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Abstract 8 

 A trade-off between seed mass (SM) and seed output (SO) defines a central axis 9 

of ecological variation among plants, with implications for understanding both plant trait 10 

evolution and plant responses to environmental change. While an observed negative SM-11 

SO relationship is hypothesized to reflect universal constraints on resource allocation in 12 

all plants, domestication has likely fundamentally altered this relationship. Using a 13 

dataset of SM and SO for 41 of the world most widespread crops and 1,190 wild plant 14 

species, coupled with observational data on these traits in soy (Glycine max) and maize 15 

(Zea mays), I show that domestication has systematically rewired SM-SO relationships in 16 

crops. Compared to wild plants, virtually all crops express a higher SM for a given SO; 17 

this domestication signature is especially prominent in seed crops, and also influences the 18 

phylogenetic signal in SM and SO. In maize these traits have become positively related 19 

likely due to simultaneous selection for greater SM and SO, while in soy these traits have 20 

become decoupled likely due to primary selection for SM only. Evolved relationships 21 

between SM and SO in plants have been disrupted by both conscious and unconscious 22 

artificial selection, which represents a key aspect of how the functional biology of crops 23 

differ fundamentally from wild plants along “universal” plant trait spectra. 24 

 25 

  26 
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Introduction 27 

Seed mass and seed output as a critical dimension of plant functional ecology 28 

 Differences in seed traits including mass, output, shape, dispersal, biochemical 29 

constitution, and dormancy have come to represent critical axes of life-history variation 30 

among plant species worldwide (Westoby et al. 1996, Moles et al. 2005, Diaz et al. 31 

2016). Understanding and quantifying variation in these seed traits among terrestrial plant 32 

species has been central in better understanding a range of large-scale processes including 33 

the evolution of angiosperms and plant biogeography (e.g. Westoby et al. 1992, 34 

Thompson et al. 1993, Westoby et al. 1996, Moles and Westoby 2004, Moles et al. 2005), 35 

as well as multiple aspects of plant life history strategy including dispersal ability, stature, 36 

seedling competitiveness and survivorship, plant- and species responses to disturbance, 37 

colonization ability, and persistence of seeds in soils (Thompson et al. 1993, Westoby et 38 

al. 1996, Leishman et al. 2000, Moles and Westoby 2003, 2004). Of the seed traits 39 

explored in the comparative plant sciences, seed mass (SM) has received the most 40 

research attention (cf. Kattge et al. 2011), with comparative analyses including thousands 41 

of plant species indicating that SM varies by up to 6 orders of magnitude across species 42 

(Westoby et al. 2002, Moles and Westoby 2003). When considered independently or 43 

alongside other leaf-, stem- and whole-plant traits, variation in SM across species 44 

represents a key trait defining the functional ecology of plants worldwide (e.g. Westoby 45 

1998, Cornelissen 1999, Westoby et al. 2002, Diaz et al. 2016). 46 

 In plant ecology, a long-recognized trade-off between SM and seed output (SO) 47 

remains central to plant resource allocation and life-history theories, particularly as it 48 

pertains to plant reproduction strategies (Harper et al. 1970, Smith and Fretwell 1974, 49 

Lloyd 1987, Westoby et al. 2002, Moles et al. 2004). Under conditions of finite 50 

resources, theory and observation suggest plant species differentiate from one another 51 

along a SM-SO axis that is hypothesized to optimize reproductive fitness and success, 52 

given a certain set of environmental conditions (Sadras 2007). In the simplest conceptual 53 

terms, the endpoints of the SM-SO trade-off are defined by plants allocating resources to 54 

a small number of large seeds, vs. plants that allocate resources to a large number of very 55 

small seeds; the wide variation that exists in between these conceptual points reflects 56 

“optimized” solutions to resource allocation (Sadras 2007). Similar to the evidence that 57 
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supports the existence of universal trade-offs (or correlations) among other plant 58 

functional traits (e.g. Wright et al. 2004), global databases including trait values from 59 

thousands of species can be used to define a “universal SM-SO” trade-off that exists 60 

among plants globally. The shape of this trade-off reflects evolutionarily defined 61 

constraints on possible combinations of SM and SO that can (or are most likely to) occur 62 

across non-domesticated plant species (hereafter referred to as “wild plants”).  63 

 64 

Seed mass and seed output trade-offs and crops 65 

 Historical analyses(Meyer et al. 2012) coupled with recent observational and 66 

experimental studies, have refined our understanding of how plant trait variation and 67 

correlations have been fundamentally altered by crop domestication (Meyer et al. 2012, 68 

Milla et al. 2014, Martin et al. 2017). While the suites of traits that are under intentional 69 

and unintentional artificial selection is wide – including whole-plant, leaf-, and root traits 70 

(e.g. Milla et al. 2014) – plant yield components including SM and/ or SO have been 71 

under the most intensive selection (Sadras 2007). 72 

 Assuming that crops have been selected for increased SM and SO leads to the 73 

hypothesis (“Hypothesis 1) that, as compared to a “global SM-SO trade-off”, artificial 74 

selection results in all crops expressing a higher SM for a given SO (or vice versa) as 75 

compared to wild plants. Additionally though, artificial selection directly targets SM and 76 

SO only for a certain group of crops such as cereals (e.g. wheat, rice, and maize), oil seed 77 

crops, or legumes including soy and other pulses. Therefore, one may also hypothesize 78 

(“Hypothesis 2”) that for a given crop species, the degree of divergence away from a 79 

global SM-SO trade-off differs according to the plant organ under selection, with seed 80 

crops showing the strongest divergences on average. 81 

 Yet even for crops under selection for seeds, within-species SM-SO trade-offs 82 

may differ considerably according to plant growth form and reproductive strategy. In 83 

certain crops including maize – one of the crops employed in my analysis here – both 84 

increased SM (i.e. mean kernel mass) (Hufford et al. 2012) and SO (i.e. mean kernels per 85 

plant)(Brown et al. 2011) have been simultaneously targeted by artificial selection. This 86 

leads to the hypothesis (Hypothesis 3) that, counter to a global SM-SO trade-off, crops 87 

such as maize express a positive SM-SO correlation. Alternatively, genome sequencing 88 
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indicates that increased SM in soybean – also employed in my analysis here – has been 89 

targeted during artificial selection (Liu et al. 2007, Zhou et al. 2015), while the number of 90 

inflorescences and ultimately SO remains plastic, and largely determined by local 91 

resource availability and concomitant plant growth rates (Andrade et al. 2005). This leads 92 

to the hypothesis (Hypothesis 4) that in soy, covariation along an intraspecific SM-SO 93 

trade-off would be weak or potentially non-existent. Here, I used a large dataset of SM 94 

and SO from 1,190 wild plant species and 41 of the world’s most widespread crops, 95 

derived from both functional trait databases and field studies on maize and soy, in order 96 

to test these four complementary hypotheses. 97 

 98 

Methods 99 

Generating a global SM-SO trade-off with functional trait data 100 

 Data for both SM and SO were acquired from a structured enquiry submitted to 101 

the TRY Functional Trait Database (Kattge et al. 2011). We specifically requested 102 

information on trait ID 26 (“seed dry mass”, corresponding to SM) and trait ID 131 103 

(“seed number per plant”, corresponding to SO). This request returned n=117,882 and 104 

n=9,292 observations for SM and SO respectively. All statistical analyses were then 105 

performed using R version 3.4.0 (R Foundation for Statistical Computing, Vienna, 106 

Austria). First, for each observation I used the ‘TPL’ function in the “’Taxonstand’ R 107 

package (Cayuela et al. 2017) in order to cross-reference all species, genus, and family 108 

identities with The Plant List and resolve all synonyms or errors. Once taxonomy checks 109 

were complete, species-level mean values for both SM and SO were then calculated. 110 

 This list of species was then cross-referenced with a list of the world’s crop 111 

species reported by the Food and Agricultural Organization of the United Nations (FAO) 112 

(FAO 2018), which was refined to species-level taxonomy by Martin and Isaac (2015). 113 

This procedure led to identification of n=38 crop species which had both paired SM-SO 114 

data in TRY, and have been identified by the FAO as a commodity species. I therefore 115 

supplemented the TRY dataset with species mean SM and SO values extracted from the 116 

literature for a number of additional common crops including soy (Glycine max(Hayes et 117 

al. 2018)), sunflower (Helianthus annuus(Libenson et al. 2002), rice (Oryza sativa(Wang 118 

et al. 2008)), and maize (Zea mays(Maddonni and Otegui 2006)); data for SM and SO 119 
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was also sought for all additional crops listed by Martin and Isaac (2015) which were not 120 

in TRY, but this data was not available in peer-reviewed literature. Therefore in sum, this 121 

data consolidation process resulted in paired SM-SO data for n=1231 species in total. 122 

 Each of the 41 crop species were then classified broadly according to the main 123 

commercial portion of the plant as one of: i) “seed plants” which are harvested for seeds 124 

(n=17 crop species); ii) “tree crops” which are harvested for timber or as ornamental 125 

species (n=3 crop species); iii) “other crops” which are harvested for other plant parts 126 

including leaves, roots, or large inflorescences (n=21 crop species); or iv) “wild species” 127 

which are non-domesticated plants (n=1190 species). 128 

 129 

Crops along an SM and SO trade-off 130 

 Analyses using the ‘fitdist’ function in the ‘fitdistrplus’ R package (Delignette-131 

Muller and Dutang 2015) indicating that both the SM and SO datasets were better 132 

described by normal or log-normal distributions (as per lower log-likelihood scores; 133 

Table 1), so log-transformed data was used in all subsequent analyses. I first fit a 134 

standardized major axis regression (SMA) model to the entire log-SM and log-SO, in 135 

order to test for the presence of a “global SM-SO trade-off”. This SMA was implemented 136 

in using the ‘sma’ function in the ‘smatr’ R package(Warton et al. 2012), with 95% 137 

confidence limits surrounding the overall model generated through bootstrapping. 138 

 All SMA model residuals associated with each species were then extracted, and 139 

significant differences in residuals among the four different plant types were evaluated. 140 

Due to unequal sample sizes and non-independence of data points owing to phylogenetic 141 

structure in the data (see below), this test was performed as a linear mixed effects model 142 

using the ‘lme’ function in the ‘nlme’ R package(Pinheiro et al. 2016). Specifically, in 143 

this model SMA residuals were predicted as a function of plant type (as a fixed effect), 144 

while accounting for genus identity nested within family identity (as random effects). In 145 

addition to assessing overall significance of the plant type term (i.e. the fixed effect), I 146 

calculated mean (± S.E.) SMA residuals for each plant type using the ‘lsmeans’ function 147 

in the ‘lsmeans’ R package (Lenth 2016), and assessed the pairwise differences in mean 148 

SMA model residuals among all four plant types using a Tukey post-hoc tests (also 149 

implemented with the ‘lsmeans’ function). Post-hoc tests based on this linear mixed-150 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 8, 2018. ; https://doi.org/10.1101/466250doi: bioRxiv preprint 

https://doi.org/10.1101/466250


 

6 

effect model were considered significant when assessed against a Bonferonni-corrected 151 

p-value of 0.008. 152 

 153 

Phylogenetic signal in SM and SO 154 

 A phylogenetic tree was constructed for the entire n=1,231 species using 155 

Phylomatic (Webb and Donoghue 2005) to generate a phylogenetic tree, based on the 156 

Angiosperm Phylogeny Group megatree (“R20120829.new”). The BLADJ algorithm in 157 

Phylocom(Webb et al. 2008) was used to estimate phylogenetic branch lengths according 158 

to clade ages based on fossil records (Wikstrom et al. 2001) which were updated by 159 

Gastauer and Meira-Neto (2016). Unresolved evolutionary relationships were treated as 160 

polytomies. 161 

 Phylogenetic signal in log-SM and log-SO across the entire phylogeny was then 162 

quantified as Pagel’s λ (Pagel 1999). For this analysis, a Pagel’s λ value equal to 0 163 

represents instances of no phylogenetic signal (i.e. where evolution of SM and/or SO is 164 

entirely independent of phylogeny), and Pagel’s λ values of 1 represent instances where a 165 

phylogeny perfectly predicts trait data (i.e. where evolution of SM and/or SO perfectly 166 

matches a Brownian model of trait evolution) (Pagel 1999). Values of Pagel’s λ were 167 

calculated using the ‘phylosig’ function in the ‘phytools’ R package (Revell 2012). 168 

Significance tests for were performed as randomization tests (with n=1000 169 

randomizations used), where SM and SO data were randomly shuffled across the 170 

phylogeny, and Pagel’s λ was recalculated on each randomized dataset; phylogenetic 171 

signal was considered statistically significant if the observed Pagel’s λ fell within the 172 

upper 95% of this randomized distribution. 173 

 In order to assess if the presence of crops influenced phylogenetic signal in SM 174 

and SO, I then recalculated Pagel’s λ with crop species removed from the dataset (where 175 

n=1,190 in this reduced phylogeny and trait dataset). Specifically, if Pagel’s λ was to 176 

increase when crops were removed from the phylogeny, this could be interpreted as crops 177 

reducing the strength of the phylogeny signal in SM or SO. All trait-phylogeny 178 

relationships were also graphed visually using the ‘plotTree.wBars’ function in the 179 

‘phytools’ R package (Revell 2012). 180 

 181 
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Soy and maize along an SM-SO trade-off 182 

 I employed two crop species-specific datasets, both derived from field studies, to 183 

evaluate if soy and maize expressed an SM-SO trade-off that was consistent with a global 184 

pattern (i.e. based on the n=1,231 species dataset). Soy data was taken from a published 185 

field study focused on soy leaf economics traits that was conducted on a 30-year old 186 

experimental farm in Guelph, Canada (43° 32′ N, 80° 12′ W) (Hayes et al. 2018). This 187 

study provided paired plant-level SM and SO data for n=45 soy plants (detailed in (Hayes 188 

et al. 2018)). Maize data was taken from two different field studies conducted at the same 189 

site, where paired SM and SO data was directly available (Maddonni and Otegui 2006, 190 

Mayer et al. 2012). Specifically, n=26 paired maize SM-SO observations were available 191 

in Table 1 of (Maddonni and Otegui 2006), while n=8 paired maize SM-SO data were 192 

taken from Table 1 of (Mayer et al. 2012). Data from both maize studies were derived 193 

from field experiments at the same site (the Experimental Station of the National Institute 194 

of Agricultural Technology) in Pergamino, Argentina (33° 56′ S, 60° 34′ W). I then used 195 

fit a SMA model (as described above) to both soy and maize datasets separately to 196 

describe intraspecific SM and SO patterns, and where SMA models were significant, 197 

95% confidence limits were generated through bootstrapping with replacement (with 198 

1000 replicates used) implemented with the ‘bootstrap’ function in the ‘modelr’ R 199 

package (Wickham 2017). 200 

 201 

Data availability 202 

 The compiled database of n=1,231 plant species used in my analyses here 203 

(presented in Figs. 1 and 4) are available as individual datasets in the TRY Functional 204 

Trait Database. Compiled data on soy and maize (presented in Fig. 3) are available upon 205 

request from the author, or in the original publications as cited in the methods. 206 

 207 

Results 208 

Crops along a global seed mass seed output trade-off 209 

 Data from n=1231 species across 517 genera and 92 families demonstrate the 210 

presence of a SM-SO trade-off in plants globally, with a standardized major axis (SMA) 211 

regression slope of -0.86 (95% C.I. = -0.91, -0.82, SMA r2=0.06, p<0.0001; Fig. 1). Of 212 
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the 41 crop species represented in the SM-SO dataset, 90.2% (37 crop species) feel above 213 

the global SM-SO axis (where SMA model residuals ≥ 0) while only four fell below the 214 

primary SM-SO axis (Fig. 1). In comparison, 46.1% and 53.9% of the n=1190 wild plant 215 

species were approximately evenly distributed above and below the primary SM-SO 216 

model, respectively (Figs. 1 and 2). 217 

 Across all 1231 species, SMA model residuals ranged from -8.4 to 11.7 (average 218 

residual=1.14e-11±2.5 (S.D.)). While accounting for the phylogenetic non-independence 219 

of data (Figs. S1 and S2) and uneven sample sizes, the extent of divergence from the SM-220 

SO axis differed significantly across crop types (mixed-effects model F4, 711=13.1, 221 

p<0.001, Fig. 2). Specifically, SMA residuals for seed- and tree crops were significantly 222 

greater than zero (p≤0.001), while residuals for non-seed/ tree crops and wild plant 223 

species did not differ from zero (p≥0.067, Table S1). 224 

 There was a gradation of divergence from a central SM-SO trade-off (Fig. 2). 225 

Tree crops and seed crops expressed the highest SM for a given SO, and in comparison 226 

non-seed crops and wild plant expressed lower SM for a given SO; these groups broadly 227 

differed significantly from one another in terms of average divergence from a central SM-228 

SO axis (Table S1). Crops harvested for seeds diverged significantly more strongly from 229 

a central SM-SO trade-off as compared to wild plants (post-hoc contrast p≤0.0001; Table 230 

S2). Furthermore, 17 seed crops expressed higher average SMA residuals (3.4±1.6 (S.D.), 231 

in comparison to the average SMA residuals observed in 21 non-seed crops (1.6±1.8 232 

(S.D.) (Fig. 2, Table S2) The three tree crops in the dataset differed most strongly from a 233 

central SM-SO trade-off, showing SMA residuals which were significantly higher than 234 

all other crops and wild plants (8.4±1.8 (S.D.); post-hoc p≤0.04 for all three contrasts; 235 

Fig. 2). Among seed crops, notable divergences from the global SM-SO model included 236 

hazelnut (Corylus avellana, SMA residual=7.3), maize (Zea maize, SMA residual=5.1), 237 

and sunflower (Helianthus annuus, SMA residual=4.8). 238 

 239 

Within-crop seed mass seed output trade-offs 240 

 Data from soy (n=45) and maize (n=35) indicated that SM-SO patterns differed 241 

both between these crops, as well as in comparison to a global SM-SO pattern. In maize 242 

SM and SO covaried significantly among individual plants (SMA r2=0.334, p<0.0001; 243 
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Fig. 3), however artificial selection has resulted in this relationship being positive and 244 

therefore opposite that of a global SM-SO pattern (maize SMA slope=0.27, 95% C.I. = 245 

0.20, 0.37, Fig. 3). Alternatively, soy data indicate that targeted selection for higher SM 246 

alone has resulted in a decoupling of SM and SO (Fig. 3). These two seed traits were not 247 

significantly related in soy, expressing only a weak negative relationship (SMA slope=-248 

0.14, 95% C.I.=-0.2, -0.11, SMA r2=0.002, p=0.757; Fig. 3). Consistent with 249 

reproductive allocation theory and targeted selection for SM(Sadras 2007), the lack of a 250 

significant SM-SO relationship in soy was qualitatively associated with variation in SM 251 

which was nearly an order of magnitude lower than variation in SO (where CV=9.5 and 252 

76.3, respectively; Table S1). 253 

 254 

Phylogenetic signal along the seed mass-seed output trade-off 255 

 Across the entire dataset (n=1231) both SM and SO expressed significant 256 

phylogenetic signal, with Pagel’s λ of 0.995 and 0.853, respectively (p<0.001 in both 257 

cases, Fig. 4). When crops are removed from the dataset, SM and SO are better predicted 258 

by phylogenetic relatedness than when artificially crops are present. Specifically, 259 

excluding crops from the datasets resulted in a small, albeit detectable, increase in Pagel’s 260 

λ for both SM (0.996 with crops) and SO (0.859 with crops). 261 

 262 

Discussion 263 

The functional profile of crops vs. wild plants 264 

 Research documenting the traits that have been targeted by crop domestication 265 

suggests that SM and/or SO are among those under the most intensive artificial selection 266 

(Meyer et al. 2012). While much of this research has taken archaeological and/or genetic 267 

approaches the analysis presented here refines a functional trait-based signature of crop 268 

domestication and artificial selection. Specifically, consistent with my hypotheses i) 269 

artificial selection has led to most crops significantly deviating from a global SM-SO 270 

trade-off (Fig. 1), such that ii) crops under selection for seeds deviate most strongly as 271 

compared to non-seed crops (Fig. 2). Yet within seed crops the degree to which artificial 272 

selection has reshaped the evolved biomechanical and/ or physiological constraints on 273 

trait syndromes (or trait trade-offs), depends on the specific reproductive traits/ yield 274 
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components being targeted (Fig. 3). In certain crops such as maize, artificial selection has 275 

fundamentally altered the direction of trait trade-offs imposed by natural selection, while 276 

in others such as soy artificial selection may only act to decouple the covariation among 277 

reproductive traits (Fig. 3) 278 

 When taken with studies examining other suites of crop functional traits and trait 279 

spectra (Milla et al. 2014, Martin et al. 2017), the shifts in SM-SO trade-offs in crops vs. 280 

wild plants observed here (Figs. 1-3) represent components of a broader “disruption” in 281 

plant resource-use syndromes incurred by artificial selection (Milla et al. 2014). Other 282 

and observational data indicate that crops generally express greater values of resource 283 

capture traits as compared to their wild progenitors. Indeed, detailed analyses of leaf traits 284 

indicate that certain crops express among the most extreme “resource-acquiring” trait 285 

syndromes in plants globally (Martin et al. 2018), while at the same time artificial 286 

selection has resulted in trait relationships, or “phenotypic integration”(Milla et al. 2014), 287 

that are considerably weaker in crops vs. wild plants (Milla et al. 2014, Martin et al. 288 

2017). 289 

 While neither SM nor SO values in crops have been shifted to extreme ends of a 290 

reproduction trait spectrum (Fig. 4), the analysis here indicates that relationships between 291 

SM and SO within individual species may be fundamentally rewired through 292 

domestication (Fig. 3). Our results and other studies exploring trait syndrome disruption 293 

(e.g. Milla et al. 2014) provide compelling evidence to indicate crops fundamentally 294 

differ from wild plants along a global spectrum of plant form and function(Diaz et al. 295 

2016). Quantifying the position of crops and how their traits trade-off along a global trait 296 

spectra (Wright et al. 2004, Diaz et al. 2016) represents a means of synthetically defining 297 

the functional ecology of crops, which in turn would support a range of hypotheses on the 298 

unintended impacts of artificial selection. 299 

 300 

Conscious and unconscious selection and trait trade-offs in crops  301 

 Studies employing quantitative trait locus (QTL) mapping would suggest that the 302 

results here deviations of crops away from a central SM-SO trade-off (Fig. 1), have likely 303 

occurred largely in response to “conscious selection” for these individual traits (e.g. Tao 304 

et al. 2017). Major shifts in the shape of the SM-SO relationship in the two crops 305 
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explored here is also consistent with strong conscious selection for these particular traits 306 

(Fig. 3). Furthermore, analyses of phylogenetic patterns in seed traits here demonstrated a 307 

small albeit detectable reduction in phylogenetic signal when crops are removed from 308 

analyses (Fig. 4). Major deviations in SM and SO among crops vs. wild relatives, both 309 

here and in experimental studies, are most likely consistent with long-term conscious 310 

selection of seed traits. 311 

 At the same time though, theories from functional trait-based ecology do 312 

hypothesize that unconscious selection has also played a role in reshaping SM-SO 313 

relationships in crops. Specifically, from a plant resource allocation/ natural selection 314 

perspective, higher SM at a given SO in open cultivated agricultural environments would 315 

be expected to competitive benefits to crop plants, including greater seedling growth rates 316 

and survival at greater burial depths. Yet while this theory derived from plant resource 317 

allocation theory suggests that unconscious selection may also have contributed to the 318 

patterns observed here, experimental evidence in support of this hypothesis is currently 319 

lacking (reviewed by Milla et al. 2015). Detailed partitioning of the relative importance 320 

of conscious vs. unconscious selection remains a leading avenue for better understanding 321 

the genetic vs. phenotypic controls on SM, SO, and their relationships in crops. 322 

 323 
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Figures 488 

 489 

 490 

Fig. 1. Relationship between seed mass and seed output across n=1190 non-domesticated 491 

species and n=41 of the world’s most widespread crops. Solid black trend line represents 492 

a standardized major axis regression fit across the entire dataset (n=1231) and dashed 493 

lines represent 95% confidence limits.  494 
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 495 

 496 

Fig. 2. Deviations from a global seed mass-seed output trade-off in three types of crops 497 

and non-domesticated plants. Deviations from a global SM-SO relationship are calculated 498 

as residuals from a standardized major axis regression fit to n=1231 plant species (see 499 

Fig. 1). “Other crops” (n=21) correspond to plant species cultivated for vegetative- or 500 

belowground structures. Sample sizes for seed-based crops, cultivated trees, and non-501 

domesticated plants are n=17, n=3, and n=1190, respectively.  502 
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 503 

 504 

Fig. 3. Seed mass and seed output in soybean (Glycine max, n=45) and maize (Zea maize, 505 

n=37). Data are presented in relation to a SM-SO trade-off observed across 1231 plant 506 

species (gray rectangle, inset graph). Solid red trend line represents a standardized major 507 

axis (SMA) regression fit to the maize data with red dashed lines representing 95% 508 

confidence limits. The SMA model fit to soy data was not significant, so is not presented 509 

here.  510 
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Fig. 4. Variation in seed mass (A) and seed output (B) across a phylogeny of 1,231 crop- 512 

and wild plant species. Bars across the tips of the phylogeny represent mean seed mass 513 

and seed count (plant-1) values, with crop species highlighted in red and wild plants in 514 

gray. 515 
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