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Abstract 

Continent-wide bird counts by community volunteers provide valuable information about the 

conservation needs of many bird species. The statistical modeling techniques commonly used to 

analyze these counts provide robust long-term trend estimates from heterogeneous community 

science data at regional, national, and continental scales. Here we present a novel modeling 

framework that increases the spatial resolution of trend estimates, and reduces the computational 

burden of trend estimation, each by an order of magnitude. We demonstrate the approach with 

data for the American Robin (Turdus migratorius) from Audubon Christmas Bird Counts 

conducted between 1966 and 2017, and show that aggregate regional trend estimates from the 

proposed method align well with those from the current standard method. Thus, it appears that 

the proposed technique can provide reasonable large-scale trend estimates for users concerned 

with general patterns, while also providing higher resolution estimates for others examining 

correlates of abundance trends at finer spatial scales. 
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Introduction 

Volunteers with the Audubon Christmas Bird Count (CBC) have been counting wintering birds 

across North America every year for the last 118 years (Dunn et al. 2005, Soykan et al. 2016).  

Population trends derived from CBC data, along with those derived from other large-scale 

monitoring programs like the North American Breeding Bird Survey (BBS, Robbins et al. 1989, 

Sauer et al. 2017), provide valuable information for understanding the conservation needs of 

North American bird species (Dickinson et al. 2010, Hochachka et al. 2012, Rosenberg et al. 

2016). 

The current, standard approach for generating trends from CBC data (Link et al. 2006, 

Soykan et al. 2016) was derived from methods originally developed for BBS data (Link and 

Sauer 2002, Sauer and Link 2011).  The general approach is to assign counts in Canada and the 

US to one of up to 169 polygons or spatial strata, which are intersections of US states, Canadian 

provinces, and Bird Conservation Regions (BCR, Sauer et al. 2003).  Then, treating each stratum 

as independent, a non-linear function is used to correct for the effect of observer effort on counts, 

and model the residual as a function of count circle, stratum, and year (Link et al. 2006, Soykan 

et al. 2016).  These parameter estimates are used to derive a relative abundance index per stratum 

and year, and those indices are used to compute annual percent change per stratum across 

defined time periods (Link and Sauer 2002, Sauer and Link 2011). 

The traditional CBC analysis provides robust long-term trend estimates from 

heterogeneous community science data across large spatial scales.  By pooling count circles per 

stratum, this approach deals with the issue of count locations (here, CBC circles) haphazardly 

becoming active or inactive over the time series (Sauer and Link 2011, Soykan et al. 2016).  

Additionally, pooling produces a sufficiently large sample of counts to generate a reasonably 
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robust count-effort correction function (Link and Sauer 1999), which is critical given the wide 

variation in count effort among count circles (Bock and Root 1981, Dunn et al. 2005).  This 

approach produces a relative abundance index per year and stratum, which can be used to 

explore variation around long-term, log-linear trends, and can be summed across larger 

hierarchically nested strata, such as states, provinces, or BCRs, and used to calculate change in 

relative abundance at larger spatial scales.  Producing annual abundance indices also permits 

summarizing abundance change between any desired pair of time points. Finally, the simplicity 

of the standard model enables a flexible and robust computational process, suitable for analysis 

of hundreds of species that vary enormously in their ubiquity, abundance, and population 

dynamics. 

While the current approach produces trends that are useful for understanding population 

status of birds at regional or continental scales, the approach has a number of computational and 

spatial limitations. As implemented, it is a computationally intensive process, especially for 

wide-ranging species. This is due to the use of Markov chain Monte Carlo (MCMC) to estimate 

model parameters for relative abundance, and processing large MCMC chains to scale relative 

abundance to larger aggregate units.  Additionally, their coarse resolution limits their ability to 

provide inference about local variation and processes. While trends can be scaled up to larger 

spatial units, they cannot be scaled down to smaller ones.  The analytical stratum is the finest 

level of resolution, which limits the extent to which variation in trends can be attributed to 

processes occurring at finer spatial scales (Thogmartin et al. 2004, Bled et al. 2013).  

Moreover, the current approach does not take full account or advantage of spatial 

relationships among counts.  Modeling this structure would facilitate borrowing information 

across spatial boundaries, allowing more robust trend estimates in places where data are sparse 
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(Waller and Gotway 2004, Blangiardo et al. 2013, Banerjee et al. 2014).  Indeed, borrowing of 

information could possibly allow trends to be estimated at spatial scales that are finer than the 

spatial strata currently used (Thogmartin et al. 2004, Bled et al. 2013). 

Previous work by Thogmartin et al. (2004), Bled et al. (2013), and Smith et al. (2015) 

offered spatially-explicit variations of the standard trend analysis approach for community 

science data.  These works were focused on analysis of BBS data, but their approaches are easily 

related to analysis of CBC data.  Instead of using the standard strata described above (Smith et 

al. 2015), Thogmartin et al. (2004) assigned count sites to irregular polygons, created by 

tessellation of BBS route locations.  Bled et al. (2013) assigned routes to cells on a regular grid, 

with one-degree latitude and longitude spacing.  All three studies utilized spatially-structured 

random intercepts for relative abundance per polygon, grid cell, or stratum.  Thogmartin et al. 

(2004) utilized a fixed effect of year per polygon, but that effect did not incorporate spatial 

structure.  Bled et al. (2013) and Smith et al. (2015) estimated relative abundances per year, and 

then trends were generated as derived parameters, as done in the standard analysis. 

Here, we present a different approach for calculating temporal trends in relative 

abundance, one that takes advantage of the considerable spatial structure in CBC data.  This 

approach borrows components from previous ones, incorporates new components that prioritize 

robust trend estimation at finer spatial scales, and employs a simplified and computationally 

efficient workflow.  Similar to Bled et al. (2013), we assigned CBC count sites to cells on a 

uniform grid that covered North America.  Like Thogmartin et al. (2004), temporal trends were 

explicit components of the spatial model.  In contrast to previous work, effort and year effects 

were modeled as random slopes with spatial structure, following a spatially varying coefficient 

(SVC) approach (Gelfand et al. 2003, Finley 2011, Congdon 2014).  Finally, unlike prior studies 
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using MCMC, we used integrated nested Laplace approximation (INLA) to estimate Bayesian 

posteriors for model parameters (Lindgren and Rue 2015, Rue et al. 2017), which led to a 

dramatic decrease in computing time.  The three goals of this report were to (i) describe an SVC 

approach to calculating trends in CBC data, (ii) employ the approach using data for the American 

Robin (Turdus migratorius), and (iii) compare trend results derived from the SVC approach to 

aggregate results derived from standard methods. 

 

Methods 

Statistical model 

We modeled CBC counts for a given species, 𝑦𝑖,𝑘,𝑡, for grid cell i encompassing count circle k 

during year t, as a random variable from a negative binomial distribution. Expected values for 

counts per grid cell, 𝜇𝑖,𝑡, were assumed to be a function of spatially-structured grid-cell, count-

effort, and year effects, plus unstructured variation among count circles. The linear predictor for 

𝜇𝑖,𝑡 took the form: 

 

log(𝜇𝑖,𝑡) =  𝛼𝑖 + 𝜖𝑖 log(𝐸𝑖,𝑘,𝑡) + 𝜏𝑖𝑇𝑖,𝑘,𝑡 +  𝜅𝑘.      (Eq. 1) 

 

Parameters 𝛼𝑖 were modelled as cell-specific random intercepts with an intrinsic 

conditional autoregressive (CAR) structure (Besag et al. 1991).  Given this structure, 𝛼𝑖 values 

came from a normal distribution, with a conditional mean related to the average of adjacent cells, 

and with conditional variance proportional to the variance across adjacent cells and inversely 

proportional to the number of adjacent cells. Spatial structure was incorporated into 𝛼𝑖 to allow 

for information about relative abundance to be shared across neighboring cells. 
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Parameters 𝜖𝑖 were modeled as spatially-structured, cell-specific, random slope 

coefficients for the effort effect.  These spatially varying coefficients (Gelfand et al. 2003, 

Banerjee et al. 2014, Congdon 2014) were also modelled with a CAR structure (Besag et al. 

1991).  Slopes were drawn from a normal distribution with a conditional mean related to the 

average of adjacent cells, and with conditional variance proportional to the variance across 

adjacent cells and inversely proportional to the number of adjacent cells.  Spatial structure was 

incorporated into 𝜖𝑖 to allow for information about the effort effect to be shared across 

neighboring cells. Effort was represented by 𝐸𝑖,𝑗,𝑘, the number of party hours expended during a 

count, where a party hour was the count effort of one party of unspecified size for one hour. 

Pairing log-transformed counts with log-transformed effort in the linear predictor yielded a 

power function for effort correction, a flexible mathematical form that accommodated a 

decreasing, linear, or increasing impact of effort on expected counts (Butcher and McCulloch 

1988, Link and Sauer 1999). 

Parameters 𝜏𝑖 were modeled as spatially-structured, cell-specific, random slope 

coefficients for the year effect.  These spatially varying coefficients (Gelfand et al. 2003, 

Banerjee et al. 2014, Congdon 2014) were also modeled with CAR structure (Besag et al. 1991), 

where values came from a normal distribution, with conditional means and variances as 

described above. Spatial structure was incorporated into 𝜏𝑖 to allow for information about the 

year effect to be shared across neighboring cells. Year, represented by T, was transformed before 

analysis such that max(T) = 0, and each preceding year took an increasingly-negative integer 

value. Given the scaling of effort and year variables, exp(𝛼𝑖) could be interpreted as a cell-

specific expected count given one party hour of effort during the final year in the time series. 
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The final term in the model, 𝜅𝑘, was an exchangeable random effect that accounted for 

variation in relative abundance among circles, possibly due to differences in habitat conditions or 

observer experience (Soykan et al. 2016).  Note that the model did not include a normally-

distributed, observation-level random effect to deal with overdispersed Poisson counts, i.e.,  

𝑦 | 𝜀 ~ Poisson(𝜇𝜀) and 𝜀 ~ normal(𝜇, 𝜎), as is done for the standard approach (Sauer and Link 

2011, Soykan et al. 2016).  Rather, we used a negative binomial count distribution for y, i.e., 

𝑦 | 𝜀 ~ Poisson(𝜇𝜀) and 𝜀 ~ gamma(𝜙−1, 𝜙−1) (Linden and Mantyniemi 2011).  These two 

approaches are expected to yield similar outcomes.  However, as implemented in R-INLA, the 

latter approach returns a dispersion estimate while foregoing estimation of individual observation 

effects, which reduces computing time and the size of posterior samples. 

 

Case study 

We developed a case study using data for the American Robin, from Audubon CBCs conducted 

across the continental US and Canada from 1966 through 2017, to demonstrate the SVC 

modeling approach and compare results with those using the standard approach. Before 

modeling the data, extreme outliers (> 3 SD from the mean, after log transformation) in counts 

and effort were removed. After filtering, there were 78,140 counts from 3,195 count circles over 

52 years, for modeling. 

Locations of the 3,195 unique count circles were mapped using the North American 

Albers Equal Area Conic projection (EPSG 102008, https://epsg.io/102008) and assigned to 880 

cells on a grid divided along 100 km increments in latitude and longitude (Fig. 1A). Grid cells 

formed a continuous lattice within a non-convex polygon created using circle locations. A 

continuous uniform lattice was used to improve qualities of the neighborhood structure used in 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2018. ; https://doi.org/10.1101/466425doi: bioRxiv preprint 

https://doi.org/10.1101/466425
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

CAR modeling (Bled et al. 2013). The number of count circles per grid cell varied from 0 to 20, 

and averaged 2.43 (Fig. 1B). The number of neighbors for a given grid cell ranged from 1 to 8, 

and averaged 7.48.  Note that grid cells with zero counts were retained during model estimation 

to preserve the spatial relationships between counts.  However, before analyzing resulting trend 

estimates, cells with no observed counts were removed from the dataset, as we were not 

interested in interpolated trends for grid cells without CBC sites. 

 

Computing 

The SVC model described above was analyzed in a Bayesian framework using the R-INLA 

package (Rue et al. 2017) for R statistical computing software (R Core Team 2016). Precision 

parameters for 𝛼𝑖, 𝜖𝑖, and 𝜏𝑖 random effects were assigned penalized complexity (PC) priors, 

with prior parameter values 𝑈𝑝𝑐 = 1 and 𝑎𝑝𝑐 = 0.01 (Simpson et al. 2017).  Precision for the 

zero-centered, exchangeable, random circle effect, 𝜅𝑘, was also assigned a PC prior with prior 

parameter values 𝑈𝑝𝑐 = 1 and 𝑎𝑝𝑐 = 0.01 (Simpson et al. 2017).  The overdispersion term, 𝜙, 

was assigned a PC prior with prior parameter value l = 7.  Readers are referred to Simpson et al. 

(2017) for the details of, and rationale behind, PC priors, as well as the default structures and 

parameter values used in the R-INLA package.  

Along with parameter estimates, R-INLA has the capacity to return from model analysis 

two values to evaluate individual model fit (Czado et al. 2009) and compare different models to 

one another (Gneiting and Raftery 2007, Link et al. 2017): cross-validation probability integral 

transform (PIT, Dawid 1984) and conditional predictive ordinate (CPO, Pettit 1990).  For this 

application, we were not comparing multiple models.  However, we extracted PIT values and 
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visually inspected their histogram, as an approximate uniform distribution is expected for a 

model that fits the data reasonable well (Czado et al. 2009, Held et al. 2010). 

Following model analysis, posterior medians and symmetric 95% credible intervals were 

computed per cell for 𝛼𝑖, 𝜖𝑖, and 𝜏𝑖.  Credible interval widths, representing estimate uncertainty, 

were computed by subtracting the lower credible limit from the upper credible limit per cell.  

Posterior summaries were then mapped to visualize spatial variation in 2017 abundance indices, 

effort effects, and 1966 through 2017 relative-abundance trends.  

It is common, following CBC and BBS analyses, to aggregate trend information to larger 

scales that might be of interest to resource managers designing and implementing policies across 

states, provinces, BCRs, or nations (Sauer et al. 2003, Sauer and Link 2011, Soykan et al. 2016). 

After analysis of the SVC model for American Robin, we aggregated 100 km results to the BCR 

level in order to compare them to those produced using standard CBC analysis methods (Soykan 

et al. 2016).  SVC trends were aggregated for each BCR by averaging trends for all equal-area 

grid cells where the cell centroid fell within the BCR. We evaluated the uncertainty around SVC 

trend estimates by comparing credible interval widths per cell to those calculated for a BCR 

using the standard approach.  Aggregate trend estimates, along with their aggregate uncertainties, 

could also have be computed with R-INLA using functions for creating linear combinations. We 

did not employ these tools here because our main focus was on fine scale trends. 

 

Results 

Model analysis using R-INLA took approximately 10 minutes to complete.  Inspection of the 

PIT histogram indicate satisfactory model fit.  The median of posterior medians for 𝛼𝑖 indicated 

that, on average, 4.28 robins were counted per party hour in 2017, but that number varied by 
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several orders of magnitude across the species range, from 0.01 to 73.50.  A map of posterior 

median values illustrated that the species was most abundant in regions the central part of their 

geographic range, and was least abundant along the northern and southern margins of their range 

(Fig. 2A). 

Posterior median values for 𝜖𝑖, the power law exponent for the relationship between 

effort and counts, varied from 0.28 to 1.44, with a median value of 0.81.  The 95% credible 

intervals for 𝜖𝑖 indicated that 80% of estimates were not significantly different from 1, while all 

were significantly greater than 0.  Estimates not significantly different from 1 indicated a 

positive linear relationship between effort and counts.  Values significantly greater than 0 and 

less than 1 also indicated a positive relationship between effort and counts, but one with 

diminishing returns for additional count effort.  A map of posterior median 𝜖𝑖 values highlighted 

the spatial structure in the effort effect (Fig. 2B).  Locations with posterior medians well below 1 

were frequently locations with relatively low abundance indices (Fig. 2A), suggesting that the 

majority of robins in a count circle would be counted with relatively low effort.  Locations with 

posterior medians closer to 1 were frequently locations with relatively high abundance indices 

(Fig. 2A), suggesting an endless supply of robins for CBC volunteers to count.  The two 

parameters, 𝛼𝑖 and 𝜖𝑖, were significantly correlated across space, with a rank correlation 

coefficient of 0.26. 

Posterior median values for 𝜏𝑖, the temporal trend from 1966 through 2017, when 

transformed to annual percent change, varied from -11.80 to 13.63, with a median value of 2.63.  

The 95% credible intervals for 𝜏𝑖 indicated that 8% of estimates were significantly lower than 0, 

while 44% were significantly greater than 0.  A map of posterior median 𝜏𝑖 values (Fig. 2C) 

showed that trends in relative abundance had strong spatial structure. Credible intervals for 𝜏𝑖 
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values were used to illustrate where trends were significantly negative or positive (Fig. 2D), 

showing that relative abundance during winter has generally decreased in the southern parts of 

their range and increased in the northern parts of their range.  The parameters 𝛼𝑖 and 𝜏𝑖 were 

significantly correlated across space, with a rank correlation coefficient of -0.16, indicating that 

the strongest trends were occurring at the margins of the geographic range where relative 

abundance was lowest. 

The posterior median estimate for 𝜙, the dispersion parameter, was exp[−log (0.55)] =

1.83, highlighting considerable overdispersion in American Robin counts relative to a Poisson 

distribution.  Credible intervals for precision estimates for the random effects showed that all 

were important for explaining variation in the count data.  When precision values were converted 

to a standard deviation scale, the random effects were ranked 𝛼𝑖 (SD = 1.58), 𝜅𝑘 (1.05), 𝜖𝑖 (0.25), 

and 𝜏𝑖 (0.04), in terms of the amount of variation explained in counts. 

A common practice following standard CBC and BBS analysis is to aggregate trends 

from the analytical stratum level up to larger scales, such as the BCR level.  Figure 3 shows the 

median of posterior median SVC trends across cells per BCR (Fig. 3A), along with the posterior 

median trend for each BCR from the standard analysis (Fig. 3B).  Side-by-side visual 

comparison of these maps showed that aggregate trends were similar, regardless of method.  The 

SVC approach gave a median trend of 2.11 across all BCRs, while the posterior median trend for 

the standard approach was 1.95 across all BCRs.  Within BCRs, trend direction was consistent 

across the two methods in 28 of 32 BCRs.  The rank correlation between BCR trends generated 

by the two methods was 0.88.  Regarding differences, trends derived from the SVC approach 

changed more smoothly across the continent, as would be expected using a spatial statistical 

model.  Also, the range of posterior median SVC trends (-4.58, 9.16) was slightly less than that 
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for standard trends (-7.96, 14.26), especially near geographic range boundaries, as would be 

expected given the sharing of information across space.   

We also explored how the precision of trend estimates compared across the two 

approaches. Figure 4 compares the credible interval widths for SVC trends per grid cell (Fig. 4A) 

with those from the standard approach for aggregate BCR estimates (Fig. 4B). When compared 

to the standard approach, some SVC grid cells within a BCR, ones in information rich 

neighborhoods (Fig.1A), had SVC trend estimates with remarkably narrow confidence intervals 

(Fig. 4C, SVC minimum). Other grid cells, ones in information poor neighborhoods (Fig.1A), 

had trend estimates with relatively broad confidence intervals (Fig. 4C, SVC maximum). On 

average, however, interval widths of estimates per BCR were similar, regardless of method, if 

not slightly wider using the SVC approach (Fig. 4C, SVC median).  

 

Discussion 

The goals of this analysis were to (i) describe a different approach for calculating trends from 

Audubon Christmas Bird Counts, (ii) demonstrate the approach using long-term count data for 

the American Robin, and (iii) qualitatively compare the trend results derived from the SVC 

approach to those derived using standard methods.  We showed that the SVC approach generates 

trends at a finer spatial scale than the standard method, with comparable precision.  Further, the 

SVC approach produced aggregate trends that were generally similar in direction, magnitude, 

and precision to those generated using standard methods.   

To put resolution gains into context, consider that a CBC circle has a radius of 

approximately 12 km and an area of 452 km2.  A 100 km grid cell, covering 10,000 km2, is 

approximate 22 times larger than a CBC circle.  In comparison, the average analytical stratum 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2018. ; https://doi.org/10.1101/466425doi: bioRxiv preprint 

https://doi.org/10.1101/466425
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

has an area of 104,378 km2, approximately 231 times the area of a CBC circle.  Thus, the SVC 

approach brought an order of magnitude increase in spatial resolution when compared to the 

standard approach. This increased resolution is expected to facilitate finer scaled investigations 

into the drivers of winter bird trends (Thogmartin et al. 2004, Bled et al. 2013, Smith et al. 2015). 

Estimating trends at relatively high resolution was made possible by adopting spatial 

statistical techniques designed to borrow information across neighboring regions (Thogmartin et 

al. 2004, Bled et al. 2013, Smith et al. 2015).  Employing spatial techniques also had 

implications for uncertainty in trend estimates. In the standard analysis, the uncertainty in a trend 

estimate depended upon the variation in trends across the circles within a stratum, and the 

number of circles in a stratum. In the SVC analysis, uncertainty depended upon those same two 

factors, but also depended upon those characteristics in the neighborhood of a grid cell. The 

consequences of this difference are demonstrated in Figure 4.  In regions with many CBC circles 

(e.g., Piedmont BCR), SVC methods produced trend estimates with relatively low uncertainty 

(minimum credible interval width of 1.48) compared to the standard method (minimum credible 

interval width of 3.40), due to the density of information.  Similar to Bled et al. (2013), we found 

that precision of SVC estimates also tended to be relatively high in regions at the edge of a 

species range where there were few counts (e.g., Boreal Softwood Shield BCR, maximum 

interval width of 12.02) when compared to the standard approach (maximum interval width of 

19.14), due to borrowing of information across neighboring cells that crossed regional 

boundaries.  In other parts of the continent with fewer, more isolated CBC circles (e.g., Southern 

Rockies Colorado Plateau BCR), the SVC methods produced trend estimates with relatively high 

uncertainty (minimum interval width of 3.47) compared to the standard method (minimum 

interval width of 2.80).  It is not entirely clear if the small intervals of the standard approach are 
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justified in this context.  If the relatively few and far-between circles that fall within those large 

BCRs can be considered representative samples of that larger area, then estimates with high 

precision are reasonable, and certainly preferred. If it cannot be assumed that those circles are 

representative of the larger area, then estimating trends for smaller areas, in neighborhoods with 

more information, and basing uncertainty estimates on the amount of local information, seems 

more appropriate.  Critical evaluation of this representative-sample assumption is particularly 

important when analyzing data from the CBC, because count site selection is not based on 

sampling design principles (Dunn et al. 2005), and count circles are neither randomly, nor 

evenly, distributed across the continent. 

On a standard laptop computer, SVC model analysis using R-INLA took roughly 10 

minutes for full Bayesian results.  The standard approach, which employs MCMC, took 

approximately 10 hours for full Bayesian results on the same hardware. Had spatial statistical 

models been analyzed using MCMC, processing times would have been much longer.  The 

difference in computing time was due to R-INLA producing highly accurate approximations of 

Bayesian posteriors, orders of magnitude faster than MCMC (Rue et al. 2009, 2017).  The 

obvious benefit of shorter processing times is that, for a given set of computing resources, more 

time periods, more distinct model forms (e.g., Link and Sauer 2016), or more species can be 

evaluated.  Even small differences in computing time add up when analyzing counts from tens of 

years, for hundreds of species, across thousands of count sites. 

There were, as there usually are, tradeoffs for rapid model analysis.  Specifically, R-

INLA is an option for analysis whenever a statistical model can be expressed as a latent Gaussian 

model (Blangiardo et al. 2013, Rue et al. 2017). This was possible for the model used in this 

analysis. However, this would not have been possible had we chosen to use the effort-correction 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2018. ; https://doi.org/10.1101/466425doi: bioRxiv preprint 

https://doi.org/10.1101/466425
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

function developed by Link and Sauer (1999, 2006) and used in the standard analysis (Soykan et 

al. 2016).  Here, we used a single-parameter, power-law function for effort correction because it 

could fit positive, negative, linear, increasing, and decreasing relationships (Butcher and 

McCulloch 1988) and was easily built into a latent Gaussian model.  In contrast, the effort-

correction function used for the standard approach is a two-parameter nonlinear function, which 

is more flexible and so will better-fit relationships that come to a rapid asymptote. Ideally, we 

would have tools for rapid analysis of spatial statistical models that incorporate the standard 

effort-correction function. In this choose-two situation, we erred towards rapid analysis of a 

spatial model with the simpler effort-correction function, because it allowed for more robust, if 

occasionally slightly biased (Link and Sauer 1999), estimates of the effort effect in regions 

where information was sparse.  Robust estimates of effort effects are particularly critical when 

generating trends from CBC data, as count effort varies widely across time and space (Bock and 

Root 1981, Butcher et al. 1990, Dunn et al. 2005). 

In addition to differences in model structure, there were other differences between the 

SVC approach outlined here and the standard approach. For instance, we chose to use a negative 

binomial count distribution, rather than a Poisson distribution with a normally-distributed, 

observation-level, random effect in the linear predictor (Link et al. 2006, Soykan et al. 2016).  As 

described above, these two strategies should have similar outcomes, as a negative binomial 

distribution can be related to a Poisson distribution with a gamma-distributed, observation-level 

random effect added (Linden and Mantyniemi 2011). Given similar outcomes, we chose the 

negative binomial strategy as it resulted in many thousands fewer parameter estimates.  

More generally, the SVC approach described here differed from the standard approach in 

that it was optimized, specifically, for computing long-term, log-linear trends in relative 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2018. ; https://doi.org/10.1101/466425doi: bioRxiv preprint 

https://doi.org/10.1101/466425
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

abundance at fine spatial scales.  The emphasis on long-term, log-linear trends was motivated by 

requests from resource managers, who desire simple summary statistics that reflect overall 

population status for many species (Rosenberg et al. 2016, 2017).  The emphasis on fine spatial 

resolution was motivated by requests from, both, researchers wishing to conduct research at 

relatively fine spatial scales, and Audubon Christmas Bird Count volunteers, who wish to learn 

how bird numbers have changed over the years in their local area. Given these two emphases, we 

did not incorporate additional model terms necessary for creating annual abundance indices.  

These indices are critical for those who wish to look beyond single, long-term trends, at detailed 

time series that give more information about the nature of abundance changes.  Creating these 

annual indices is done by adding an additional random effect per cell and year, and combining 

these effects with 𝛼 and 𝜏. Adding this effect to the SVC model is easily done in R-INLA.  This 

effect could be specified as exchangeable, or have spatial or temporal structure.  For this dataset, 

preliminary trials showed that adding an exchangeable effect to the model increased computing 

time to approximately 1 hour.  We did not explore this model variant in depth because producing 

annual abundance indices was not a primary goal of this effort. 

Despite the differences noted above, we learned that aggregate trends resulting from the 

SVC and standard approaches are similar in direction and magnitude. Precision at aggregate 

levels is generally similar, if not a bit lower with the SVC approach, due to different assumptions 

about how precision should, or should not, be related to the spatial distribution of counts.  Our 

results suggests that an SVC approach can produce fine-scaled trends for some audiences, 

without paying a large price in precision, while producing aggregate trends for other audiences. 

These dual benefits, along with increased computational efficiency, make this SVC approach an 

attractive complement to the standard approach, one worthy of further exploration. 
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Figure Captions 

Figure 1. Grid cells used for spatial modeling of Christmas Bird Count data.  (A) Cells were 

uniform, with 100 km sides, and were trimmed to a non-convex hull (red line) encompassing the 

count circle locations (blue circles).  The number of count circles per grid cell (B) ranged from 0 

to 20 and averaged 2.43. Cells with no circles were included during model analysis but removed 

for subsequent assessment of resulting trends (Figs. 2-4). 

 

Figure 2. Maps showing spatial variation in posterior medians for parameters (A) 𝛼𝑖 (Alpha, 

relative abundance index), (B) 𝜖𝑖 (Epsilon, effort-effect exponent) and 𝜏𝑖 (Tau, long-term log-

linear trend, percent change per year) per grid cell. For 𝜏𝑖, (C) all estimates and (D) only those 

significantly different from 0 are shown. 

 

Figure 3. Comparison of posterior median trends, aggregated to Bird Conservation Regions, 

produced by (A) SVC and (B) standard methods, showing spatial variation in their relationships 

and their pairwise correlation (C). The dark grey diagonal line represents equality. 

 

Figure 4. Comparison of 95% credible interval widths for (A) estimates of 𝜏𝑖 (Tau, long-term 

log-linear trend, percent change per year per grid cell) from the SVC model and (B) analogous 

trends produced using the standard analysis and aggregated to Bird Conservation Regions, 

shown as maps and (C) summarized with box plots.  
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