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Abstract 1 

Detecting and estimating DNA sample contamination are important steps to ensure high quality 2 

genotype calls and reliable downstream analysis. Existing methods rely on population allele 3 

frequency information for accurate estimation of contamination rates. Correctly specifying 4 

population allele frequencies for each individual in early stage of sequence analysis is impractical or 5 

even impossible for large-scale sequencing centers that simultaneously process samples from 6 

multiple studies across diverse populations. On the other hand, incorrectly specified allele 7 

frequencies may result in substantial bias in estimated contamination rates. For example, we 8 

observed that existing methods often fail to identify 10% contaminated samples at a typical 3% 9 

contamination exclusion threshold when genetic ancestry is misspecified. Such an incomplete 10 

screening of contaminated samples substantially inflates the estimated rate of genotyping errors 11 

even in deeply sequenced genomes and exomes.  12 

We propose a robust statistical method that accurately estimates DNA contamination and is 13 

agnostic to genetic ancestry of the intended or contaminating sample. Our method integrates the 14 

estimation of genetic ancestry and DNA contamination in a unified likelihood framework by 15 

leveraging individual-specific allele-frequencies projected from reference genotypes onto principal 16 

component coordinates. We demonstrate this method robustly and accurately estimates 17 

contamination rates across different populations and contamination rates. We further demonstrate 18 

that in the presence contamination, quantitative estimates of genetic ancestry (e.g. principal 19 

component coordinates) can be substantially biased if contamination is ignored, and that our 20 

proposed method corrects for this bias. Our method is publicly available at 21 

http://github.com/Griffan/verifyBamID22 
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Introduction  23 

Sample contamination is a common problem in DNA sequencing studies. Contamination may 24 

occur during sample shipment (due to spillage across wells, pipetting errors, insufficient dry ice), 25 

library preparation (due to gel cut-through in fragment size selection or unexpected switch 26 

between barcoded adaptors in-vitro), in-silico demultiplexing from a sequenced lane into barcoded 27 

samples, or on many other unexpected occasions. Even modest levels of contamination (e.g. 2-5%) 28 

within a species substantially increase genotyping error, even for deeply sequenced genomes1. 29 

Accurate estimation of DNA contamination rates allow us to identify and exclude contaminated 30 

samples from downstream analysis, and genotypes of moderately contaminated samples (e.g. 31 

<10%) can be improved by accounting for contamination in genotype calling1.  32 

 Previously we developed methods and a software tool, verifyBamID2, to estimate DNA 33 

contamination from sequence reads given known population allele frequencies of common 34 

variants. Many investigators and most major sequencing centers use verifyBamID as a part of their 35 

standard sequence processing pipeline. However, we have shown that verifyBamID can 36 

underestimate DNA contamination rates if the assumed population allele frequencies are 37 

inaccurate2. Such an underestimation can be avoided if correct population allele frequencies are 38 

provided in an ideal circumstances. However, in early stage of sequence analysis, performing a 39 

tailored customization of quality control (QC) steps for each sequenced genome based on their 40 

ancestry is not always feasible or or sometimes impossible. Such a tailored customization requires 41 

planned coordination between sequencing centers and study investigators prior to sequencing to 42 

share the self-reported ancestry (which is not always accurate) or estimated ancestry from external 43 
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genotypes (which is not always available). Modifying the QC pipeline to accommodate study-44 

specific or sample-specific parameters may not be a possible option for large sequencing centers. 45 

Even if such a tailored customization of QC pipeline is possible, preparing per-sample ancestry prior 46 

to QC may delay time-sensitive issues in the sequencing procedure. If contamination rates can be 47 

accurately estimated without having to know the ancestry or allele frequencies a priori this will 48 

simplify the sequence analysis pipeline and expedite the QC.   49 

Here we describe a novel method to robustly detect and estimate DNA contamination by 50 

modelling the probability of observed sequence reads as a function of “individual-specific allele 51 

frequencies” that account for genetic ancestry of a sample. Instead of assuming that the population 52 

allele frequencies are known, we represent individual-specific allele frequencies as a function of 53 

genetic ancestry using principal component coordinates and the reference genotypes from a 54 

diverse population, e.g. Human Genome Diversity Project (HGDP)3 or 1000 Genomes4.  We then 55 

jointly estimate genetic ancestry and contamination rates of a sequenced individual based on a 56 

mixture model, without requiring the assumption that population allele frequencies are known.  57 

Our method enables accurate ancestry-agnostic estimation of contamination through a unified 58 

likelihood framework that incorporates genetic ancestry and contamination together. We show that 59 

our method provides (1) comparable or more accurate estimates of genetic ancestry than existing 60 

methods such as TRACE/LASER5,6 even in the absence of contamination and (2) reduced bias in 61 

contamination rate estimates compared to our previous method requiring known population allele 62 

frequencies using in silico contaminated datasets and sequenced genomes from the InPSYght 63 

psychiatric genetics sequencing study.   64 
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Material and Methods 65 

We aim to jointly estimate sample contamination rates and genetic ancestry from sequence 66 

reads without specifying population allele frequencies. First, we describe our previous mixture 67 

model to estimate contamination rates assuming population allele frequencies are known. Second, 68 

we introduce a model for sequence reads using population allele frequencies as a function of 69 

genetic ancestry represented in principal component coordinates. Third, we extend the model to 70 

enable joint estimation of contamination rates and genetic ancestry. Fourth, we evaluate our 71 

methods using in silico contaminated samples and whole genome sequence data from the InPSYght 72 

study. 73 

Likelihood-based mixture model for DNA sequence contamination 74 

In our previous contamination detection methods2, we assumed that the DNA sequence reads 75 

from an intended sample are contaminated by sequence reads from at most one contaminating 76 

sample from the same population, and that the population allele frequencies of all analyzed genetic 77 

variants are known. For each bi-allelic variant 𝑖	(1 ≤ 𝑖 ≤ 𝑚), let 𝑏)* ∈ {𝑅, 𝐴, 𝑂}  (1 ≤ 𝑗 ≤ 𝐷)) be the 78 

observed base call representing the reference allele (R), alternate allele (A), or other allele (O) for 79 

the 𝑗-th read that overlaps the variant; 𝐷)  is the observed sequence depth at variant 𝑖. Let 𝑒)* ∈80 

{0,1}  be a random variable indicating whether a sequencing error did (1) or did not (0) occur for 81 

observed base 𝑏)*; we assume 𝑒)*  follows a Bernoulli distribution with success probability 106
789
:;  82 

where 𝑄)*  is a phred-scale base quality score of 𝑏)*. In the absence of contamination, if the true 83 

genotype 𝑔) ∈ {0,1,2} represents the count of alternate alleles of the sequenced sample, then 84 
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PrA𝑏)*B𝑔)C, 𝑒)*D can be easily represented as in Table 1, making the simplifying assumption of equally 85 

likely errors across four possible nucleotides.  86 

We assume that the observed sequence reads are a (1 − α) ∶ α mixture of intended and 87 

contaminating reads given a contamination rate 0 ≤ α ≤ 1 . Let 𝑔)Hand 𝑔)I represent the true 88 

genotypes of the intended and contaminating samples at variant 𝑖, respectively. Then the mixture 89 

model likelihood of each observed base becomes 90 

PrA𝑏)*B𝑔)H, 𝑔)I, 𝑒)*; 𝛼D = (1 − 𝛼)PrA𝑏)*B𝑔)H, 𝑒)*D + 	𝛼Pr(𝑏)*|𝑔)I, 𝑒)*) (1) 91 

Assuming a homogenous population with known population allele frequency 𝑓)  and Hardy-92 

Weinberg Equilibrium (HWE), Pr	(𝑔)I; 𝑓)) follows a Binomial(2, 𝑓)) distribution.  Under the 93 

simplifying assumption of independent variants, the likelihood of the contamination rate becomes 94 

𝐿(𝛼) = ∏ ∑ ∑ Z∏ ∑ PrA𝑏)*B𝑔)H, 𝑔)I, 𝑒)*; 𝛼DPrA𝑒)*D[89
\8
*]H ^ Pr(𝑔)I; 𝑓))Pr(𝑔)H; 𝑓))_8

`_8
:a

)]H  (2) 95 

The maximum likelihood estimate (MLE) of contamination rate 𝛼b can be obtained using Brent’s 96 

algorithm7.  97 

As we previously reported2, this model assumes correctly specified population allele frequencies 98 

𝑓).  99 

Likelihood-based estimation of genetic ancestry (in the absence of contamination) 100 

We extend this model to incorporate genetic ancestry. The key idea of this extension is to use 101 

the individual-specific allele frequency (ISAF)8,9 to model the likelihood of the sequence reads. 102 

Several methods, including Spatial Ancestry Analysis (SPA)10 and logistic factor analysis (LFA)9, 103 
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previously proposed modelling allele frequency as a function of genetic ancestry via principal 104 

component (PC) coordinates.  105 

Let 𝐺 be an 𝑚 × 𝑛 genotype matrix (where 𝑔)*  = 0, 1, or 2 is the number of non-reference 106 

alleles at variant i in individual j) of a genetically diverse reference panel of size n, such as 1000 107 

Genomes or HGDP. We define ISAF 𝑓)	(0 ≤ 𝑓) ≤ 1)	for variant i as a weighted average of genotypes 108 

from the reference panel (𝑓) = ∑ 𝑤g𝐺)g)h
g]H , where 0 ≤ 𝑤g ≤ 1 and 𝐺)g ∈ {0,1,2} for individual r. 109 

For a homogenous population, 𝑤g =
H
Ih

 results in a pooled allele frequency across all individuals in 110 

the reference panel. If each individual can be categorically represented as a one of k mutually 111 

exclusive subpopulations, the population-specific allele frequency for the subpopulation 𝑠 ∈112 

{1,2,⋯ , 𝑘} can be represented as 𝑤g =
l(Cm]C)
Ihn

, where and 𝑠g ∈ {1,2,⋯ , 𝑘} represents the 113 

subpopulation that individual r belongs to, and 𝑛C represents the size of subpopulation 𝑠 . More 114 

generally, if individual’s genetic ancestry is represented as continuous variables (such as PCs, SPAs, 115 

or LFAs), the individual-specific allele frequency (ISAF)  can be represented as a function of the 116 

continuously represented genetic ancestry9,5.  117 

The estimated ISAF can be viewed as (one half times the) genotype dosages approximated from 118 

a fixed number(=K) of factors, such as PCs, SPAs, or LFAs. In our method, we used a linear model to 119 

estimate ISAF from PCs, similar to previous studies8,9. Given the reference panel genotype matrix 𝐺, 120 

let  H
I
𝐺o be the ISAF matrix as a function of top K factors. ISAF matrix H

I
𝐺o should well approximate 121 

H
I
𝐺. For example, under a linear model, typical principal component analysis takes the singular 122 

value decomposition (SVD) of the mean-centered genotype matrix 	𝐺 = 𝐺 − 2𝝁𝟏𝒏𝑻 = 𝑈𝐷𝑉v, where 123 

𝝁 = H
Ih
𝐺𝟏𝒏 is the pooled allele frequencies and 𝟏𝒏 is the column-vector of ones. Using the top K 124 
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eigenvalues and corresponding eigenvectors 𝑈(w), 𝐷(w), 𝑉(w) from the SVD, it is known that 𝐺o =125 

H
I
𝑈(w)𝐷(w)x𝑉(w)yv + 𝝁𝟏𝒏𝑻  minimizes  z𝐺 − 𝐺oz

I
= ∑ (𝐺)* − 𝐺o)*)I),*  among all possible rank K 126 

matrices11, making it a good proxy for the ISAF matrix.  127 

For a new individual s with genetic ancestry represented as 𝒙𝒔 ∈ ℝ~ in the PC (eigenvector) 128 

space of the reference panel, the ISAF for i-th variant can be modelled as 𝑓)(𝒙𝒔) =
H
I
𝒖𝒊
(w)𝐷(w)𝒙𝒔𝑻 +129 

𝜇), where 𝒖𝒊
(w) is i-th row of 𝑈(w) and 𝜇)  is the i-th element of 𝝁. To avoid boundary condition, we 130 

constrain �
Ih
≤ 𝑓)(𝒙𝒔) ≤ 1 − �

Ih
 for a fixed 𝜀 (we used 𝜀 = 0.5 in our experiments). Then the overall 131 

likelihood of an individual’s genetic ancestry 𝒙 is 132 

𝐿(𝒙𝒔) = ∏ ∑ Z∏ ∑ PrA𝑏)*B𝑔), 𝑒)*DPrA𝑒)*D[89
\8
*]H ^ PrA𝑔); 𝑓)(𝒙𝒔)D_8

a
)]H   (3) 133 

where 𝑔)  represents the unobserved genotype of the sequenced sample at variant i. The maximum-134 

likelihood genetic ancestry coordinates can be estimated as 𝒙�𝒔 = argmax𝒙𝒔∈ℝ�𝐿(𝒙𝒔) using the 135 

Nelder-Mead12 algorithm, starting with PC coordinates of a randomly selected individual from the 136 

reference panel. In our experiments, we always obtained consistent estimates of 𝒙�𝒔 regardless of 137 

start values.  138 

Joint estimation of genetic ancestry and DNA contamination  139 

Because our goal is to obtain unbiased estimates of the DNA contamination rate 𝛼 agonistic to 140 

genetic ancestry, we propose to jointly estimate 𝛼 and ancestry by combining the models described 141 

in the previous sections. Let  𝒙𝟏, 𝒙𝟐 ∈ 𝑅w  be the genetic ancestries of the intended and 142 

contaminating samples. Then the likelihood under the combined model is 143 
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𝐿(𝛼, 𝒙𝟏, 𝒙𝟐) =������PrA𝑏)*B𝑔)H, 𝑔)I, 𝑒)*; 𝛼DPrA𝑒)*D
[89

\8

*]H

�Pr �𝑔)H; 𝑓)(𝒙𝟏)� Pr �𝑔)I; 𝑓)(𝒙𝟐)�
_8
`_8

:

a

)]H

 144 

When the contamination rate 𝛼»0, the parameters corresponding to 𝒙𝟐 do not contribute 145 

(much) to the likelihood and the estimates of  𝒙𝟐 may be unstable. To address this problem, we 146 

initially assume that the intended and contaminating samples are from the same population 𝒙𝟏 =147 

𝒙𝟐 (‘equal-ancestry’ model) and then repeat the analysis allowing for 𝒙𝟏 ≠ 𝒙𝟐  (‘unequal-ancestry’ 148 

model). The dimension of parameter space for the unequal-ancestry model is 2𝑘 + 1.  We choose 149 

final parameter estimates between the two models based on Akaike Information Criterion (AIC)13.   150 

Evaluation on in-silico contaminated data based on 1000 Genomes project samples  151 

We constructed in-silico contaminated DNA sequence reads using aligned low-coverage whole 152 

genome sequence reads from the 1000 Genomes phase 3 project4. We filtered out unmapped and 153 

mark-duplicated reads and then randomly sampled aligned sequence reads proportional to the 154 

intended contamination rates α ∈ {0.01, 0.02, 0.05, 0.1, 0.2}. To match the mixing proportion of 155 

sequence reads originated from intended and contaminating to be (1 − 𝛼): 𝛼, each read was 156 

sampled with probability  (1 − 𝛼) and �:
�`
𝛼 from each sample, where 𝐵H and 𝐵I are number of 157 

aligned bases from unique reads from intended and contaminating samples. We selected four 158 

populations, CHS (Han Chinese South), GBR (British in England and Scotland), MXL (Mexican 159 

Ancestry from Los Angeles USA), YRI (Yoruba in Ibadan, Nigeria), and arbitrarily selected 10 pairs of 160 

individuals with similar sequencing depths within the same population and across populations. To 161 

estimate genetic ancestry and/or contamination rate for these in-silico contaminated sequence 162 

reads, we used a reference panel of 938 HGDP3 individuals across 1,000, 10,000 and 100,000 163 
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randomly chosen SNPs (pooled MAF > 0.5%), avoiding variants masked by the 1000 Genomes 164 

Project4 (See Web Resource). When we compared estimated genetic ancestry with LASER, we used 165 

the same set of selected SNPs and sequence reads as input. For TRACE, we used genotypes from the 166 

phase 3 release (for 1000 Genomes) or an interim callset from the GotCloud software tool14 (for 167 

InPSYght, see next section for details) on the same SNP set.  168 

Experiment with real sequence data from the InPSYght study  169 

Next, we applied our method to 500 deeply sequenced (mean depth 32x) genomes from the 170 

first two batches of the InPSYght study. For each sample, we evaluated the results from the six 171 

models: (1) the original verifyBamID using pooled allele frequencies; the original verifyBamID using 172 

(2) African, (3) East Asian, and (4) European allele frequencies; (5) the new verifyBamID2 under the 173 

equal-ancestry model; and (6) verifyBamID2 under the unequal-ancestry model. To calculate 174 

pooled, population-specific, and individual-specific allele frequencies, we used the 1000 Genomes 175 

phase 3 reference panel (n=2,504), randomly selecting 100,000 SNPs among the sites also 176 

polymorphic in Illumina Human Omni 2.5 array, with the same filtering criteria (MAF > 5% and 1000 177 

Genomes mask) as above.   178 

  179 
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Results 180 

We assessed our new methods in the following steps. First, in the absence of contamination, we 181 

demonstrate that our estimation of genetic ancestry provides comparably accurate estimates of 182 

genetic ancestry as other state-of-art methods. Second, in the presence of contamination, we 183 

demonstrate that joint estimation of genetic ancestry and contamination substantially improves the 184 

estimation accuracy of both parameters. Third, using in-silico contaminated samples, we 185 

demonstrate that our methods robustly provide more accurate estimates than previous methods 186 

across various combinations of genetic ancestries and contamination rates. Fourth, from the 187 

analysis of deeply sequenced genomes in the InPSYght study, we demonstrate that our new 188 

methods deliver more accurate contamination estimates than the previous methods. 189 

 190 

New model-based methods accurately estimate genetic ancestry. 191 

In the absence of contamination, widely used methods such as LASER and TRACE are known to 192 

estimate genetic ancestry accurately. Because we propose using a new model-based approach to 193 

estimate the genetic ancestry (jointly with contamination rates), we first compared the accuracy of 194 

our new method, in the absence of contamination, with LASER and TRACE.  We randomly chose 500 195 

ethnically diverse samples from the 1000 Genomes Project low-coverage (4X) genomes, and 500 196 

African American samples from the deeply sequenced (32x) genomes from the InPSYght project. 197 

We estimated their genetic ancestries using 100,000 SNPs from the HGDP reference panel (see 198 

Methods for details) and compared their genetic ancestry estimates obtained by LASER (using the 199 

same sequence data), and TRACE (using the hard-call genotypes). As illustrated in Figure 1A, 1C, 1E, 200 
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the estimated PC coordinates of the 1000 Genomes individuals are located close to their 201 

corresponding HGDP populations across all three methods. Compared to TRACE and LASER, we 202 

observed that the estimated genetic coordinates from verifyBamID2 were the closest to the 203 

centroid of corresponding HGDP population (Table 2) in 4 of the 5 populations (all except TSI). 204 

These results suggest that our method provides estimates at least as precise compared to those for 205 

other state-of-the-art methods.  206 

Genetic ancestry estimates may be confounded by DNA contamination. 207 

Next, we constructed in-silico contaminated sequenced data from the 1000 Genomes Project 208 

and estimated contamination parameters and genetic ancestries jointly. We observed that when 209 

sequences are contaminated between different continental populations, the genetic ancestry esti-210 

mates in PC coordinates drift towards the contaminating population when contamination is ignored 211 

(Figure 2A) or when assuming that intended and contaminating samples originated from the same 212 

population (Figure 2B). As the contamination rate increases, drift increases.  213 

However, when we accounted for possible differences in genetic ancestries between the two 214 

intended and contaminating samples using our new methods, PC coordinates remained similar to 215 

those for uncontaminated samples (Figure 2E), and contaminated samples constructed from indi-216 

viduals that belong to the same population (Figure 2B, 2D, 2F).  217 

Robust, accurate, ancestry-agnostic estimation of DNA contamination. 218 

Next, we evaluated the effect of genetic ancestry misspecification in estimating DNA 219 

contamination rates. We constructed contaminated samples between various combinations of 220 
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populations, and compared the accuracy of estimated contamination rates using both the original 221 

methods which assume known allele frequencies and the new methods which estimate 222 

contamination rate and genetic ancestry jointly. 223 

When contamination happens within the same population, running original methods with 224 

correct continental population allele frequencies specified provided accurate contamination 225 

estimates (Figure 3A, 3E, 3I). However, using pooled allele frequencies, which would be a default 226 

option when it is infeasible to specify population information a priori before sequencing, 227 

consistently underestimated contamination rates. Bias was particularly large when intended individ-228 

uals were of African ancestry.  229 

Specifying incorrect population allele frequencies results in even larger contamination 230 

estimation bias. For example, using African allele frequencies on East Asian samples resulted in an 231 

average estimate of 2.9% contamination for samples with contamination 10% (Table S1), implying 232 

that a large fraction of 10% contaminated samples within East Asian ancestry would not have been 233 

flagged for contamination-based exclusion at the contamination-exclusion threshold of 1-3% used 234 

by many studies e.g. the Trans-Omics Precision Medicine (TOPMed) study15. 235 

Our results consistently demonstrated that the ancestry-agnostic method provides as accurate 236 

estimates as the original methods specified with correct population labels (Figure 3A, 3E, 3I, Table 237 

S1), and the estimates are substantially better than those from pooled allele frequencies or 238 

incorrectly specified allele frequencies.  239 

When the intended and contaminating populations are different, we observed that 240 

contamination is sometimes overestimated due to increased fraction of heterozygous genotypes 241 
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than expected by a given contamination rate under single population model. Our method based on 242 

unequal-ancestry model outperforms all the other methods in terms of overall bias and Mean 243 

Squared Error(MSE) (Figure 3, Table S4), correcting for both upward and downward biases in 244 

various ancestry combinations. For example, the relative deviation of estimated to intended 245 

contamination rate (i.e. |𝛼b/𝛼 − 1|) is reduced by 80% (73-88%) compared to the original 246 

verifyBamID with various population allele frequencies, suggesting reduced bias. MSE is also 247 

reduced by 92% (86-97%). This robustness reflects the ability to incorporate differences in 248 

population allele frequencies between intended and contaminating individuals (Figure 3B, 3C, 3D, 249 

3F, 3G, 3H, Table S1).    250 

We also examined the accuracy of our methods for admixed populations by performing a similar 251 

experiment using the Mexican population (MXL) and obtained consistent results (Supplementary 252 

Table S2). 253 

Results with deep whole genome sequence data from the InPSYght study.  254 

Next, we applied our methods to 500 African American samples from the InPSYght study (see 255 

Methods). Consistent with the results from our in silico contamination studies, we observed that 256 

the average contamination rate was 1.1-fold higher with newer method (0.36% for unequal-257 

ancestry, 0.37% for equal-ancestry) compared to the original method with pooled allele frequency 258 

(0.33%) (Figure 4). The number of samples with estimated contamination rate >1% increased from 259 

16 (original method with pooled allele frequency) to 21 (unequal-ancestry method) or 23 (unequal-260 

ancestry method), suggesting our new method more rigorously screens for contaminated samples.  261 
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All 500 deeply sequenced genomes in InPSYght study are reported to be African Americans, and 262 

indeed  the estimated PC coordinates for all 500 individuals under all three methods lie between 263 

European and African samples. Compared to other methods to estimate genetic ancestry, our 264 

estimates resulted in tighter clustering along the European-African segment than LASER, and 265 

similarly tight clustering to TRACE (Figure 1B, 1D, 1F). For example, the correlation coefficient 266 

between the PC1 and PC2 coordinates were 0.927 for LASER, 0.981 for TRACE, and 0.985 for 267 

verifyBamID2, corroborating that verifyBamID2 results in more precise estimate of African ancestry 268 

along the European-African segment in PC coordinates.   269 

Impact of number of markers on accuracy, computational cost, and memory requirements.  270 

As we have shown previously2, there are trade-offs between computation cost and accuracy of 271 

contamination estimates. Using as many as 100,000 variants results in accurately estimated intended 272 

contamination rate. For example, MSE of relative deviation (i.e. |𝛼b/𝛼 − 1|) was 0.02, 0.01, 0.01 when 273 

the intended contamination was 1%, 2%, and 5%, respecitvely. When we use 10,000 variants, the 274 

MSEs modestly increased to 0.11, 0.04, and 0.01, respectively. When we use only 1,000 variants, 275 

MSEs further increased to 0.69, 0.25, 0.11, suggesting that the estimates may not be precise for low 276 

contamination rate when using only 1,000 variants. (Supplementary Table S3).  277 

We also evaluated the computational cost and memory consumption of verifyBamID2 on whole 278 

genome sequence data with various coverages. For the BAM files from the 1000 Genomes whole 279 

genome sequence data (4.3-5.1x coverage), the average wall-clock running time was 5.5 minutes with 280 

a single thread and peak memory consumption was 505 MB when using 10,000 markers in a server 281 

with Xeon 2.27GHz processor. When using 100,000 markers, the average wall-clock running time was 282 
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20.5 minutes with a single thread and 8.0 minutes with four threads, and peak memory consumption 283 

was 528 MB.  284 

For deep genome data from the InPSYght study (31x coverage) stored in CRAM format, the 285 

average wall-clock time was 17.3 minutes and peak memory consumption was 514 MB when using 286 

10,000 markers. For 100,000 markers the average wall-clock time was 155.6 minutes (single thread) 287 

or 96 minutes (four threads) and peak memory consumption was 548 MB.     288 
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Discussion 289 

Contamination detection is an essential step in the sequence analysis process that has important 290 

effects on following downstream analyses. Early and accurate estimation of DNA contamination can 291 

prevent wasted effort, time, and money by identifying the problems early on before too many 292 

samples are sequenced using contamination-prone protocols. Our previous method enabled such a 293 

timely contamination detection from sequence data and population allele frequencies at known 294 

variant sites, without requiring independent SNP genotype data.  Our new method maintains these 295 

advantages, and in addition provide three more. First, because our joint analysis method is agnostic 296 

to genetic ancestry, it eliminates sample-to-sample variation in the parameter settings for the 297 

contamination checking procedure, simplifying the sequence analysis pipeline. Second, it provides 298 

more robust contamination estimates against potentially misspecified population allele frequency of 299 

the intended (or contaminating) samples when relying on the reported ancestry information. Third, 300 

it provides accurate estimates of genetic ancestries for both intended and contaminating samples. 301 

This enables additional sanity checking of the sequence data, such as determining whether a 302 

sequenced sample matches its expected (participant-reported) ancestry. It also facilitates 303 

incorporating ancestry information in the variant calling and downstream analysis, and allows us to 304 

track the source of contamination more precisely when contamination occurs.    305 

Our method can be used not only to detect and estimate contamination, but also to estimate 306 

genetic ancestry from sequence data. Relatively few methods, such as LASER5,6 and bammds16, exist 307 

for estimating genetic ancestry from sequence data while several methods have been developed for 308 

array-based genotypes, such as EIGENSOFT17, FRAPPE18, ADMIXTURE19, and TRACE6. We have 309 
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demonstrated that our method provides ancestry estimates as or more accurate than LASER, 310 

particularly when the sequenced samples are contaminated between different ancestries.  311 

By jointly estimating genetic ancestry and contamination, we are able to accurately estimate 312 

contamination without requiring ancestry information a priori.  Since obtaining population allele 313 

frequency information may be infeasible or even impossible at the time of sequencing, it is important 314 

to highlight that our ancestry-agnostic approach provides more timely and accurate feedback to the 315 

sequencing facilities. Our ancestry-agnostic approach also simplifies the sequence analysis pipeline, 316 

because the same input arguments can be applied across all samples regardless of their genetic 317 

ancestry 318 

The key idea of using individual-specific allele frequencies (ISAF) to account for population 319 

structure in genetic analysis has been suggested previously in the context of characterizing 320 

population structure or identifying highly differentiated variants across populations8,9. To the best 321 

our knowledge, our method describes the first likelihood-based model utilizing ISAF to represent high 322 

throughput sequence reads under population structure and/or contamination. While previous 323 

studies proposed logistic models as alternative to linear model8,9, we used linear models (bounded 324 

by minimum and maximum value) between allele frequencies and population structure represented 325 

by Singular Value Decomposition (SVD) on the genotype matrix. We made this choice because the 326 

logistic model is computationally more intensive, and the linear model is accurate for the common 327 

variants we use, as demonstrated by the previous studies9.  328 

Because we use Nelder-Mead optimization for maximum likelihood estimation, it is possible that 329 

the estimates do not converge to the global maximum, especially when many principal components 330 

are used. We observed that estimating the full unequal-ancestry model parameters sometimes does 331 
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fail to converge especially when there is little or no contamination, due to the limited identifiability 332 

of the genetic ancestry of contaminating samples in this situation. Starting by estimating 333 

contamination rate and shared genetic ancestry parameters using the equal-ancestry model, and 334 

using those estimates as start values for the unequal-ancestry model to allow different ancestries 335 

between the intended and contaminating samples dramatically improved convergence; in fact, the 336 

method converged to consistent estimates across multiple starting points within 1,000 iterations in 337 

all our benchmark cases, in both real and  in-silico contaminated data. When the contamination rate 338 

is extremely small (e.g. <0.1%), estimation of genetic ancestry of contaminating samples can still be 339 

challenging. We allow unequal ancestries between intended and contaminating samples only when 340 

the likelihood substantially improves beyond AIC threshold between equal ancestry and unequal 341 

ancestry models. This procedure effectively removed all outlier estimates of genetic ancestries of 342 

contaminating samples in our experiments.  343 

There are other possible useful extensions to our joint contamination and estimation method. 344 

We are extending these methods to detect and estimate contamination for RNA-seq and other 345 

epigenomic sequence data. The same model has potential applications  in other areas, such as cancer 346 

single cell transcriptomics20. 347 

We expect that our new verifyBamID2 software will facilitate more accurate, convenient, and 348 

timely quality control of sequence genomes. Our software tool is publicly available at 349 

http://github.com/Griffan/verifyBamID. Our GitHub repository provides reference files that can be 350 

used as test input for our methods. These files contain key input files required for verifyBamID2, 351 

including variant loadings, supporting various genome builds (GRCh37 and GRCh38), and various 352 

numbers of variants.   353 
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Web Resources 354 

1000 genomes project genome mask file: 355 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/accessible_genome_mask356 

s/StrictMask/) 357 
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 413 

  414 

Table 1. Conditional probability P(bij| gi, eij) of read bij given true genotype gi and the variable rep-
resenting the event of base calling error eij, as described in (Jun et al 20122) 

True Genotype gi Base Calling Error Event eij Pr(bij = R) Pr(bij = A) Pr(bij = O)b 

gi = RRa 
eij = 0 1 0 0 

eij  = 1 0 1/3 2/3 

gi = RAa 
eij  = 0 1/2 1/2 0 

eij  = 1 1/6 1/6 2/3 

gi = AAa 
eij = 0 0 1 0 

eij  = 1 1/3 0 2/3 

a RR, RA, AA: homozygous reference, heterozygous, and homozygous non-reference genotypes 
b O: alleles other than R or A; assumes four possible alleles (bases) 
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Table 2. Distance between estimated PCA coordinates of HGDP and 1000G populations*  

Population Label 
TRACE LASER verifyBamID2 

1000G HGDP 

CHB Han-NChina 1.68 2.61 0.40 

CHS Han 1.70 1.24 1.18 

TSI Tuscan 1.52 2.16 1.81 

YRI Yoruba 2.32 1.73 0.42 

JPT Japanese 1.54 1.03 1.22 

*Distances were measured between the mean PCA coordinates across the population in 
HGDP (estimated from the array data of Wang et al.6) and the mean PCA coordinates esti-
mated from 1000 Genomes low coverage sequence data of the corresponding population, 
projected onto the same PCA coordinates using TRACE, LASER, or verifyBamID2 (assuming 
no contamination). Bold face represents the smallest distance among the three methods 
for each population.  

 
  415 
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Table 3. Average contamination estimates for 5% contaminated samples (size n=10). 

Sample Population Original Model (Fixed Allele Frequencies) Equal-Ancestry 
Model 

Unequal-Ancestry 
Model Intended Contaminating European East Asian African Pooled 

GBR GBR 4.73% 3.19% 2.67% 3.76% 4.63% 4.63% 

CHS CHS 1.90% 4.73% 1.25% 2.38% 4.73% 4.76% 

YRI YRI 1.78% 1.58% 4.44% 2.45% 4.40% 4.40% 

CHS YRI 3.33% 6.91% 2.27% 4.10% 6.71% 4.81% 

YRI CHS 2.79% 2.55% 6.29% 3.76% 5.99% 4.67% 

GBR YRI 6.13% 4.16% 3.60% 5.04% 5.90% 4.83% 

YRI GBR 2.81% 2.57% 6.38% 3.80% 6.01% 4.63% 

CHS GBR 2.87% 6.33% 1.98% 3.55% 6.13% 4.83% 

GBR CHS 5.32% 3.78% 3.05% 4.32% 5.16% 4.67% 

Average contamination estimates of in-silico contaminated samples when the true contamination 416 
rate is 5%.  Each mixing configuration (e.g. GBR+CHS) contains 10 samples that are constructed with 417 
95% reads coming from the intended sample and 5% reads from the contaminating sample. The 418 
estimated contamination rates are obtained using the original version verifyBamID by specifying 419 
prior allele frequencies as European, East Asian, African, and Pooled , respectively. Bold represents 420 
the closest estimate to the true value of 5%.  421 
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Figure Legends 422 

 423 

Figure 1. 424 

Evaluation of estimated genetic ancestry coordinates, in the absence of contamination, between 425 
TRACE, LASER, and verifyBamID2 on samples from the 1000 Genomes low coverage genome (n=500, 426 
diverse ancestry) sequence data (A,C,E) and from the InPSYght deep genome (n=500, African 427 
Americans) sequence data (B,D,F). Panels A and B show results from TRACE, C and D from LASER, and 428 
E and F from verifyBamID2 (assuming no contamination). Each point represents a sample and each 429 
color represents a population ancestry with the exception that grey point represents PCA coordinates 430 
of reference (HGDP) samples.  431 

 432 

Figure 2. 433 

Impact of DNA sample contamination on the estimation of genetic ancestry. Each point represents a 434 
sample. Each grey point represents reference (HGDP) sample and its PCA coordinates, similar to 435 
Figure 1. Each colored point represents in-silico contaminated samples across various 436 
contamination rates and populations. In panels A, C, and E, European (GBR) and East Asian (CHS) 437 
samples are contaminated with African (YRI) samples at different contamination rates (i.e. 438 
between-ancestry contamination). In panel B, D, and F, European (GBR) and East Asian (CHS) 439 
samples are contamination with another sample in the same population (i.e. within-ancestry 440 
contamination). Different colors represent different contamination rates ranging from 1% to 20%. 441 
Upper panels (A, B) show verifyBamID2 estimates without modelling contamination, middle panels 442 
(C, D) verifyBamID2 estimates under the assumption that intended and contaminating populations 443 
are identical (i.e. equal-ancestry model), lower panels (E, F) verifyBamID2 estimates under the 444 
assumption that intended and contaminating populations can be different (i.e. unequal-ancestry 445 
model). 446 

 447 

Figure 3. 448 

Comparison of different models to estimate contamination rates. Horizontal (x) axis shows intended 449 
contamination rate, vertical (y) axis shows the ratio of estimated to intended contamination rates. 450 
Each color represents different models to estimate contamination rates. EUR_AF, EAS_AF, and 451 
AFR_AF represent original verifyBamID using European, East Asian, and African allele frequencies 452 
across the continental population using the 1000 Genomes data. Pooled_AF represents the original 453 
verifyBamID using aggregated allele frequencies across all 2,504 individuals in the 1000 Genomes 454 
Project. Equal_Ancestry represents the verifyBamID2 assuming that intended and contaminating 455 
samples belong to the same population. Unequal_Ancestry represents verifyBamID2 allowing 456 
different genetic ancestry between intended and contaminating sample (recommended setting). 457 
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Each panel represents different combinations of intended (row) and contaminating (column) 458 
populations, in the order of GBR, CHS, and YRI. 459 

 460 

Figure 4 461 

Comparison of contamination estimation between using verifyBamID and verifyBamID2 on 500 462 
InPSYght samples. All subjects are African Americans. Each dot represents the pair of contamination 463 
rate estimates using different methods. The left panel shows the estimated contamination rates of 464 
the original verifyBamID with pooled allele frequencies, which is the default setting of verifyBamID in 465 
x-axis. Y-axis shows verifyBamID2 with unequal-ancestry model (y-axis). Each point represents a 466 
sequenced subject. The right panel compares the estimated contamination rates between two 467 
models (unequal-ancestry vs. equal-ancestry) of verifyBamID2 on the same dataset.   468 
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 469 

Figure 1. 470 

Evaluation of estimated genetic ancestry coordinates, in the absence of contamination, between 471 
TRACE, LASER. and verifyBamID2 on samples from the 1000 Genomes low coverage genome (n=500, 472 
diverse ancestry) sequence data (A,C,E) and from the InPSYght deep genome (n=500, African 473 
Americans) sequence data (B,D,F). Panel A and B show results from TRACE, C and D from LASER, and 474 
E and F from verifyBamID2 (assuming no contamination). Each point represents a sample, each color 475 
represents a population ancestry with the exception that grey point represents PCA coordinates of 476 
reference (HGDP) samples.  477 
  478 
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 479 
Figure 2. 480 

Impact of DNA sample contamination on the estimation of genetic ancestry. Each point represents a 481 
sample. Grey point represents reference (HGDP) sample and its PCA coordinates, similar to Figure 1. 482 
Each colored point represents in-silico contaminated samples across various contamination rates and 483 
populations. In panel A, C, E, European (GBR) and East Asian (CHS) samples are contaminated with 484 
African (YRI) samples at different contamination rates (i.e. between-ancestry contamination). In 485 
panel B, D, F, European (GBR) and East Asian (CHS) samples are contamination with another sample 486 
in the same population (i.e. within-ancestry contamination). Different colors represent different 487 
contamination rate ranging from 1% to 20%. Upper panels (A, B) show verifyBamID2 estimates 488 
without modelling contamination. Middle panels (C, D) show verifyBamID2 estimates under the 489 
assumption that intended and contaminating populations are identical (i.e. equal-ancestry model). 490 
Lower panels (E, F) show verifyBamID2 estimates under the assumption that intended and 491 
contaminating populations can be different (i.e. unequal-ancestry model). 492 
  493 
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 494 

 495 

Figure 3. 496 

Comparison of different models to estimate contamination rates. Horizontal (x) axis shows intended 497 
Contamination rate, vertical (y) axis shows the ratio of estimated to intended contamination rates. 498 
Each color represents different models to estimate contamination rates. EUR_AF, EAS_AF, AFR_AF 499 
represents old verifyBamID using European, East Asian, and African allele frequencies across the 500 
continental population using the 1000 Genomes data. Pooled_AF represents the old verifyBamID 501 
using aggregated allele frequencies across all 2,504 individuals in the 1000 Genomes Project. 502 
“Equal_Ancestry” represents the verifyBamID2 assuming that intended and contaminating samples 503 
belong to the same population. “Unequal_Ancestry” represents verifyBamID2 allowing different 504 
genetic ancestries between intended and contaminating samples (recommended setting). Each panel 505 
represents different combinations of intended (row) and contaminating (column) populations, in the 506 
order of GBR, CHS, and YRI. 507 
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 508 

 509 

Figure 4. 510 
Comparison of contamination estimation between using verifyBamID and verifyBamID2 on 500 511 
InPSYght samples. All subjects are African Americans. Each dot represents the pair of contamination 512 
rate estimates using different methods. The left panel shows the estimated contamination rates of 513 
the original verifyBamID with pooled allele frequencies, which is the default setting of verifyBamID 514 
in x-axis. Y-axis shows verifyBamID2 with unequal-ancestry model (y-axis). Each point represents a 515 
sequenced subject. The right panel compares the estimated contamination rates between two 516 
models (unequal-ancestry vs. equal-ancestry) of verifyBamID2 on the same dataset.   517 
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Supplementary Materials 518 

Supplementary Table S1: Mean estimated contamination rates of in-silico contaminated population 519 
across different intended contamination rate, populations of intended and contaminating samples, 520 
and the estimation methods.  521 
 522 

Population Intended  
% Contam. 

Equal- 
Ancestry 

(VB2) 

Unequal- 
Ancestry 

(VB2) 

Pooled 
AF 

(VB1) 

EUR 
AF 

(VB1) 

EAS 
AF 

(VB1) 

AFR 
AF 

(VB1) Intended Contam. 

GBR GBR 

1% 1.0% 1.0% 0.8% 1.0% 0.6% 0.5% 
2% 1.9% 1.9% 1.5% 2.0% 1.3% 1.1% 
5% 4.6% 4.6% 3.8% 4.7% 3.2% 2.7% 

10% 9.2% 9.2% 7.4% 9.4% 6.2% 5.2% 
20% 18.3% 18.3% 14.7% 18.5% 11.6% 9.5% 

GBR CHS 

1% 1.1% 1.0% 0.9% 1.2% 0.7% 0.6% 
2% 2.1% 1.9% 1.7% 2.2% 1.5% 1.2% 
5% 5.2% 4.7% 4.3% 5.3% 3.8% 3.1% 

10% 10.1% 9.4% 8.6% 10.4% 7.6% 5.9% 
20% 19.8% 18.7% 17.3% 19.9% 15.1% 10.9% 

GBR YRI 

1% 1.3% 1.1% 1.1% 1.4% 0.8% 0.7% 
2% 2.5% 2.0% 2.1% 2.6% 1.7% 1.4% 
5% 5.9% 4.8% 5.0% 6.1% 4.2% 3.6% 

10% 11.3% 9.5% 10.0% 11.7% 8.0% 7.3% 
20% 21.6% 19.1% 19.7% 22.0% 14.8% 14.6% 

CHS GBR 

1% 1.2% 0.9% 0.4% 0.2% 1.2% 0.1% 
2% 2.5% 1.8% 1.1% 0.8% 2.5% 0.5% 
5% 6.1% 4.8% 3.6% 2.9% 6.3% 2.0% 

10% 12.0% 9.9% 7.9% 6.6% 12.5% 4.6% 
20% 23.0% 19.8% 16.6% 14.2% 23.6% 9.4% 

CHS CHS 

1% 0.9% 0.9% 0.2% 0.1% 0.9% 0.0% 
2% 1.8% 1.8% 0.7% 0.5% 1.8% 0.2% 
5% 4.7% 4.8% 2.4% 1.9% 4.7% 1.3% 

10% 9.5% 9.5% 5.2% 4.2% 9.5% 2.9% 
20% 19.1% 19.1% 10.6% 8.4% 18.9% 5.9% 

CHS YRI 

1% 1.4% 0.9% 0.5% 0.3% 1.4% 0.1% 
2% 2.8% 1.9% 1.3% 1.0% 2.8% 0.5% 
5% 6.7% 4.8% 4.1% 3.3% 6.9% 2.3% 

10% 12.9% 9.8% 8.9% 7.2% 13.5% 5.4% 
20% 24.3% 19.6% 18.6% 14.2% 24.9% 12.2% 

YRI GBR 1% 1.3% 1.0% 0.6% 0.4% 0.4% 1.4% 
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2% 2.5% 1.9% 1.3% 0.9% 0.8% 2.6% 
5% 6.0% 4.6% 3.8% 2.8% 2.6% 6.4% 

10% 11.5% 9.3% 8.1% 6.2% 5.6% 12.5% 
20% 21.9% 18.8% 16.7% 13.0% 11.1% 23.5% 

YRI CHS 

1% 1.3% 0.9% 0.5% 0.4% 0.3% 1.3% 
2% 2.5% 1.9% 1.3% 0.9% 0.8% 2.6% 
5% 6.0% 4.7% 3.8% 2.8% 2.5% 6.3% 

10% 11.5% 9.3% 7.9% 5.9% 5.6% 12.2% 
20% 22.0% 18.8% 16.6% 12.0% 12.1% 22.9% 

YRI YRI 

1% 0.9% 0.9% 0.4% 0.2% 0.2% 0.9% 
2% 1.8% 1.8% 0.9% 0.6% 0.5% 1.8% 
5% 4.4% 4.4% 2.4% 1.8% 1.6% 4.4% 

10% 8.8% 8.8% 5.1% 3.8% 3.4% 8.9% 
20% 17.6% 17.6% 10.1% 7.3% 6.6% 17.9% 

 523 
Equal-Ancestry Model: Estimate from verifyBamID2 assuming intended and contaminating 

samples have the same genetic ancestry (in PC coordinates) 
Unequal-Ancestry Model:  Estimate from verifyBamID2 allowing intended and contaminating 

samples to have different genetic ancestry 
Pooled AF: Estimate from original verifyBamID using allele frequency across all 

1000 Genomes phase 3 samples 
EUR AF: Estimate from original verifyBamID using allele frequency across Eu-

ropean subset of 1000 Genomes phase 3 samples 
EAS AF: Estimate from original verifyBamID using allele frequency across 

East Asian subset of 1000 Genomes phase 3 samples 
AFR AF: Estimate from original verifyBamID using allele frequency across Af-

rican subset of 1000 Genomes phase 3 samples 
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Supplementary Table S2: Average of estimated contamination rates across 10 in-silico contami-
nated samples from Mexican population under different models. Results are similar as Europe-
ans, except that unequal-ancestry model slightly reduces estimated contamination rate from 
equal-ancestry model, unlike GBR. 

Intended % 
Contamination 

Equal- 
Ancestry 

(VB2) 

Unequal- 
Ancestry 

(VB2) 

Pooled 
AF 

(VB1) 

EUR 
AF 

(VB1) 

EAS 
AF 

(VB1) 

AFR 
AF 

(VB1) 

1% 1.1% 1.0% 0.8% 1.0% 0.6% 0.3% 

2% 2.1% 2.1% 1.6% 2.0% 1.4% 0.9% 

5% 4.8% 4.8% 3.9% 4.6% 3.5% 2.5% 

10% 9.3% 9.2% 7.8% 8.8% 6.8% 4.9% 

20% 18.5% 18.3% 15.4% 17.0% 13.0% 9.4% 
  525 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2018. ; https://doi.org/10.1101/466268doi: bioRxiv preprint 

https://doi.org/10.1101/466268
http://creativecommons.org/licenses/by-nc/4.0/


 35 

Supplementary Table S3:  Comparison of mean contamination rate ratio (Estimated/Intended) using different 
size of marker set (under Unequal-Ancestry Model). The Numbers in parenthesis represent standard deviation. 

Sample Population Marker 
Set 

Intended Contamination Rate 

Intended Contam. 0.01 0.02 0.05 0.1 0.2 

GBR GBR 

1K 0.57(0.15) 0.88(0.38) 0.87(0.28) 0.92(0.18) 0.95(0.12) 

10K 0.98(0.13) 0.95(0.11) 0.93(0.09) 0.91(0.08) 0.91(0.07) 

100K 1.00(0.10) 0.96(0.09) 0.93(0.08) 0.92(0.06) 0.91(0.05) 

CHS CHS 

1K 1.38(1.26) 1.09(0.63) 1.00(0.44) 0.95(0.41) 0.95(0.21) 

10K 1.08(0.48) 1.03(0.26) 1.00(0.12) 1.01(0.08) 0.96(0.06) 

100K 0.89(0.12) 0.92(0.08) 0.95(0.07) 0.95(0.05) 0.96(0.04) 

YRI YRI 

1K 1.23(0.86) 0.92(0.46) 0.98(0.30) 0.95(0.16) 0.97(0.10) 

10K 0.91(0.20) 0.87(0.17) 0.89(0.05) 0.88(0.04) 0.90(0.03) 

100K 0.94(0.08) 0.92(0.07) 0.88(0.04) 0.88(0.04) 0.88(0.03) 

CHS YRI 

1K 1.07(0.90) 1.03(0.61) 0.95(0.37) 0.97(0.22) 0.91(0.12) 

10K 1.00(0.46) 0.99(0.22) 1.02(0.12) 1.02(0.08) 0.99(0.06) 

100K 0.88(0.14) 0.93(0.10) 0.96(0.06) 0.98(0.05) 0.98(0.04) 

YRI CHS 

1K 1.00(0.49) 1.00(0.35) 0.91(0.24) 1.00(0.17) 1.01(0.10) 

10K 1.02(0.10) 1.00(0.07) 0.95(0.03) 0.94(0.03) 0.94(0.02) 

100K 0.94(0.15) 0.95(0.09) 0.93(0.05) 0.93(0.03) 0.94(0.03) 

GBR YRI 

1K 1.10(0.49) 1.10(0.28) 1.06(0.30) 0.98(0.18) 0.97(0.09) 

10K 0.94(0.23) 0.98(0.10) 0.94(0.06) 0.93(0.04) 0.94(0.03) 

100K 1.07(0.09) 1.02(0.08) 0.97(0.06) 0.95(0.05) 0.95(0.04) 

YRI GBR 

1K 1.13(0.56) 0.78(0.36) 0.84(0.19) 0.93(0.11) 0.98(0.06) 

10K 0.92(0.24) 0.89(0.15) 0.91(0.06) 0.93(0.05) 0.94(0.05) 

100K 0.95(0.15) 0.93(0.08) 0.93(0.08) 0.93(0.06) 0.94(0.06) 

CHS GBR 

1K 1.28(1.24) 1.12(0.70) 1.00(0.40) 0.95(0.21) 0.97(0.13) 

10K 1.06(0.54) 1.01(0.33) 1.00(0.14) 1.00(0.07) 0.98(0.05) 

100K 0.91(0.06) 0.92(0.07) 0.97(0.07) 0.99(0.06) 0.99(0.05) 

GBR CHS 

1K 0.89(0.47) 0.83(0.42) 0.84(0.17) 0.91(0.14) 0.92(0.13) 

10K 0.97(0.17) 0.93(0.11) 0.94(0.08) 0.94(0.06) 0.92(0.06) 

100K 1.01(0.12) 0.97(0.10) 0.93(0.08) 0.94(0.07) 0.94(0.06) 
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Supplementary Table S4.  A full table summarizing the contamination rate ratio (Estimated/Intended) across vari-527 
ous simulation parameters, populations, and estimation methods shown in Figure 3. 100K marker sets were used. 528 

Sample Population 
Method Allele Frequencies Intended 

% Contam Mean SD MSE In-
tended Contam. 

GBR GBR VB1 AFR 1% 0.52 0.11 0.242 
GBR GBR VB1 AFR 2% 0.53 0.09 0.223 
GBR GBR VB1 AFR 5% 0.53 0.06 0.221 
GBR GBR VB1 AFR 10% 0.52 0.05 0.237 
GBR GBR VB1 AFR 20% 0.48 0.04 0.276 
GBR GBR VB1 EUR 1% 1.04 0.10 0.012 
GBR GBR VB1 EUR 2% 0.98 0.09 0.007 
GBR GBR VB1 EUR 5% 0.95 0.07 0.008 
GBR GBR VB1 EUR 10% 0.94 0.06 0.008 
GBR GBR VB1 EUR 20% 0.92 0.05 0.008 
GBR GBR VB1 EAS 1% 0.65 0.11 0.136 
GBR GBR VB1 EAS 2% 0.65 0.09 0.132 
GBR GBR VB1 EAS 5% 0.64 0.06 0.135 
GBR GBR VB1 EAS 10% 0.62 0.05 0.148 
GBR GBR VB1 EAS 20% 0.58 0.05 0.179 
GBR GBR VB1 Pooled 1% 0.79 0.11 0.055 
GBR GBR VB1 Pooled 2% 0.77 0.08 0.060 
GBR GBR VB1 Pooled 5% 0.75 0.07 0.066 
GBR GBR VB1 Pooled 10% 0.74 0.06 0.069 
GBR GBR VB1 Pooled 20% 0.73 0.05 0.073 
GBR GBR VB2 ISAF (Equal-Ancestry) 1% 1.02 0.11 0.010 
GBR GBR VB2 ISAF (Equal-Ancestry) 2% 0.96 0.09 0.009 
GBR GBR VB2 ISAF (Equal -Ancestry) 5% 0.93 0.07 0.010 
GBR GBR VB2 ISAF (Equal -Ancestry) 10% 0.92 0.06 0.010 
GBR GBR VB2 ISAF (Equal -Ancestry) 20% 0.91 0.05 0.010 
GBR GBR VB2 ISAF (Unequal-Ancestry) 1% 1.00 0.10 0.009 
GBR GBR VB2 ISAF (Unequal-Ancestry) 2% 0.96 0.09 0.009 
GBR GBR VB2 ISAF (Unequal-Ancestry) 5% 0.93 0.08 0.011 
GBR GBR VB2 ISAF (Unequal-Ancestry) 10% 0.92 0.06 0.010 
GBR GBR VB2 ISAF (Unequal-Ancestry) 20% 0.91 0.05 0.010 
GBR CHS VB1 AFR 1% 0.59 0.08 0.172 
GBR CHS VB1 AFR 2% 0.60 0.06 0.162 
GBR CHS VB1 AFR 5% 0.61 0.05 0.154 
GBR CHS VB1 AFR 10% 0.59 0.04 0.169 
GBR CHS VB1 AFR 20% 0.55 0.03 0.206 
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GBR CHS VB1 EUR 1% 1.17 0.11 0.039 
GBR CHS VB1 EUR 2% 1.09 0.10 0.016 
GBR CHS VB1 EUR 5% 1.06 0.08 0.010 
GBR CHS VB1 EUR 10% 1.04 0.07 0.006 
GBR CHS VB1 EUR 20% 0.99 0.06 0.003 
GBR CHS VB1 EAS 1% 0.74 0.09 0.074 
GBR CHS VB1 EAS 2% 0.74 0.07 0.072 
GBR CHS VB1 EAS 5% 0.76 0.06 0.063 
GBR CHS VB1 EAS 10% 0.76 0.05 0.061 
GBR CHS VB1 EAS 20% 0.75 0.04 0.062 
GBR CHS VB1 Pooled 1% 0.89 0.09 0.019 
GBR CHS VB1 Pooled 2% 0.86 0.07 0.025 
GBR CHS VB1 Pooled 5% 0.86 0.06 0.022 
GBR CHS VB1 Pooled 10% 0.86 0.06 0.022 
GBR CHS VB1 Pooled 20% 0.86 0.05 0.021 
GBR CHS VB2 ISAF (Equal-Ancestry) 1% 1.13 0.11 0.028 
GBR CHS VB2 ISAF (Equal-Ancestry) 2% 1.06 0.09 0.011 
GBR CHS VB2 ISAF (Equal -Ancestry) 5% 1.03 0.08 0.007 
GBR CHS VB2 ISAF (Equal -Ancestry) 10% 1.01 0.07 0.004 
GBR CHS VB2 ISAF (Equal -Ancestry) 20% 0.99 0.06 0.004 
GBR CHS VB2 ISAF (Unequal-Ancestry) 1% 1.01 0.12 0.012 
GBR CHS VB2 ISAF (Unequal-Ancestry) 2% 0.97 0.10 0.010 
GBR CHS VB2 ISAF (Unequal-Ancestry) 5% 0.93 0.08 0.010 
GBR CHS VB2 ISAF (Unequal-Ancestry) 10% 0.94 0.07 0.008 
GBR CHS VB2 ISAF (Unequal-Ancestry) 20% 0.94 0.06 0.007 
GBR YRI VB1 AFR 1% 0.67 0.11 0.119 
GBR YRI VB1 AFR 2% 0.70 0.09 0.096 
GBR YRI VB1 AFR 5% 0.72 0.06 0.082 
GBR YRI VB1 AFR 10% 0.73 0.05 0.077 
GBR YRI VB1 AFR 20% 0.73 0.04 0.074 
GBR YRI VB1 EUR 1% 1.38 0.10 0.150 
GBR YRI VB1 EUR 2% 1.30 0.09 0.097 
GBR YRI VB1 EUR 5% 1.23 0.07 0.055 
GBR YRI VB1 EUR 10% 1.17 0.05 0.032 
GBR YRI VB1 EUR 20% 1.10 0.04 0.011 
GBR YRI VB1 EAS 1% 0.85 0.10 0.032 
GBR YRI VB1 EAS 2% 0.85 0.08 0.028 
GBR YRI VB1 EAS 5% 0.83 0.06 0.031 
GBR YRI VB1 EAS 10% 0.80 0.04 0.042 
GBR YRI VB1 EAS 20% 0.74 0.03 0.069 
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GBR YRI VB1 Pooled 1% 1.05 0.09 0.010 
GBR YRI VB1 Pooled 2% 1.03 0.08 0.007 
GBR YRI VB1 Pooled 5% 1.01 0.06 0.003 
GBR YRI VB1 Pooled 10% 1.00 0.05 0.002 
GBR YRI VB1 Pooled 20% 0.99 0.04 0.002 
GBR YRI VB2 ISAF (Equal-Ancestry) 1% 1.33 0.09 0.118 
GBR YRI VB2 ISAF (Equal-Ancestry) 2% 1.26 0.09 0.074 
GBR YRI VB2 ISAF (Equal -Ancestry) 5% 1.18 0.06 0.036 
GBR YRI VB2 ISAF (Equal -Ancestry) 10% 1.13 0.05 0.018 
GBR YRI VB2 ISAF (Equal -Ancestry) 20% 1.08 0.04 0.008 
GBR YRI VB2 ISAF (Unequal-Ancestry) 1% 1.07 0.09 0.014 
GBR YRI VB2 ISAF (Unequal-Ancestry) 2% 1.02 0.08 0.006 
GBR YRI VB2 ISAF (Unequal-Ancestry) 5% 0.97 0.06 0.004 
GBR YRI VB2 ISAF (Unequal-Ancestry) 10% 0.95 0.05 0.004 
GBR YRI VB2 ISAF (Unequal-Ancestry) 20% 0.95 0.04 0.004 
CHS GBR VB1 AFR 1% 0.07 0.04 0.868 
CHS GBR VB1 AFR 2% 0.23 0.05 0.597 
CHS GBR VB1 AFR 5% 0.40 0.04 0.366 
CHS GBR VB1 AFR 10% 0.46 0.03 0.290 
CHS GBR VB1 AFR 20% 0.47 0.02 0.282 
CHS GBR VB1 EUR 1% 0.21 0.05 0.625 
CHS GBR VB1 EUR 2% 0.40 0.05 0.364 
CHS GBR VB1 EUR 5% 0.57 0.05 0.184 
CHS GBR VB1 EUR 10% 0.66 0.04 0.119 
CHS GBR VB1 EUR 20% 0.71 0.04 0.087 
CHS GBR VB1 EAS 1% 1.24 0.11 0.069 
CHS GBR VB1 EAS 2% 1.26 0.10 0.075 
CHS GBR VB1 EAS 5% 1.27 0.08 0.077 
CHS GBR VB1 EAS 10% 1.25 0.06 0.066 
CHS GBR VB1 EAS 20% 1.18 0.05 0.035 
CHS GBR VB1 Pooled 1% 0.36 0.06 0.409 
CHS GBR VB1 Pooled 2% 0.55 0.06 0.207 
CHS GBR VB1 Pooled 5% 0.71 0.05 0.086 
CHS GBR VB1 Pooled 10% 0.79 0.05 0.047 
CHS GBR VB1 Pooled 20% 0.83 0.04 0.031 
CHS GBR VB2 ISAF (Equal-Ancestry) 1% 1.22 0.11 0.060 
CHS GBR VB2 ISAF (Equal-Ancestry) 2% 1.23 0.10 0.060 
CHS GBR VB2 ISAF (Equal -Ancestry) 5% 1.23 0.08 0.057 
CHS GBR VB2 ISAF (Equal -Ancestry) 10% 1.20 0.06 0.044 
CHS GBR VB2 ISAF (Equal -Ancestry) 20% 1.15 0.05 0.025 
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CHS GBR VB2 ISAF (Unequal-Ancestry) 1% 0.91 0.06 0.011 
CHS GBR VB2 ISAF (Unequal-Ancestry) 2% 0.92 0.07 0.010 
CHS GBR VB2 ISAF (Unequal-Ancestry) 5% 0.97 0.07 0.005 
CHS GBR VB2 ISAF (Unequal-Ancestry) 10% 0.99 0.06 0.004 
CHS GBR VB2 ISAF (Unequal-Ancestry) 20% 0.99 0.05 0.003 
CHS CHS VB1 AFR 1% 0.02 0.03 0.956 
CHS CHS VB1 AFR 2% 0.12 0.05 0.782 
CHS CHS VB1 AFR 5% 0.25 0.03 0.562 
CHS CHS VB1 AFR 10% 0.29 0.02 0.500 
CHS CHS VB1 AFR 20% 0.29 0.01 0.500 
CHS CHS VB1 EUR 1% 0.10 0.07 0.815 
CHS CHS VB1 EUR 2% 0.24 0.05 0.573 
CHS CHS VB1 EUR 5% 0.38 0.03 0.385 
CHS CHS VB1 EUR 10% 0.42 0.02 0.338 
CHS CHS VB1 EUR 20% 0.42 0.02 0.337 
CHS CHS VB1 EAS 1% 0.90 0.10 0.020 
CHS CHS VB1 EAS 2% 0.92 0.07 0.011 
CHS CHS VB1 EAS 5% 0.95 0.06 0.006 
CHS CHS VB1 EAS 10% 0.95 0.04 0.004 
CHS CHS VB1 EAS 20% 0.94 0.03 0.004 
CHS CHS VB1 Pooled 1% 0.19 0.08 0.659 
CHS CHS VB1 Pooled 2% 0.34 0.05 0.435 
CHS CHS VB1 Pooled 5% 0.48 0.04 0.275 
CHS CHS VB1 Pooled 10% 0.52 0.03 0.233 
CHS CHS VB1 Pooled 20% 0.53 0.02 0.222 
CHS CHS VB2 ISAF (Equal-Ancestry) 1% 0.90 0.11 0.021 
CHS CHS VB2 ISAF (Equal-Ancestry) 2% 0.91 0.07 0.012 
CHS CHS VB2 ISAF (Equal -Ancestry) 5% 0.95 0.06 0.006 
CHS CHS VB2 ISAF (Equal -Ancestry) 10% 0.95 0.04 0.004 
CHS CHS VB2 ISAF (Equal -Ancestry) 20% 0.95 0.03 0.003 
CHS CHS VB2 ISAF (Unequal-Ancestry) 1% 0.89 0.12 0.024 
CHS CHS VB2 ISAF (Unequal-Ancestry) 2% 0.92 0.08 0.012 
CHS CHS VB2 ISAF (Unequal-Ancestry) 5% 0.95 0.07 0.006 
CHS CHS VB2 ISAF (Unequal-Ancestry) 10% 0.95 0.05 0.004 
CHS CHS VB2 ISAF (Unequal-Ancestry) 20% 0.96 0.04 0.003 
CHS YRI VB1 AFR 1% 0.09 0.09 0.828 
CHS YRI VB1 AFR 2% 0.27 0.08 0.543 
CHS YRI VB1 AFR 5% 0.45 0.05 0.302 
CHS YRI VB1 AFR 10% 0.54 0.04 0.210 
CHS YRI VB1 AFR 20% 0.61 0.03 0.155 
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CHS YRI VB1 EUR 1% 0.31 0.11 0.492 
CHS YRI VB1 EUR 2% 0.51 0.08 0.250 
CHS YRI VB1 EUR 5% 0.67 0.05 0.114 
CHS YRI VB1 EUR 10% 0.72 0.04 0.083 
CHS YRI VB1 EUR 20% 0.71 0.03 0.084 
CHS YRI VB1 EAS 1% 1.38 0.14 0.161 
CHS YRI VB1 EAS 2% 1.39 0.10 0.163 
CHS YRI VB1 EAS 5% 1.38 0.07 0.151 
CHS YRI VB1 EAS 10% 1.35 0.06 0.123 
CHS YRI VB1 EAS 20% 1.24 0.04 0.061 
CHS YRI VB1 Pooled 1% 0.47 0.13 0.298 
CHS YRI VB1 Pooled 2% 0.66 0.09 0.123 
CHS YRI VB1 Pooled 5% 0.82 0.06 0.036 
CHS YRI VB1 Pooled 10% 0.89 0.05 0.015 
CHS YRI VB1 Pooled 20% 0.93 0.04 0.007 
CHS YRI VB2 ISAF (Equal-Ancestry) 1% 1.37 0.14 0.157 
CHS YRI VB2 ISAF (Equal-Ancestry) 2% 1.38 0.11 0.154 
CHS YRI VB2 ISAF (Equal -Ancestry) 5% 1.34 0.07 0.122 
CHS YRI VB2 ISAF (Equal -Ancestry) 10% 1.29 0.06 0.085 
CHS YRI VB2 ISAF (Equal -Ancestry) 20% 1.22 0.05 0.048 
CHS YRI VB2 ISAF (Unequal-Ancestry) 1% 0.88 0.14 0.033 
CHS YRI VB2 ISAF (Unequal-Ancestry) 2% 0.93 0.10 0.014 
CHS YRI VB2 ISAF (Unequal-Ancestry) 5% 0.96 0.06 0.005 
CHS YRI VB2 ISAF (Unequal-Ancestry) 10% 0.98 0.05 0.002 
CHS YRI VB2 ISAF (Unequal-Ancestry) 20% 0.98 0.04 0.002 
YRI GBR VB1 AFR 1% 1.43 0.23 0.236 
YRI GBR VB1 AFR 2% 1.31 0.14 0.113 
YRI GBR VB1 AFR 5% 1.28 0.08 0.081 
YRI GBR VB1 AFR 10% 1.25 0.07 0.065 
YRI GBR VB1 AFR 20% 1.17 0.06 0.034 
YRI GBR VB1 EUR 1% 0.36 0.22 0.453 
YRI GBR VB1 EUR 2% 0.46 0.19 0.329 
YRI GBR VB1 EUR 5% 0.56 0.11 0.201 
YRI GBR VB1 EUR 10% 0.62 0.07 0.153 
YRI GBR VB1 EUR 20% 0.65 0.05 0.124 
YRI GBR VB1 EAS 1% 0.32 0.20 0.504 
YRI GBR VB1 EAS 2% 0.41 0.18 0.380 
YRI GBR VB1 EAS 5% 0.52 0.11 0.245 
YRI GBR VB1 EAS 10% 0.55 0.07 0.204 
YRI GBR VB1 EAS 20% 0.56 0.04 0.198 
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YRI GBR VB1 Pooled 1% 0.57 0.26 0.248 
YRI GBR VB1 Pooled 2% 0.67 0.17 0.138 
YRI GBR VB1 Pooled 5% 0.76 0.10 0.066 
YRI GBR VB1 Pooled 10% 0.80 0.07 0.043 
YRI GBR VB1 Pooled 20% 0.83 0.05 0.030 
YRI GBR VB2 ISAF (Equal-Ancestry) 1% 1.30 0.15 0.107 
YRI GBR VB2 ISAF (Equal-Ancestry) 2% 1.25 0.11 0.072 
YRI GBR VB2 ISAF (Equal -Ancestry) 5% 1.20 0.09 0.048 
YRI GBR VB2 ISAF (Equal -Ancestry) 10% 1.15 0.07 0.028 
YRI GBR VB2 ISAF (Equal -Ancestry) 20% 1.10 0.07 0.013 
YRI GBR VB2 ISAF (Unequal-Ancestry) 1% 0.95 0.15 0.021 
YRI GBR VB2 ISAF (Unequal-Ancestry) 2% 0.93 0.08 0.012 
YRI GBR VB2 ISAF (Unequal-Ancestry) 5% 0.93 0.08 0.011 
YRI GBR VB2 ISAF (Unequal-Ancestry) 10% 0.93 0.06 0.008 
YRI GBR VB2 ISAF (Unequal-Ancestry) 20% 0.94 0.06 0.006 
YRI CHS VB1 AFR 1% 1.32 0.13 0.120 
YRI CHS VB1 AFR 2% 1.30 0.11 0.098 
YRI CHS VB1 AFR 5% 1.26 0.07 0.071 
YRI CHS VB1 AFR 10% 1.22 0.05 0.049 
YRI CHS VB1 AFR 20% 1.14 0.04 0.022 
YRI CHS VB1 EUR 1% 0.35 0.20 0.455 
YRI CHS VB1 EUR 2% 0.46 0.18 0.319 
YRI CHS VB1 EUR 5% 0.56 0.10 0.204 
YRI CHS VB1 EUR 10% 0.59 0.06 0.168 
YRI CHS VB1 EUR 20% 0.60 0.03 0.159 
YRI CHS VB1 EAS 1% 0.29 0.17 0.528 
YRI CHS VB1 EAS 2% 0.40 0.18 0.395 
YRI CHS VB1 EAS 5% 0.51 0.11 0.252 
YRI CHS VB1 EAS 10% 0.56 0.06 0.194 
YRI CHS VB1 EAS 20% 0.61 0.03 0.157 
YRI CHS VB1 Pooled 1% 0.55 0.24 0.259 
YRI CHS VB1 Pooled 2% 0.66 0.16 0.136 
YRI CHS VB1 Pooled 5% 0.75 0.09 0.068 
YRI CHS VB1 Pooled 10% 0.79 0.04 0.044 
YRI CHS VB1 Pooled 20% 0.83 0.02 0.030 
YRI CHS VB2 ISAF (Equal-Ancestry) 1% 1.29 0.13 0.098 
YRI CHS VB2 ISAF (Equal-Ancestry) 2% 1.25 0.11 0.074 
YRI CHS VB2 ISAF (Equal -Ancestry) 5% 1.20 0.07 0.043 
YRI CHS VB2 ISAF (Equal -Ancestry) 10% 1.15 0.04 0.023 
YRI CHS VB2 ISAF (Equal -Ancestry) 20% 1.10 0.04 0.011 
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YRI CHS VB2 ISAF (Unequal-Ancestry) 1% 0.94 0.15 0.023 
YRI CHS VB2 ISAF (Unequal-Ancestry) 2% 0.95 0.09 0.010 
YRI CHS VB2 ISAF (Unequal-Ancestry) 5% 0.93 0.05 0.007 
YRI CHS VB2 ISAF (Unequal-Ancestry) 10% 0.93 0.03 0.005 
YRI CHS VB2 ISAF (Unequal-Ancestry) 20% 0.94 0.03 0.004 
YRI YRI VB1 AFR 1% 0.95 0.09 0.010 
YRI YRI VB1 AFR 2% 0.92 0.06 0.009 
YRI YRI VB1 AFR 5% 0.89 0.05 0.014 
YRI YRI VB1 AFR 10% 0.89 0.04 0.013 
YRI YRI VB1 AFR 20% 0.89 0.03 0.012 
YRI YRI VB1 EUR 1% 0.22 0.13 0.619 
YRI YRI VB1 EUR 2% 0.29 0.14 0.518 
YRI YRI VB1 EUR 5% 0.36 0.09 0.423 
YRI YRI VB1 EUR 10% 0.38 0.06 0.391 
YRI YRI VB1 EUR 20% 0.36 0.03 0.405 
YRI YRI VB1 EAS 1% 0.18 0.11 0.680 
YRI YRI VB1 EAS 2% 0.25 0.13 0.575 
YRI YRI VB1 EAS 5% 0.32 0.09 0.474 
YRI YRI VB1 EAS 10% 0.34 0.06 0.438 
YRI YRI VB1 EAS 20% 0.33 0.03 0.452 
YRI YRI VB1 Pooled 1% 0.36 0.18 0.433 
YRI YRI VB1 Pooled 2% 0.44 0.14 0.333 
YRI YRI VB1 Pooled 5% 0.49 0.08 0.267 
YRI YRI VB1 Pooled 10% 0.51 0.05 0.242 
YRI YRI VB1 Pooled 20% 0.51 0.03 0.245 
YRI YRI VB2 ISAF (Equal-Ancestry) 1% 0.94 0.10 0.012 
YRI YRI VB2 ISAF (Equal-Ancestry) 2% 0.92 0.06 0.011 
YRI YRI VB2 ISAF (Equal -Ancestry) 5% 0.88 0.04 0.016 
YRI YRI VB2 ISAF (Equal -Ancestry) 10% 0.88 0.04 0.015 
YRI YRI VB2 ISAF (Equal -Ancestry) 20% 0.88 0.03 0.015 
YRI YRI VB2 ISAF (Unequal-Ancestry) 1% 0.94 0.08 0.010 
YRI YRI VB2 ISAF (Unequal-Ancestry) 2% 0.92 0.07 0.011 
YRI YRI VB2 ISAF (Unequal-Ancestry) 5% 0.88 0.04 0.016 
YRI YRI VB2 ISAF (Unequal-Ancestry) 10% 0.88 0.04 0.015 
YRI YRI VB2 ISAF (Unequal-Ancestry) 20% 0.88 0.03 0.015 
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