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ABSTRACT  

 

Purpose 

To create a user-friendly web application that allows researchers, medical professionals and patients to 

easily and securely view, filter and interact with human exome sequencing data in the Variant Call Format 

(VCF). 

 

Methods 

We have created VCF/Plotein, a web application written entirely in JavaScript using the Vue.js framework, 

available at http://vcfplotein.liigh.unam.mx. After a VCF is loaded, gene and variant information is 

extracted from Ensembl, and cross-referencing with external databases is performed via the 

Elasticsearch search engine. Support for application-based gene and variant filtering has also been 

implemented. Interactive graphs are created using the D3.js library. All data processing is done locally in 

the user’s CPU to ensure the security of patient data. 

 

Results 

VCF/Plotein allows users to interactively view and filter VCF files without needing any bioinformatics 

knowledge. A number of features make it especially suited for the medical community, such as its speed, 

security, the ability to filter by disease or gene function, and the ease with which information may be 

shared with collaborators/co-workers. 

 

Conclusion 

VCF/Plotein is a novel web application that allows users to easily and interactively filter and display 

exome sequencing information, and that is especially suited for bench researchers, medical professionals 

and patients. 

 

KEY WORDS: Exome sequencing, variant prioritisation, data visualisation, VCF, pathogenic variant. 
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INTRODUCTION 

 

Exome sequencing (ES) has been highly successful at identifying genetic variation contributing 

to a large number of human phenotypes, from germline changes that underlie rare Mendelian 

disorders and complex diseases, to somatic mutations that drive carcinogenesis.1,2 However, 

the actual process of identifying disease-causing variants and mutations remains a challenging 

task, and often one that requires at least some bioinformatics knowledge. This is due mainly to 

the sheer number of variants routinely identified in ES projects, the diversity of biological 

mechanisms by which variants may act, and the need to integrate large amounts of information 

from both pathogenicity scoring algorithms and clinical and population databases.  

 

In this context, user-friendly graphical and interactive software tools have been developed that 

are able to filter, display and contextualise exome sequencing data in order to accelerate the 

discovery of disease-causing variants. These resources vary in the amount of public information 

they integrate, their interactivity, and the level of bioinformatics expertise required to execute 

them. For example, Genome Mining (GEMINI)3 allows the user to interactively explore their own 

variation files and overlaps information from dbSNP,4 ENCODE,5 ClinVar6 and KEGG,7 but 

requires users to have a good understanding of the command line and to be able to construct 

MySQL queries. Similarly, VCF-Miner8 and BrowseVCF9 allow the user to interactively filter their 

own variant call format (VCF) annotations through a web interface, but do not leverage 

information from other sources such as dbSNP and COSMIC.10 Other tools like BiERapp11 and 

exomeSuite 12 allow extensive variant filtering but do not support data visualisation. Similarly, 

tools that focus on variant visualisation at the protein level rather than filtering have also been 

developed, such as ProteinPaint,13 VizGVar14 and vcf.iobio.15 These resources are highly 

interactive, but either only display information already existing in databases without letting the 

user analyse their own variants (VizGVar: Ensembl),16 do not allow the user to see gene-level 
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information (vcf.iobio) or require the user to perform several bioinformatics steps to see their 

data (ProteinPaint).  

 

Here, we introduce VCF/Plotein, a user-friendly graphical web application to both visualise and 

filter variant information from exome sequencing studies that requires no bioinformatics skills or 

knowledge. As such, this application can be used by patients to explore their own genetic 

information, by biologists whose projects involve exome sequencing or by medical professionals 

studying a particular disease. VCF/Plotein allows the user to easily load a variant call format 

(VCF) file, identify genes with variants, and filter and visualise the variants in any gene with 

information about transcripts, protein domains, variant consequences and allelic frequencies in 

external databases. Furthermore, this application is especially suited for the medical community 

mindful of patient privacy, as it allows for sharing of selected data among collaborators while 

avoiding having to upload sample information to the server, instead running all operations 

locally. The resulting protein-level graphs are fully customisable, allowing the user to effortlessly 

generate professional vector images from their datasets for sharing, for presentations or for 

publication.  

  

METHODS 

VCF/Plotein has been implemented entirely as a single-page application hosted on the Surge 

content-delivery network (CDN), to optimise static content downloading times across the globe. 

The application has been written mainly in JavaScript and uses the Vue.js-based Nuxt.js 

framework to control the storage, flow and presentation of information in the browser. A 

purpose-made API has been developed to obtain information from locally-installed external 

databases (gnomAD,17 dbSNP, COSMIC, ClinVar and GO term information for each annotated 

gene), and is running on a server with a 2-core Intel Xeon E5-4627 v4 2.60Ghz processor 

running a VMware 6.5.0 virtual machine over a Linux Centos 7.5 operating system. The server 
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also has 4GB of RAM and a solid-state hard disk drive with 1TB of storage space. VCF/Plotein 

works with files in the VCF format, the standard format for genetic variant data storing, which 

consists of fields with the genomic position, reference and alternative base changes, ID, quality 

score, quality filters, other metrics including custom annotations and sample genotypes.18 Upon 

loading, a VCF is validated and its chromosome, position, reference and alternative fields are 

parsed, or an error is returned to the user. After identifying the assembly version from the 

appropriate line in the VCF, genes with variants are quickly found by matching an interval tree 

algorithm to the internal coordinate indexes containing each gene’s genomic positions. This 

generates a list with all the genes represented in the VCF, which can be filtered in different 

ways, such as by chromosome or by gene ontology [GO] term, in order to facilitate gene 

prioritisation. Once a gene is selected, information about protein-coding transcripts and 

functional domains is extracted from Ensembl via their REST API, independently of the existing 

custom annotations but without altering the original file. Dimensioning to a single gene is a key 

aspect for the performance of this application, since it considerably reduces computational load 

and information transfer over the internet. Consequences from all variants falling within the 

selected gene, as well as their pathogenicity scores by SIFT19 and PolyPhen,20,21 are obtained 

via the Ensembl Variant Effect Predictor.22 Cross-referencing with supported external databases 

is then performed via querying our internal database using the Elasticsearch search engine, 

which allows us to perform a smaller number of queries in an efficient manner. A flowchart 

depicting the process flow and system architecture of VCF/Plotein is shown in Figure 1. All 

collected information is stored as an array of objects in JSON format, returned to the web 

browser and depicted over a customisable plot of the primary structure of the canonical 

transcript (Figure 2). The protein graph is made using the D3.js library since it allows to easily 

map the information to vector graphic elements in the web page. All operations, except for the 

search of naked genomic positions in supported external databases, is performed locally using 

the user’s CPU. 
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A menu, shown at the left-hand side of the browser, has been implemented to allow data 

filtering and graph customisation. The different features in this menu (Filters for transcript, 

functional domains and other protein features, variant type, variant frequency in external 

databases, variant pathogenicity score, variant clinical score and sample ID) all access 

information in the stored JSON object, which provides full interactivity due to the use of the 

Vue.js framework. A method has also been implemented that allows to export the current 

selected settings for any number of genes to a text file. This file can be used as a bookmark, 

which can be easily shared and loaded into VCF/Plotein for visualisation.  

 

Functions to visualise and export the variant information in the customised plot to a CSV file, as 

well as to download and print the customised graph into a SVG or a PNG file, have also been 

implemented and are shown in a menu at the top right of the page. 

 

 

RESULTS 

Features 

Overview. The only requirements to run VCF/Plotein are a computer with an internet connection 

and a VCF file. Once the user loads the VCF file, the genome assembly is identified, genes with 

variants are found, and a list of criteria is displayed to aid with gene prioritisation (by 

chromosome or by GO term category) (Figure 2, top panel). Once a gene is selected, a new 

page is shown with the primary protein structure of its canonical transcript with its domains and 

other features along with all its recorded variants. Variants are shown with an indication of their 

frequency among samples in the VCF, their transcript consequences, and their presence or 

absence in the gnomAD, dbSNP, ClinVar and COSMIC databases. The user can click on any 

variant to access further information about it, such as its genomic coordinates, a prediction of 
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their pathogenicity according to SIFT and PolyPhen and a list of carrier samples (Figure 2, 

bottom panel). The left-hand menu allows the user to load a new VCF file, to select a different 

gene, to select a different transcript, to select which protein domains and features to show, to 

filter variants, to analyse sample IDs, and finally to bookmark the selected features. Using the 

top menu, variant information can also be displayed and downloaded in table format, as well as 

printed in the SVG vector image file format or the PNG raster graphics format. 

 

Data security. The API and the internal databases have been installed behind a Fortinet firewall, 

and run over an HTTPS port with a SSL certificate for secure data transfer. No sensitive sample 

information is uploaded to the server, as queries to the internal databases consist only of naked 

genomic positions. Therefore, the server does not hold or save any sample information, an 

important feature given the data security policy that many patient-focused sequencing projects 

are bound by. All data processing, including construction of the JSON object and graphing of 

protein structures, is done locally.  

 

Variant filtering and visualisation. Variants falling in any selected protein-coding transcript from 

any gene can be filtered and plotted. Users can filter variants by protein consequence (for 

example, to show only stop gains or splice site mutations), by clinical prediction (for example, to 

display only those present in the ClinVar or COSMIC datasets), by pathogenicity score (for 

example, only those scored as deleterious by SIFT and/or PolyPhen) or by their presence in 

allele frequency databases (for example, to display only variants not previously seen in gnomAD 

or dbSNP). Users can also select which protein domains and features to display (from 

InterProScan23 and Pfam24 and the ncoils,25 SEG,26 SignalP27 and TMHMM28 programs, as 

annotated by Ensembl), as well as customise the colours for each of these features. The 

customised protein plot can then be exported as an SVG or PNG file to use in presentations or 
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publications. Because of the nature of this web application, it is also well-suited to visualise 

information from large databases such as dbSNP or ClinVar.  

 

Performance. VCF/Plotein is able to process VCF files from exome sequencing studies in a 

reduced time frame. We have tested our application with different file sizes in a number of 

system architectures and web browsers. The results are shown in Table 1. 

 

Bookmarks. Bookmarks allow users to easily save any selected features from any number of 

genes in a text file (in JSON format) which can be easily shared so others can load it into 

VCF/Plotein and view and interact with this information. As only the information regarding the 

selected gene transcripts is saved, this function can be used by teams of clinicians and 

researchers studying a few candidate genes from exome-wide sequencing studies in order to 

facilitate data transfer and interpretation. 

 

Comparison with other similar tools. VCF/Plotein combines variant filtering capabilities with an 

intuitive and interactive platform to visualise and customise protein plots. Furthermore, it does 

not upload any sensitive sample information to the server, instead running all operations locally. 

For these reasons, and because it requires no bioinformatics knowledge, we believe it is well-

suited for patients exploring their own genetic data, for biologists analysing exome sequencing 

data, and for teams of scientists and medical professionals studying patients with a particular 

disease. Other available tools perform some of these functions, but either require at least some 

bioinformatics expertise, do not leverage information from external databases, or do not allow 

users to visualise their own exome data (Table 2). 

 

DISCUSSION 
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The ability to easily filter and display genomic information at the protein level is expected to 

contribute importantly to the identification of genetic variants conferring high-risk to develop 

various diseases by allowing non-bioinformaticians (e.g. many medical doctors and bench 

researchers) to perform variant prioritisation. Here, we have described VCF/Plotein, a novel web 

application capable of loading VCF files from exome sequencing projects in order to display, in 

a graphical and interactive manner, variants falling in any chosen transcript from any gene. 

Furthermore, variants can be filtered and customised to display only those of interest to the 

user, which can then be easily shared via a simple text file that can also be loaded into the web 

application. This kind of analyses can sometimes take an experimented bioinformatician hours 

or days (given the need to download databases, create custom scripts for filtering and find 

adequate tools for data visualisation), however here we have simplified this process and 

shortened the time required for analysis to minutes or seconds.  

 

Our methodology also entails a number of advantages: By building VCF/Plotein as a single-

page application, we are able to implement an iterative and incremental software development 

strategy, undertake constant improvements and regularly add new features. Furthermore, it 

allows us to easily keep our internal data structures up-to-date, importing the latest versions of 

external databases as they are released. 

 

We anticipate that VCF/Plotein will allow researchers, especially in small labs, to focus on 

biology-relevant questions instead of having to learn to install software dependencies, learn to 

use variant-annotation and cross-referencing tools, and become familiar with the UNIX and/or 

MySQL command line. As direct-to-consumer genetic testing becomes even more accessible, 

we also believe that this application can be used by patients analysing their own genetic 

information. By combining variant filtering and annotation in a single graphical and interactive 

tool, we hope that variant prioritisation will become easier, faster and more intuitive. 
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VCF/Plotein is freely available at http://vcfplotein.liigh.unam.mx 
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TABLE AND FIGURES LEGENDS 

 

Figure 1. Chart depicting the VCF/Plotein process flow and system architecture. The colours of each box 

in the top panel correspond to the colour of the system architecture element in which it is executed (in the 

bottom panel), e.g., actions in green boxes are executed by the user, those in blue boxes are executed by 

the user’s browser, and actions in red, purple and orange are processes used to obtain information from 

diverse databases.   

 

Figure 2. VCF/Plotein working screens. Top panel: Loading and data filtering screen. In the left column, 

the loaded VCF or bookmark is shown along the identified genome assembly. In the middle column, 

different gene filtering criteria are shown. The right column allows the user to select an individual gene to 

examine in detail. Bottom panel: Screen depicting protein-level information for the selected gene. The 

primary protein structure for the canonical transcript is shown alongside protein domains and other 

features, and the genetic variants falling on it are shown as lollipops. The colours of these indicate the 

protein consequence, and the squares below indicate the presence or absence of the variant in different 

external databases. Upon selection of a particular variant, other relevant data are shown in information 

bars at the top and bottom. Left-hand side and top menus allow the user to customise and interact with 

the plot. The depicted VCF contains variants published elsewhere (Ref. 29). 

 

Table 1. Performance of VCF/Plotein after loading three different VCF files in different operating systems 

with a range of hardware specifications. Tests were performed in the Google Chrome browser. All times 

are in milliseconds (ms). 

 

Table 2. Comparison of the main features of VCF/Plotein with those of other similar tools. 
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Computer specifications Processes

Single gene VCF 
Size: 2.9 mb
Number of genes: 1
Gene selected: 490 variants
Samples: 201

ClinVar VCF
Size: 170.7 mb
Number of genes: 7357 
Gene selected: 340 variants
Samples: NA

COSMIC VCF
Size: 421.8 mb
Number of genes: 23141
Gene selected: 1979 variants
Samples: NA

File opening and parsing 62 1665 4390
Generation of  list of genes 80 2821 32300
Creation of GO term filters 5 1486 11277
Fetching of variant information 5724 6499 22192
File opening and parsing 222 11528 60492
Generation of  list of genes 16 4954 75800
Creation of GO term filters 255 12566 32418

Fetching of variant information 6159 31141 106972
File opening and parsing 18 1033 10599
Generation of  list of genes 32 1159 78363
Creation of GO term filters 5 909 10515
Fetching of variant information 4506 6754 25364
File opening and parsing 35 2666 33034
Generation of  list of genes 15 10648 110945
Creation of GO term filters 112 10488 29218
Fetching of variant information 4974 7042 19251

Operating system: macOS Mojave
Processor:  2.2 GHz intel core i7
RAM: 8 GB 1600MHz DDR3
Hard disk: 500 GB 

Operating system: Manjaro Linux
Processor: 1.7GHz AMD A8 x 4
RAM: 7 GiB
Hard disk: 750 GB 

Operating system: macOS Mojave
Processor:  2.2 GHz intel core i7
RAM: 8 GB 1600MHz DDR3
Hard disk: 500 GB 

1

2

3

4

Operating system: Windows 10
Processor: intel core i7-6500U
RAM: 8 GB 1600MHz DDR3
Hard disk: 1 TB 
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VCF/Plotein GEMINI VCF-miner BrowseVCf BiERapp exomeSuite PeCan VCF iobio VizGVar
Does not require installation ✓ x x x x x ✓ ✓ ✓

Does not require command line knowledge ✓ x x x ✓ x ✓ ✓ ✓

Graphical user interface ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

No pre-processing steps ✓ x x x ✓ x x ✓ ✓

Database cross-referencing ✓ ✓ x x ✓ ✓ ✓ x ✓

Protein-level information plot ✓ x x ✓ x x ✓ x ✓

Local sample processing (security) ✓ ✓ ✓ ✓ ✓ ✓ x x NA
Export as SVG ✓ NA NA NA x x ✓ x ✓
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