require a set of
proteins which have been scored according to their likelihood
of being an RBP or not, as well as the known protein class.
Most of the evaluated methods, except for SPOT-Seq-RNA,
return a score or probability for each protein to be RNA-
binding and therefore could be assessed via these two met-
rics.
ROC curves plot the true positive rate versus the false posi-
tive rate of the classifier across all possible score values used
to decide whether a protein is an RBP or not. The area under
this curve is used to assess the classifier performance: values
near 0.5 indicate that the classifier performs randomly, and an
AUROC of 1.0 corresponds to a perfect classifier. However,
ROC curves are known to be insensitive to class imbalance
(34), i.e. the ratio of RBPs versus non-RBPs in the genome,
making it hard to control the number of false positives. PR
curves, which plot the fraction of predicted RBPs that are true
(precision) versus the fraction of all true RBPs among all pre-
dicted RBPs (recall) at different score cutoffs, are especially
suited in the latter scenario because they account for class im-
balance. This gives us a better idea of the false discovery rate
(1− precision) of the method at all thresholds and whether
the proteome-wide predictions of each classifier are likely to
contain many false positives.
We also computed sensitivity, specificity, precision, balanced
accuracy and Matthews correlation coefficient (35) (MCC,
see Supplementary Figure S4) for the different methods, us-
ing the optimal cutoff to distinguish RBPs from non-RBPs
from the PR curve, as described in Supplementary Para-
graph 1.4.

Classification of tripeptides in ordered/disordered pro-
tein regions.We analysed the relative abundance of all
tripeptides in structurally disordered versus ordered regions
of RBPs with the IUPred tool (36), which allows to charac-
terize disordered protein regions lacking well-defined tertiary
structure. IUPred provides a mode to predict globular do-
mains with an average disorder score smaller than 0.5. We
used this mode to classify each amino acid as ’structured’ if
it occurred in a predicted domain and disordered if it did not.
From there, we were able to estimate the structural disorder
fraction of each tripeptide defined as the number of times that
the tripeptide was found in disordered regions of RBPs di-
vided by the number of times the same tripeptide was found
in RBPs.

Cell culture and strains. Salmonella enterica subsp. en-
terica serovar Typhimurium strain SL1344 was cultivated
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in standard LB medium if not stated otherwise. We gener-
ated chromosomal insertions of FLAG-encoding sequences
downstream of candidate genes using the Lambda Red tech-
nique (37, 38). For details see Supplementary Methods Para-
graph 1.5.

Molecular biology techniques.

Western blotting. We performed western blotting using stan-
dard techniques. Samples were electrophoresed on SDS-
PAGE gradient gels 4-20% (TGX stain free, BioRad) and
proteins transferred onto nitrocellulose membranes (Bio-
Rad). Membranes were blocked during 30 min with PBST-
M (10 mM phosphate, 2.7 mM potassium chloride, 137 mM
sodium chloride, pH 7.4 0.1% tween 20 (Sigma), 5% milk)
and incubated with dilutions 1:1000 of anti-FLAG (Sigma,
F1804 1µg/µL) overnight at 4◦C (or 2h room tempera-
ture). Antibody binding was detected using the respective
anti-mouseHRP secondary antibody (Proteintech) and Clar-
ity ECL Western Blotting Substrate for chemiluminescence
in a ChemiDocMP imaging system (BioRad).

UV crosslinking. For each strain, 100 ml bacterial cultures
were grown to an OD600 of 2.0. Cultures were either directly
irradiated in LB (no centrifugation step before irradiation)
by placing on petri dishes which were kept on ice, exposure
to UV light (λ = 254 nm) at 5 J/cm2 in a CL-1000 ultravi-
olet crosslinker device (Ultra-Violet Products Ltd) and cen-
trifuged at 4◦C for 10 min or centrifuged at room tempera-
ture for 10 min at 15,000 g and the pellets resuspended in 0.1
vol. of the original volume with water irradiated, and then
centrifuged again (note that LB medium strongly absorbs UV
light at 254 nm wavelength, resulting in inferior cross-linking
efficiency).

Immunoprecipitation and PNK assay. Immunoprecipitation
and PNK assay of bacterial FLAG-tagged proteins and ra-
dioactive labeling of RNA by PNK was performed as de-
scribed (13). For details see Supplementary Methods Para-
graph 1.5.

RESULTS
TriPepSVM accurately recovers known RBPs with few
false positives.We propose TriPepSVM, a SVM-based ma-
chine learning model to distinguish RNA-binding proteins
from non-RNA binders based on the amino acid sequence of
the protein of interest. To train our model, we collected the
amino acid sequences of known RNA-binders (see Paragraph
Data sets) as well as proteins that are very unlikely to bind
RNA for both human and Salmonella. Figure 1 depicts how
a protein-sequence is split into a set of overlapping k-mers.
All of the k-mers of a sequence form a vector (see Paragraph
TriPepSVM prediction model) which is then fed into the SVM
classifier that learns a decision boundary to separate RBPs
from non-RBPs.
Our proposed model has three hyper parameters that can
heavily influence its performance. These are the parameter
C that controls the penalty for mis-classifying data points,

Application Human Salmonella
TriPepSVM 0.68 0.28
RBPPred 0.81 0.34
RNAPred −0.24 −0.18

Table 1. Optimal classification cutoff for the tested prediction tools.

the k-mer length k of the spectrum kernel and finally the
class weights of the positive and negative class (see Para-
graph Model training).

After collection of the data, we therefore compute the best
combination of hyper-parameters during model training by
conducting a grid search on reasonable combinations of C,
k and the class weights. Since we have only a very limited
amount of known RBPs, we perform a 10-fold cross vali-
dation on the training data for each combination of hyper-
parameters. The best combination is selected based on the
best mean balanced accuracy. We select C = 1, k = 3 and
class weights of 1.8 for the positive class and 0.2 for the neg-
ative class, respectively as best parameters for both, human
and Salmonella (see Supplementary Figure S3 for more de-
tails on the parameter tuning results).

With the optimal combination of parameters at hand, we eval-
uated TriPepSVM on a held-out test set, which was neither
used for training, nor hyper-parameter tuning (see Paragraph
Model training). We show that TriPepSVM is capable of re-
covering most known RBPs in the test set while still main-
taining a good specificity (not many false positives), yield-
ing an area under the ROC curve (AUROC) of 0.83 and an
Area under the Precision Recall Curve (AUPR) of 0.53 in
human (see Figure 2). We compared the performance of
TriPepSVM with formerly introduced methods for RBP pre-
diction, namely SPOT-seq-RNA, RNApred and RBPPred and
show that TriPepSVM outperforms all competing methods
by a considerable margin (see Figure 2). Especially the PR
curves show that TriPepSVM is far more precise than other
methods, across all sensitivity cutoffs. SPOT-seq-RNA out-
puts a single classification result and no confidence score for
it, hence its performance reduces to a single point on both of
the curves.
In addition, performance measures for all tools computed
at the optimal PR curve cutoff (reported in Table 1 and
determined as described in Supplementary Paragraph 1.4)
are given in Supplementary Figure S4, for both human and
Salmonella. TriPepSVM outperformed all other methods in
terms of MCC on both human and Salmonella and had a
slightly higher balanced accuracy compared to the best and
most recent tool RBPPred. In addition, TriPepSVM reaches
a good compromise between sensitivity and specificity at
the optimal cutoff (Figure S4). In comparison, SPOT-Seq-
RNA has a high specificity, as it is based on experimental
RNA-RBP templates, but low sensitivity. On the other hand,
RNAPred exhibits a sensitivity, relying only on amino acid
composition, at the expenses of a poor specificity. The op-
timal cutoffs determined by TriPepSVM on both human and
Salmonella were used to carry on proteome-wide predictions
in both species.
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Fig. 2. Performance of TriPepSVM in comparison to other RBP prediction methods. We compared our method TriPepSVM to RNAPred, RBPPred and SPOT-seq-
RNA on both human and Salmonella test sets. A & B shows ROC and PR curves on the human test set. C & D shows ROC and PR curves on the Salmonella test
set. SPOT-seq-RNA only outputs a class and no probability or score associated with the predictions and is hence represented only as a dot in the PR/ROC curves.

TriPepSVM results are consistent with interactome
capture studies.We found 2944 proteins with a predicted
RNA-binding capability in the human proteome (see Supple-
mentary Table S11). To assess whether these proteins are
really likely to bind RNA, we overlapped our predictions
with interactome capture studies from recent years. Figure 3
shows the overlap between our predictions (TripPepSVM
Predicted), the union of discovered RBPs by four different
interactome capture studies and proteins that contain a Pfam
RBD. The table in Figure 3 reports the fraction of proteins
from the interactome capture studies which our model was
able to recover for the tuned cutoff of 0.68. For all of the four
studies, we were able to recover more than 75% of the exper-
imentally identified RBPs, and for three of these studies this
percentage was higher or equal to 85%.

TriPepSVM predicts novel human RBPs. It should be
taken into account that the vast majority of those RIC-RBPs
are mRNA-binders since they were identified using poly-A
RNA selection and eukaryotic mRNA only constitutes for a
small subset of cellular RNA (around 5%). TriPepSVM how-
ever was trained on a superset of all known RBPs. Consistent
with this, we also identify 14 cytosolic and 6 mitochondrial
tRNA ligases, 6 tRNA/rRNA methyltransferases (NSUN2-6)
and the majority of ribosomal proteins (31 out of 33 small
subunit proteins and 44 out of 47 large subunit proteins (39)).
The recent consensus for human RBPs ranges from hundreds
(1) to more than 2000 (3) RBPs. From the 2944 proteins
predicted by TriPepSVM, 990 (34%) were not previously de-

scribed in the aforementioned RIC studies, do not contain a
known RNA-binding domain or were not annotated as RBPs.
Among the 990 predicted RNA-binders are more than 200
proteins with ATP-binding capacity, from these are 13 pro-
teins of the AAA ATPase family. The overlap between RNA-
and single nucleotide binding is generally very high among
the established RBPs as well (8). Also enriched are kinases,
proteins harboring WD40 domains and bromodomain folds.
During the writing of this manuscript, we and others pub-
lished preprints in which RBPs were identified by biochem-
ical techniques (called PTex and XRNAX) in a poly-A inde-
pendent fashion (40, 41). The findings in these studies are
largely confirmatory to our results as proteins of the AAA
ATPase family, WD40 and bromodomain proteins were like-
wise identified as novel RBPs.

Important sequence patterns in RBPs and their bi-
ological significance.We next set out to identify those se-
quence k-mers or model features that contributed the most
to classifying RBPs versus non-RBPs in both human and
Salmonella, using Equation 2 (see Paragraph Feature impor-
tance scores). The highest ranked k-mers (top 50 ranking)
are listed in the Supplementary Table S7 and Table S8 for
human and Salmonella, respectively, while in Table S9 and
Table S10 all k-mers with their corresponding weights are
reported. In both organisms, k-mers containing lysine (K),
arginine (R) and glycine (G) are found to have the largest
SVM weight. Finding K and R enriched among the triplets
was expected since positively charged residues are known to
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Union RIC studies

Study Sensitivity
Hentze et al. (3) 0.77

Beckmann et al. (7) 0.85
Conrad et al. (8) 0.90

Baltz et al. (6) 0.92
Union 0.78

Fig. 3. Overlap between four different interactome capture studies and predic-
tions from TriPepSVM.We computed the overlap between our proteome-wide
predictions (orange, top right), the union of identified proteins from four inde-
pendent RIC studies (gray, top left) and proteins containing RBDs according
to the Pfam database (blue, bottom). The table shows the sensitivity between
our predictions and the four different RIC studies and their union.

be involved in direct RNA interaction; e.g. the RGG box
is a known RNA-binding motif in unstructured regions of
proteins (11). Although an aromatic motif YGG has been
identified as RNA-binding site by Castello and colleagues
when mapping RNA-binding sites proteome-wide in human
cells (11), in our dataset YGG is not among the top k-
mers which contribute to RBP classification and it harbors
an SVM weight value close to 0. YGG repeats (also called
[G/S]Y[G/S] motif) can bind to RNA and promote hydrogel
formation in vitro as well as liquid-liquid phase separations
(LLPS) in vivo (42, 43). GYG, SYS, GYS and SYG triplets,
which are potentially part of the [G/S]Y[G/S] motif, although
not among the top 50 important k-mers in our human model,
have all positive weights, indicating that they contribute to
the recognition of the RBP class. Nearly all k-mers with a
negative weight (contributing to classification as non-RBP)
contain leucine (L) and/or glutamic acid (E). Consistent with
this, E and L are the residues most absent from RNA-binding
sites in human cells (11).

We then compared the weights of all k-mers from human and
Salmonella to our previously identified triplets conserved in
eukaryotic evolution (7) (see red triangles in Figure 4). Our
findings independently confirm that those triplets are not only
conserved among RBPs but are also important to correctly

identify these proteins as RNA-binders by TriPepSVM, given
that most of them have a positive weight (Figure 4). Interest-
ingly, a high-portion of these k-mers found to be conserved
in eukaryotic RBPs (mainly KR- and RG- containng triplets)
seem to be important not only for human RBP, but also for
bacterial RBP classification.
Following on the presence of k-mers which are known to bind
RNA in unstructured regions, including those containing G/Y
and R/G, we probed for both species whether overall the top
k-mers identified by our SVM model had a higher propensity
to be found in structured domains or unstructured parts of
proteins (see Figure 5) using IUPred prediction (36). Strik-
ingly, k-mers with the biggest contribution to classify a pro-
tein are more often found in disordered regions in human, but
not in Salmonella. In addition, known human RBPs, such as
HNRPU, PTBP1, FUS, SRSF1, U2AF2, DDX4 and others,
implicated in several aspects of RNA processing, and known
to mediate RNA binding via disordered regions, such as as
R/G repeats, are correctly predicted by our method with very
high probability (see Supplementary Table S11).

Searching the Salmonella proteome for RBPs.We next
used TriPepSVM to predict potential RBPs in a prokaryotic
organism. As for most bacteria, RBPs are poorly annotated in
Salmonella Typhimurium despite recent advances such as the
identification of the Csp proteins or ProQ as RNA-binders by
Smirnov and colleagues. The same study however indicated
that more, so far un-identified proteins harbor the potential to
bind RNA (44). After training TriPepSVM on bacteria from
the Salmonella clade (using the recursive mode for Unipro-
tKB taxon 590) to obtain a larger positive training set, we
searched the complete Salmonella Typhimurium proteome
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Fig. 4. TriPepSVM classifiers apply highly conserved tripeptides for RBP clas-
sification. Shown are those tripeptides (red triangles) identified by Beckmann
et al. (7) as conserved in eukaryotic RBPs and expanded from yeast to human
with their corresponding weights from both human (y-axis) and Salmonella (x-
axis) TriPepSVM classifiers. Most of the conserved tripeptides from (7) harbor
positive weights not only in human but also in Salmonella, and are therefore
important in characterizing RNA-binders in both species.
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for RBPs. We correctly identify 108 of the Uniprot-annotated
115 RBPs, resulting in a 94% recovery rate. We correctly pre-
dict Hfq (13), and ProQ (44) which are bacterial mRNA- and
sRNA-binding proteins. Only recently, cold shock proteins
CspC/E were described to bind RNA (45). However, CspC
is still not marked as RBP in the SwissProt Database and
CspE was not present in the reviewed section of the database
when training and testing TriPepSVM (see Paragraph Meth-
ods), explaining their absence from our predictions.
Using the tuned cutoff of 0.28 for Salmonella (see Table 1),
we additionally predict 66 additional proteins to bind to
RNA (see Supplementary Table S12). Among those are 8
ribosomal proteins and 14 other proteins involved in RNA
biology all of which are not annotated as "RNA-binding"
such as the GTPase Der which is involved in ribosome bio-
genesis (46), ribosomal methyltransferases RimO and RlmE
(47), RNA pyrophosphohydrolase RppH (48), or transcrip-
tion elongation factors GreA/B (49). Furthermore, we predict
20 known DNA-binding proteins and 18 proteins with docu-
mented ATP-binding activity to be RNA-interacting. Addi-
tionally, 18 predicted proteins are not implicated to interact
with RNA or any other nucleic acid; of those 12 have enzy-
matic activity, consistent with a growing list of enzymes from
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Fig. 5. Important tripeptides are enriched in structurally disordered regions of
the RBPs in human. The figure shows the structural disorder fraction of each
tripeptide ranked by the absolute feature importance score. The resulting curve
is smoothed using LOESS regression (span = 0.2) where the shading shows the
standard deviation. The dashed line marks the value of the 80%-quantile of
the smooth LOESS regression values. The frequency indicating how often a
tripeptide is observed in the structural disordered part of an RBP increases with
the feature importance score in (A) human, but not in (B) Salmonella.

diverse species to be associated with RNA (7, 10, 50).

Experimental validation of predicted RBPs in
Salmonella. Finally, we set out to experimentally validate
TriPepSVM predictions in vivo. We generated Salmonella
mutant strains carrying FLAG-tagged RBP fusion in its ge-
nomic context using the λ Red method; resulting in bacte-
rial mutants that exclusively express the predicted FLAG-
tagged RBP candidate at their respective physiological lev-
els (38). We chose ClpX (a subunit of the Clp protease reg-
ulating expression of the flagellum (51)), DnaJ (a chaper-
one responding to hyperosmotic and heat shock (52)), UbiG
(a ubiquinone biosynthesis O-methyltransferase (53)) and
CysN (Sulfate adenylyltransferase subunit 1 (54)) as pre-
dicted RBPs and YigA which TriPepSVM predicts as non-
RBP and we tested for RNA-binding in vivo using the PNK
assay (see Figure 6A). As demonstrated by a radioactive sig-
nal from 5’ end labeled co-immunoprecipitated RNA (see
Figure 6B,C), we can confirm that we correctly predicted
ClpX, DnaJ, UbiG (RNA-binding) and YigA (true negative).
The validation of 4 out of 5 proteins is therefore also match-
ing with our calculated balanced accuracy of 73% (see Sup-
plementary Figure S5). Importantly, ClpX has ATP-binding
activity and DnaJ is able to bind to DNA and ATP (51, 52).
To exclude self-phosphorylation or direct binding from ATP-
binders to the radioactive isotope in our assay (55), we also
included conditions in which PNK was omitted but P32-γ-
ATP was provided (see Figure 6B,C). However, our valida-
tion demonstrates that both are bona-fide RNA-interactors in
vivo from which we conclude that TriPepSVM is unlikely
to incorrectly predict DNA- or single nucleotide binders as
RBPs.

DISCUSSION
What defines a RNA-binding protein? Apart from the ob-
vious functionality to bind to RNA, other elements within a
protein can be important to exert its physiological role in the
cell. With TriPepSVM, we are presenting an approach which
reduces a protein to its combination of short amino acid k-
mers, in our case triplets, and use machine learning to find
patterns in these combinations that align with RNA-binding.
Salmonella Typhimurium is a well-studied bacterium; not
the least due to its role as Gram-negative model organism to
study infection by prokaryotic pathogens. Despite its impor-
tance, only a very limited set of RNA-interacting proteins has
been identified in Salmonella and other bacteria beyond the
canonical set of proteins which make up the transcription ma-
chinery, the ribosome or interact with tRNA. In recent years,
novel approaches such as Grad-Seq (44) identified additional
proteins that can interact with bacterial mRNA. So far, 5
mRNA-binding proteins have been confirmed in Salmonella:
Hfq, CsrA, ProQ and CspC/E. This limited data set renders
prediction and discovery of novel RBPs in bacteria a chal-
lenging task since most bioinformatic prediction tools depend
on either structural similarity to protein folds that are known
to be involved in RNA interaction or on homology based on
phylogeny. In both cases, the limited available data set of
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Fig. 6. Experimental validation of predicted bacterial RBPs. A Schematic view of the PNK assay. After UV cross-linking of ribonucleoprotein complexes in vivo,
cells were lysed. UV irradiation can result in a covalent link (orange star) between RNA and proteins that are in close physical proximity (zero distance cross-link).
Individual candidate RBP-FLAG fusions were then immunoprecipitated (IP) with a FLAG-specific antibody. After trimming of the co-imunoprecipitated RNA using
RNase digestion, polynucleotide kinase (PNK) was used to enzymatically add a radioactive phosphate (32P) to 5’- ends of transcripts. Finally, input controls as
well as the IPs were separated by SDS-PAGE. After blotting to a membrane, protein amounts were analysed by Western blotting; presence of a radioactive signal
at the same molecular mass as the protein then serves as indirect proof of RNA-binding. B PNK assay of CsrA (positive control) and YigA (predicted non-RBP).
UV cross-linking was performed in LB medium and water independently. A radioactive signal can only be detected for RBPs (here: CsrA) after UV cross-linking
and in presence of PNK. C PNK assay of 4 candidate RNA-binding proteins in Salmonella Typhimurium predicted by TriPepSVM. ClpX, DnaJ and UbiG could be
confirmed to interact with RNA in vivo, but not CysN.

known bacterial RBPs represents an important obstacle - also
for our method. Still, our approach correctly identifies most
known RNA-binders and predicts 66 novel candidate RBPs
in Salmonella from which we tested ClpX, DnaJ, UbiG and
CysN for validation. Indeed, 3 (ClpX, DnaJ and UbiG) out of
the 4 could be confirmed to bind RNA in vivo (see Figure 6).
In our approach, we reduce the search space to the most ba-
sic feature of any protein: its primary sequence. Follow-
ing the observation that i) many recently-found RBPs lack
known RNA-binding domains (11) and ii) our earlier work
showed an expansion of short triplet amino acid motifs in
RBPs throughout evolution (7), TriPepSVM rather searches
for combinations of triplet peptides in proteins then for full
domains. This reduction in complexity has the advantage that
TriPepSVM is independent on prior (and potentially biased)
knowledge on RBDs or homology.
The fact that TriPepSVM does not classify all human pro-
teins with a Pfam-domain (see Figure 3) as RBP also demon-
strates that tripeptides from RNA-binding domains alone are
not sufficient to explain the performance of TriPepSVM.
Intriguingly, tripeptides which we predict to contribute to
RNA-interaction more prominently have a tendency to be en-
riched in structurally disordered regions in human but not in
Salmonella (see Figure 5). Together with our earlier compar-
ison of tripeptide motifs in eukaryotic RBPs in which unicel-
lular yeast harbors few tripeptide repetitions that expand dur-

ing evolution, it is tempting to speculate that RNA-binding
via unstructured regions is of higher physiological relevance
in more complex organisms than in unicellular species. Con-
sistent with this hypothesis is the observation that sequence-
independent RNA-binding in unstructured regions of RBPs
is important for P-bodies or RNA granules by liquid-liquid
phase transitions (56). Formation of these higher-order RNA-
protein complexes however has not been described for bacte-
ria so far. Our results show that if present in prokaryotes,
regulation of RNA-granule-like complexes is very unlikely
through unstructured regions of RBPs.

CONCLUSION
All in all, we show that the propensity of a protein to bind
RNA is mostly encoded in its primary sequence and can be
confidently predicted based solely on combinations of short
amino acid triplets. TriPepSVM outperforms previous ap-
proaches which make use of more complex protein features
in discriminating RBPs from non-RBPs. It can in principle
be applied to any species, from eukaryotes to bacteria where
limited experimental data are available. Besides being a valu-
able RBP prediction method from sequence alone, our ap-
proach can pinpoint the important sequence patterns which
distinguish RBPs from non-RBPs and points to disordered
regions as main determinants of RBP-RNA interactions, in
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line with the latest studies.

DATA AVAILABILITY
The collection pipeline as well as the source code for
TriPepSVM are available on Github, https://github.
com/marsicoLab/TriPepSVM.
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