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Abstract 

 

Background 
In 2015 the Zika virus spread from Brazil throughout the Americas, posing an 

unprecedented challenge to the public health community. During the epidemic, 

international public health officials lacked reliable predictions of the outbreak’s 

expected geographic scale and prevalence of cases, and were therefore unable to plan 

and allocate surveillance resources in a timely and effective manner.  
 

Methods 
In this work we present a dynamic neural network model to predict the geographic 

spread of outbreaks in real-time. The modeling framework is flexible in three main 

dimensions i) selection of the chosen risk indicator, i.e., case counts or incidence rate, 

ii) risk classification scheme, which defines the relative size of the high risk group, 

and iii) prediction forecast window (one up to 12 weeks).  The proposed model can be 

applied dynamically throughout the course of an outbreak to identify the regions 

expected to be at greatest risk in the future. 

 

Results 
The model is applied to the recent Zika epidemic in the Americas at a weekly 

temporal resolution and country spatial resolution, using epidemiological data, 

passenger air travel volumes, vector habitat suitability, socioeconomic and population 

data for all affected countries and territories in the Americas. The model performance 

is quantitatively evaluated based on the predictive accuracy of the model. We show 

that the model can accurately predict the geographic expansion of Zika in the 

Americas with the overall average accuracy remaining above 85% even for prediction 

windows of up to 12 weeks.  
 

Conclusions 

Sensitivity analysis illustrated the model performance to be robust across a range of 

features. Critically, the model performed consistently well at various stages 

throughout the course of the outbreak, indicating it’s potential value at the early stages 

of an epidemic. The predictive capability was superior for shorter forecast windows, 

and geographically isolated locations that are predominantly connected via air travel. 

The highly flexible nature of the proposed modeling framework enables policy 

makers to develop and plan vector control programs and case surveillance strategies 

which can be tailored to a range of objectives and resource constraints. 
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Introduction 

The Zika virus, which is primarily transmitted through the bite of infected Aedes 

aegypti mosquitoes [1], was first discovered in Uganda in 1947 [2] from where it 

spread to Asia in 1960s, where it since has caused small outbreaks. In 2007 ZIKV 

caused an island wide outbreak in Yap Island, Micronesia [3], followed by outbreaks 

in French Polynesia [4] and other Pacific islands between 2013 ̶ 2014 where attack 

rates where up to 70% [5-7]. It reached Latin America between late 2013 and early 

2014, but was not detected by public health authorities until May 2015 [8] and since 

affected 48 countries and territories in the Americas [9-11]. Since there is no 

vaccination or treatment available for Zika infections [12, 13], the control of Ae. 

aegypti mosquito populations remains the most important intervention to contain the 

spread of the virus [14]. In order to optimally allocate resources to suppress vector 

populations, it is critical to accurately anticipate the occurrence and arrival time of 

arboviral infections to detect local transmission [15]. 

 

Whereas for dengue, the most common arbovirus infection, prediction has attracted 

wide attention from researchers employing statistical modelling and machine learning 

methods to guide vector control [16-21], such real-time models do not yet exist for 

Zika virus. Early warning systems for Thailand, Indonesia, Ecuador and Pakistan have 

been introduced and are currently in use [22-26]. In addition to conventional 

predictions based on epidemiological and meteorological data [20, 27, 28], more 

recent models have successfully incorporated search engines [29, 30], land use [31], 

human mobility information [32, 33] and spatial dynamics [34-36], and various 

combinations of the above [37] to improve predictions. Whereas local spread may be 

mediated by overland travel, continent wide spread is mostly driven by air passenger 

travel between climatically synchronous regions [38-44]. 

 

The aims of our work are to 1) present recurrent neural networks for time ahead 

predictive modelling as a highly flexible tool for outbreak prediction, and 2) 

implement and evaluate the model performance for the Zika epidemic in the 

Americas. The application of neural networks for epidemic risk forecasting has 

previously been applied to dengue forecasting and risk classification [45-50], 

detection of mosquito presence [51], temporal modeling of the oviposition of Aedes 

aegypti mosquito [52], Aedes larva identification [53], and epidemiologic time-series 

modeling through fusion of neural networks, fuzzy systems and genetic algorithms 

[54]. Recently, Jian et al [55] performed a comparison of different machine learning 

models to map the probability of Zika epidemic outbreak using publically available 

global Zika case data and other known covariates of transmission risk. Their study 

provides valuable insight into the potential role of machine learning models for 

understanding Zika transmission; however, it is static in nature, i.e., it does not 

account for time-series data, and did not account for human mobility, both of which 

are incorporated in our modelling framework. 

 

Here, we apply a dynamic neural network model for N-week ahead prediction for the 

2015-2016 Zika epidemic in the Americas. The model implemented in this work 

relies on multi-dimensional time-series data at the country (or territory) level, 

specifically epidemiological data, passenger air travel volumes, vector habitat 

suitability for the primary spreading vector Ae. aegypti, socioeconomic and 

population data. The modeling framework is flexible in three main dimensions: 1) the 

preferred risk indictor can be chosen by the policy maker, e.g., we consider outbreak 
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size and incidence rate as two primary indicators of risk for a region, 2) five risk 

classification schemes are defined, where each classification scheme varies in the 

threshold used to determine the set of countries deemed “high risk”, and 3) it can be 

applied for a range of forecast windows (1 – 12 weeks). Model performance and 

robustness is evaluated for various combinations of risk indicator, risk classification 

level, and forecasting windows. Thus, our work represents the first flexible 

framework of neural networks for epidemic risk forecasting, that allows policy 

makers to evaluate and weigh the trade-off in prediction accuracy between forecast 

window and risk classification schemes. Given the availability of the necessary data, 

the modelling framework proposed here can be applied in real time to future 

outbreaks of Zika, and other similar vector-borne outbreaks. 

 

Materials and Methods 

 

Data  

The model relies on socioeconomic, population, epidemiological, travel and mosquito 

vector suitability data. All data is aggregated to the country level, and provided for all 

countries and territories in the Americas. Each data set and corresponding processing 

is described in detail below, and summarized in Table 1. The data is available as a 

supplementary file.  

 

Epidemiological Data 

Weekly Zika infected cases for each country and territory in the Americas were 

extracted from the Pan American Health Organization (PAHO) [57], as described in 

previous studies [40, 43] (data available: github.com/andersen-lab/Zika-cases-

PAHO). Although Zika cases in Brazil were reported as early as May 2015, no case 

data is available for all of 2015 from PAHO because the Brazil Ministry of Health did 

not declare the Zika cases and associated neurological and congenital syndrome as 

notifiable conditions until 17 February of 2016 [57]. The missing numbers of cases 

from July to December 2015 for Brazil were estimated based on the positive 

correlation between Ae. aegypti abundance (described below) and reported case 

counts as has been done previously [42, 43]. We used smoothing spline [56] to 

estimate weekly case counts from the monthly reported counts. The weekly country 

level case counts (Figure 1A) were divided by the total population / 100,000, as 

previously described [43], to compute weekly incidence rates (Figure 1C). 

 

Travel Data 

Calibrated monthly passenger travel volumes for each airport-to-airport route in the 

world were provided by the International Air Transport Associate (IATA) [67], as 

previously used in [43, 58]. The data includes origin, destination and stopover airport 

paths for 84% of global air traffic, and includes over 240 airlines and 3,400 airports. 

The airport level travel was aggregated to a regional level, to compute monthly 

movements between all countries and territories in the Americas. The incoming and 

outgoing travel volumes for each country and territory, originally available from 

IATA at a monthly temporal resolution, were curve fitted, again using smoothing 

spline method [56] to obtain corresponding weekly volumes to match with the 

temporal resolution of our model. In this study, data and estimates from 2015 were 

also used for 2016, as was done previously [43, 58, 59]. 
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Mosquito Suitability Data 

The monthly vector suitability data sets were based on habitat suitability for the 

principal Zika virus species Ae. aegypti, previously used in [43], and initially 

estimated using original high resolution maps [60] and then enriched to account for 

seasonal variation in the geographical distribution of Ae. aegypti by using time-

varying covariate such as temperature persistence, relative humidity, and precipitation 

as well as static covariates such as urban versus rural areas. The monthly data was 

translated into weekly data using a smoothing spline [56]. 

 

Socioeconomic and Human Population Data 

For a country, to prevent or manage an outbreak depends on their ability to implement 

a successful surveillance and vector control programs [68]. Due to a lack of global 

data to quantify vector control at country level, we utilized alternative economic and 

health related country indicators which have previously been revealed to be critical 

risk factors for Zika spread [43]. A country’s economic development can be measured 

by the gross domestic product (GDP) per capita at purchasing power parity (PPP), in 

international dollars. The figures from World Bank [61] and the U.S. Bureau of 

Economic Analysis [62] were used to collect GDP data for each country. The number 

of physicians and the number of hospital beds per 10,000 people were used to indicate 

the availability of health infrastructure in each country. These figures for U.S. and 

other regions in the Americas were obtained from the Centre of Disease Control and 

Prevention (CDC) [63], WHO World Health Statistics report [64], and the PAHO 

[65]. Finally, the human population densities (people per sq. km of land area) for each 

region were collected from World Bank [66] and the U.S. Bureau of Economic 

Analysis [62]. 

 

Connectivity-risk Variables 

In addition to the raw input variables, novel connectivity-risk variables are defined 

and computed for inclusion in the model. These variables are intended to capture the 

risk posed by potentially infected travelers arriving at a given destination at a given 

point in time, and in doing so, explicitly capture the dynamic and heterogeneity of the 

air-traffic network in combination with real-time outbreak status. Two variables are 

chosen, hereafter referred to as case-weighted travel risk and incidence-weighted 

travel risk, as defined in equations (1.a) and (1.b), respectively. 

 

𝐶𝑅𝑗
𝑡 =   ∑ 𝐶𝑖

𝑡. 𝑉𝑖,𝑗
𝑡

𝑖           ∀𝑡, ∀𝑗, 𝑖 ≠ 𝑗                       (1.a)    

                                     

𝐼𝑅𝑗
𝑡 =   ∑ 𝐼𝑖

𝑡. 𝑉𝑖,𝑗
𝑡

𝑖             ∀𝑡, ∀𝑗, 𝑖 ≠ 𝑗                        (1.b)                                               

 

For each region j at time t, 𝐶𝑅𝑗
𝑡and 𝐼𝑅𝑗

𝑡 are computed as the sum of product between 

passenger volume traveling from origin i into destination j at time t (𝑉𝑖,𝑗
𝑡 ) and the state 

of the outbreak at origin i at time t, namely reported cases, 𝐶𝑖
𝑡 ,  or reported incidence 

rate, 𝐼𝑖
𝑡. Each of these two variables is computed for all 53 countries or territories for 

each of the 78 epidemiological weeks. The dynamic variables are illustrated in Figure 

1, below the raw case counts and incidence rates.  
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Table 1. Summary of input data 

Description 

Original 

Temporal 

Resolution 

Spatial 

Resolution 

Temporal 

Disaggregation 
Reference 

Zika cases 

(2015) 
monthly 

country or 

territory 

level 

estimation, 

smoothing spline 

curve fitting 

[42, 43, 56] 

Zika cases 

(2016) 
weekly 

country or 

territory 

level 

- 

Pan American Health 

Organization (PAHO) 

[57] 

incidence rates weekly 

country or 

territory 

level 

(case 

counts/(population / 

100,000) 

[43] 

incoming and 

outgoing travel 

volumes (2015) 

monthly 

country or 

territory 

level 

smoothing spline 

curve fitting 

International Air 

Transport Associate 

(IATA), [56] 

incoming and 

outgoing travel 

volumes (2016) 

monthly 

country or 

territory 

level 

estimation, 

smoothing spline 

curve fitting 

as previously done 

[43, 58, 59], [56] 

Aedes vector 

suitability 
monthly 

country or 

territory 

level 

smoothing spline 

curve fitting 
[43, 56, 60] 

gross domestic 

product (GDP) 

per capita 

annual 

country or 

territory 

level 

- 

World Bank [61], and 

U.S. Bureau of 

Economic Analysis 

[62] 

physicians per 

1000 people 
annual 

country or 

territory 

level 

- 

Centre of Disease 

Control and 

Prevention (CDC)  

[63], WHO World 

Health Statistics 

report [64], and the 

PAHO [65] 

beds per 1000 

people 
annual 

country or 

territory 

level 

- 

population 

densities 

(people per sq. 

km of land 

area) 

annual 

country or 

territory 

level 

- 

World Bank [66], and 

the U.S. Bureau of 

Economic Analysis 

[62] 
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Fig 1. Weekly distribution of case-related input variables. (A) Zika cases and (B) 

incidence rates in the Americas along with connectivity-risk variables, (C) case-

weighted travel risk 𝐂𝐑𝐣
𝐭, and (D) incidence weighted travel risk 𝐈𝐑𝐣

𝐭, for top 10 

countries and territories in the Americas. 

 
Neural Network Model 

A class of neural architectures based upon Nonlinear AutoRegressive models with 

eXogenous inputs (NARX) known as NARX neural networks [69-71] is employed 

herein due to its suitability for modeling of a range of nonlinear systems and 

computational capabilities equivalent to Turning machines [72]. The NARX 

networks, as compared to other recurrent neural network architectures, require limited 

feedback (i.e., feedback from the output neuron rather than from hidden states) and 

converge much faster with a better generalization [72, 73]. The NARX model can be 

formalized as follows [72]: 

 

𝑦(𝑡) = 𝑓 (𝑥(𝑡), 𝑥(𝑡 − 1), … , 𝑥(𝑡 − 𝑑𝑥); 𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑑𝑦))                     (2) 

 

where 𝑥(𝑡) and 𝑦(𝑡) denote, respectively, the input and output (or target that should 

be predicted) of the model at discrete time t, while 𝑑𝑥 and 𝑑𝑦 (with 𝑑𝑥 ≥ 1, 𝑑𝑦  ≥ 1, 

and 𝑑𝑥 ≤ 𝑑𝑦) are input and output delays called memory orders (Fig. 2). In this work, 

a NARX model is implemented to provide N-step ahead prediction of a time series, as 

defined below:  

 

𝑦𝑘(𝑡 + 𝑁) =

𝑓 (
𝐱𝟏(𝑡), 𝐱𝟏(𝑡 − 1), … , 𝐱𝟏(𝑡 − 𝑑𝑥),… , 𝐱𝑴(𝑡), 𝐱𝑴(𝑡 − 1), … , 𝐱𝑴(𝑡 − 𝑑𝑥),

y𝑘(𝑡), y𝑘(𝑡 − 1), … ,  y𝑘(𝑡 − 𝑑𝑦)
)      (3)    

 

Here, 𝑦𝑘(𝑡 + 𝑁) is the risk classification predicted for the k
th

 region N weeks ahead 

(of present time t), which is estimated as a function of 𝐱𝒎(𝑡) inputs from all 𝑚 =
1, 2,… ,𝑀 regions for 𝑑𝑥 previous weeks, and the previous risk classification state, 

𝑦𝑘(𝑡) for region k for 𝑑𝑦 previous weeks.  The prediction model is applied at time t, 

to predict for time t+N, and therefore relies on data available up until week t. That is, 

A B

C D
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to predict outbreak risk for epidemiological week X, N-weeks ahead, the model is 

trained and tested using data available up until week (X – N). For example, 12-week 

ahead prediction for Epi week 40, is performed using data available up to week 28. 

The function 𝑓(∙) is an unknown nonlinear mapping function that is approximated by 

a Multilayer Perceptron (MLP) to form the NARX recurrent neural network [70, 71]. 

In this work, series-parallel NARX neural network architecture is implemented in 

Matlab R2018a (The MathWorks, Inc., Natick, Massachusetts, United States) [74]. 

 

 

 
Fig 2. Schematic of NARX network with 𝐝𝐱 input and 𝐝𝐲 output delays: Each 

neuron produces a single output based on several real-valued inputs to that neuron by 

forming a linear combination using its input weights and sometimes passing the 

output through a nonlinear activation function: 𝐳 = 𝛗(∑ 𝐰𝐢𝐮𝐢 + 𝐛) = 𝛗(𝐰𝐓𝐱 +𝐧
𝐢=𝟏

𝐛), where 𝐰 denotes the vector of weights, 𝐮 is the vector of inputs, 𝐛 is the bias and 

𝛗 is a linear or nonlinear activation function (e.g., Linear, Sigmoid, and Hyperbolic 

tangent [75]). 

 

In the context of this work, the desired output, 𝑦𝑘(𝑡 + 𝑁), is a binary risk classifier, 

i.e., classifying a region k as high or low risk at time at time t+N, for each region, k, N 

weeks ahead (of t). The vector of input variables for region 𝑚 at time 𝑡 is  𝐱𝒎(𝑡), and 

includes both static and dynamic variables. We consider various thresholds to define 

the “high risk” group, ranging uniformly between 10% and 50%, where the 10% 

scheme classifies the 10% of countries reporting the highest number of cases (or 

highest incidence rate) as high risk, and the other 90% as low risk, similar to  [37]. 

Each thresholds corresponds to a risk classification scheme (i.e., R=10, R=20, etc). 

Critically, our prediction approach differs from [37], in that our model is trained to 

predict the risk level directly, rather than predict the number of cases, which are post-

processed into risk categories. The performance of the model is evaluated by 
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comparing the estimated risk level (high or low) to the actual risk level for all 

locations at a specified time, The actual risk level is simply defined at each time 

period t during the outbreak by ranking the regions based on to the number of 

reported case counts (or incidence rates), and grouping them into high and low risk 

groups according to the specified threshold. 

 

The static variables used in the model include GDP PPP, population density, number 

of physicians, and number of hospital beds for each region. The dynamic variables 

include mosquito vector suitability, outbreak status (both reported case counts and 

reported incidence rates), total incoming travel volume, total outgoing travel volume, 

and the two connectivity-risk variables defined as in Equations (1.a) & (1.b), again for 

each region. Before applying to the NARX model, all data values are normalized to 

the range [0, 1]. 

 
A major contribution of this work is the flexible nature of the model, which allows 

policy makers to be more or less risk averse in their planning and decision making.   

Firstly, the risk indicator (used to rank the regions and identify the high risk group) 

can be chosen by the modeler; in this work we consider two regional risk indicators, i) 

the number of reported cases and ii) incidence rate. Second, we consider a range of 

risk classification schemes, which vary by the relative size of the “high risk” group, 

i.e., R=10, R=20, R=30, R=40, R=50.  Third, the forecast window, N, is defined to 

range from N = 1, 2, 4, 8 and 12 weeks. Subsequently, any combination of risk 

indicator, risk classification scheme and forecasting window can be modelled.  

 

In initial settings of the series-parallel NARX neural network, a variety numbers of 

hidden layer neurons and numbers of tapped delay lines (Eq. (2)) were explored for 

training and testing of the model. Sensitivity analysis revealed minimal difference in 

performance of the model under different settings. Therefore, for all experiments 

presented in this work, the numbers of neural network hidden layer neurons and 

tapped delay lines are kept constant as two and four, respectively.  

 

To train and test the model, the actual risk classification for each region at each week 

during the epidemic, 𝑦𝑘(𝑡), was used. For each model run, e.g., a specified risk 

indicator, risk classification scheme and forecasting window, the input and target 

vectors are randomly divided into three sets:  

 

1. 70% for training, to tune model parameters minimizing the mean square error 

between the outputs and targets,  

2. 15% for validation, to measure network generalization and to prevent 

overfitting, by halting training when generalization stops improving (i.e., 

mean square error of validation samples starts increasing), and  

3. 15% for testing, to provide an independent measure of network performance 

during and after training.  

 

The performance of the model is measured using two metrics: 1) prediction accuracy 

(ACC) and 2) receiver operating characteristic (ROC) curves. Prediction accuracy is 

defined as ACC = (TP + TN) / (TP + FP + TN + FN), where true positive (TP) is the 

number of high risk locations correctly predicted as high risk, false negative (FN) is 

the number of high risk locations incorrectly predicted as low risk, true negative (TN) 

is the number of low risk locations correctly predicted as low risk, and false positive 
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(FP) is the number of low risk locations incorrectly predicted as high risk. The second 

performance metric, ROC curve, explores the effects on TP and FP as the position of 

an arbitrary decision threshold is varied, which in the context of this prediction 

problem distinguished low and high risk locations. ROC curves were originally 

developed in 1950s as a technique for visualizing, organizing and selecting classifiers 

based on their performance [76].  The ROC curve can be characterized as a single 

number using the area under the ROC curve (AUC), with larger areas having an AUC 

that approaches 1 indicating a more accurate detection method. In addition to 

quantifying model performance using these two metrics, we evaluate the robustness of 

the predictions by comparing the ACC across multiple runs that vary in their selection 

of testing and training sets (resulting from the randomized sampling). Due to 

computation time, the robustness is only evaluated for the 4-week forecast window.  

 

Results and Discussion 

The model outcome reveals the set of locations expected to be at highest risk at a 

specified date in the future, i.e., N weeks ahead of when the prediction is made. We 

apply the model for all epidemiological weeks throughout the epidemic, and evaluate 

performance under each combination of i) risk indicator, ii) classification scheme, and 

iii) forecast window. For each model run, both ACC and ROC AUC are computed. 

Results are presented in this section as follows: 

 

1. Country-level Outbreak Prediction.  

a. Performance sensitivity to classification scheme is presented at the country 

level, for a fixed forecast window (N=4). 

b. Performance sensitivity to forecast window is presented at the country 

level, for a fixed classification scheme (R=20). 

2.  Model performance 

a. ACC (averaged over all locations and all EPI weeks) is presented for each 

classification scheme (i.e., R = 10, 20, 30, 40 and 50) and each forecast 

window (i.e., N = 1, 2, 4, 8 and 12) combination.  

b. ROC AUC is presented for a fixed classification scheme (R=40) and all 

forecast windows (i.e., N = 1, 2, 4, 8 and 12).  

c. Performance sensitivity to epidemiological week is presented for each risk 

indicator. Results are shown for each classification scheme, and a fixed 

forecast window (N=4). 

d. Performance (ACC) aggregated by geographic region (Caribbean, South 

America and Central America) is presented for each classification scheme 

(i.e., R = 10, 20, 30, 40 and 50) and forecast window (i.e., N = 1, 2, 4, 8 

and 12). 

  

Country-level Outbreak Prediction 

Fig 3. and 4. exemplify the output of the proposed model. Fig 3 illustrates the model 

predictions at a country-level for a 4-week prediction window, specifically for Epi 

week 40, i.e., using data available up until week 36. Fig. 3(A) illustrates the actual 

risk percentile each country is assigned to in week 40, based on reported case counts. 

The results presented in the remaining panels of Fig 3 reveal the risk level (high or 

low) predicted for each country under the five risk classification schemes, namely (B) 

R=10, (C) R=20, (D) R=30, (E) R=40, and (F) R=50, and whether or not it was 

correct. For Panels (B)-(E), green indicates a correctly predicted low risk country 

(TN), light grey indicates an incorrectly predicted high risk country (FP), dark grey 
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indicates an incorrectly predicted low risk country (FN), and the remaining color 

indicates a correctly predicted high risk country (TP). The inset highlights the results 

for the Caribbean islands. The figure also presents the average ACC over all regions 

and ACC for just the Caribbean region (grouped similar to [10]) for each 

classification scheme. For all cases, the predictive capability of the model is similar 

for the Caribbean as for the entire Americas, and the ACC remains above 90% for R < 

30, indicating superior model performance. For example, at Epi week 40, R = 30 and 

N=4 (using outbreak data and other model variables up to Epi week 36), there were 

16 total regions classified as HIGH risk, of which the model correctly identified 13. 

Furthermore, of the 16 high risk regions, 8 were in the Caribbean (i.e., Aruba, 

Curacao, Dominican Republic, Guadeloupe, Haiti, Jamaica, Martinique, and Puerto 

Rico), of which the model correctly identified 7. Aruba in the only Caribbean, and 

Honduras and Panama were the only regions incorrectly predicted as low risk in this 

scenario. Accurately classifying low risk regions is also important (and assuring the 

model is not too risk averse). For the same scenario, Epi week 40, R = 30 and N=4, all 

18 low risk Caribbean locations and 17 of the 19 low risk non-Caribbean locations 

were accurately classified by the model. Paraguay and Suriname were the only 

regions incorrectly predicted as high risk. These results are consistent with the high 

reported accuracy of the model, i.e., Overall ACC = 90.15%; Caribbean ACC = 

96.15%.     

 

Fig 4 illustrates the model predictions at a country-level for varying prediction 

windows, and a fixed classification scheme of R=20, for Epi week 40.  Fig. 4(A) 

illustrates the actual risk classification (high or low) each country is assigned to in Epi 

week 40, based on reported case counts. The results presented in the remaining panels 

of Fig 4 reveal the risk level (high or low) predicted for each country under the five 

forecasting windows, specifically (B) N=1, (C) N=2, (D) N=4, (E) N=8, and (F) 

N=12, and whether or not it was correct. For Panels (B)-(E), red indicates a correctly 

predicted high risk country (TP), green indicates a correctly predicted low risk 

country (TN), light grey indicates an incorrectly predicted high risk country (FP), dark 

grey indicates an incorrectly predicted low risk country (FN). The inset highlights the 

results for the Caribbean islands. Similar to Fig. 3, for each forecast window, the 

reported ACC is averaged both over all regions and for just the Caribbean.  

 

The results reveal that the performance of model, expectedly, deteriorates as the 

forecast window increases; however, the average accuracy remains above 80% for 

prediction up to 8-weeks ahead, and well about 90% for up to 4-weeks ahead. The 

prediction accuracy for the Caribbean slightly lags the average performance in the 

Americas. Specifically, for R=20, 5 of the 11 Caribbean regions were designated as 

HIGH risk locations at Epi week 40, i.e., Dominican Republic, Guadeloupe, Jamaica, 

Martinique, Puerto Rico. For a one-week prediction window, N=1, the model was 

able to correctly predict 3 of the high risk regions (i.e., Jamaica, Martinique, Puerto 

Rico), for N=2 it correctly identified two (i.e., Martinique, Puerto Rico), and for N=4, 

it again correctly identified three (i.e., Guadeloupe, Martinique, Puerto Rico). 

However, the model did not correctly predict any high risk locations in the Caribbean 

at N=8 and N=12 window lengths. This error is likely due to the low and sporadic 

reporting of Zika cases in the region around week 30. Similar prediction capability is 

illustrated for R=50 (not shown in the figure), in which case out of the 13 Caribbean 

HIGH risk locations, the model correctly identifies all locations at N=1, 2 and 4, 10 of 

the 13 locations at N=8, and only 1 of the 13 at N=12.         
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Fig 3. Country prediction accuracy by risk level. Panel (A) illustrates the actual 

risk level assigned to each country at Epi week 40 for a fixed forecast window, N=4. 

Panels (B)-(E) each corresponds to a different classification scheme, specifically (B) 

R=10, (C) R=20, (D) R=30, (E) R=40, and (F) R=50. The inset shown by small 

rectangle highlights the actual and predicted risk in Caribbean islands. For Panels (B)-

(E), green indicates a correctly predicted low risk country, light grey indicates an 

incorrectly predicted high risk country, and dark grey indicates an incorrectly 

predicted low risk country. The risk indicator used is case counts.  
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Fig 4. Country prediction accuracy by forecast window. Panel (A) illustrates the 

actual risk level assigned to each country at Epi week 40 for a fixed classification 

scheme, R=20. Panels (B)-(E) each corresponds to different forecast windows, 

specifically (B) N=1, (C) N=2, (D) N=4, (E) N=8, and (F) N=12. The inset shown by 

small rectangle highlights the actual and predicted risk in Caribbean islands. For 

Panels (B)-(E), the red indicates a correctly predicted high-risk country and green 

indicates a correctly predicted low risk country. Light grey indicates an incorrectly 

predicted high risk country, and dark grey indicates an incorrectly predicted low risk 

country. The risk indicator used is case counts.  

 

Model performance  

The remainder of this section demonstrates the model’s performance sensitivity to the 

range of flexible input parameters available. Fig 5 and 6 illustrate the model 

performance as a function of classification scheme and forecast window, aggregated 

over space and time. Specifically, Fig 5 shows the model performance based on ACC, 

averaged over all locations and all EPI weeks for each combination of risk 

classification scheme (i.e., R = 10, 20, 30, 40 and 50) and forecast window (i.e., N = 

1, 2, 4, 8 and 12) (Fig. 5). In general, the performance of the model decreases as the 

prediction window increases, and as the size of the high risk group increases. When 

the objective is to identify the top 10% of at-risk regions, the average accuracy of the 

model remains above 87% for prediction up to 12-weeks in advance. Further, the 

model is almost 80% accurate for 4-week ahead prediction for all classification 
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schemes, and almost 90% accurate for all 2-week ahead prediction scenarios, i.e., the 

correct risk category of 9 out of 10 locations can always be predicted. These results 

reveal the trade-off between desired forecast window and precision of the high risk 

group. The quantifiable trade-off between the two model inputs (classification 

scheme, R, and forecast window, N) can be useful for policies which may vary in 

desired planning objectives.  

 

Fig 5. Aggregate model performance measured by ACC, (averaged over all 

locations and all weeks) for all combinations of classification schemes (i.e., R = 10, 

20, 30, 40 and 50) and forecast windows (i.e., N = 1, 2, 4, 8 and 12), where the risk 

indicator is case counts. 
 

 

  

 Fig 6. Aggregate model performance measured by ROC AUC (averaged over all 

locations and all weeks) for a fixed classification scheme, i.e., R = 40, and forecast 

windows (i.e., N = 1, 2, 4, 8 and 12), where the risk indicator is case counts. 
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The aggregated ROC curves (averaged over all locations and all epidemiological 

weeks) are presented in Fig. 6, and reveal the (expected) increased accuracy of the 

model as the forecast window is reduced. The ROC AUC results are consistent with 

ACC results presented in Fig. 5, highlighting the superior performance of the 1 and 2 

week ahead prediction capability of the model. The ROC AUC value remains above 

0.91 for N=1,2 and above 0.83 for N=4, both indicating high predictive accuracy of 

the model. 

 

Fig. 7 illustrates how the model performance varies throughout the course of the 

outbreak, presented here for selected epidemiological weeks (i.e., week number / 

starting date: 30 / 18-Jan-2016, 40 / 28-Mar-2016, 50 / 6-Jun-2016, 60 / 15-Aug-2016, 

and 70 / 24-Oct-2016). This time period represents a highly complex period of the 

outbreak with country level rankings fluctuating over time, as evidenced in Fig 1.  

Fig. 7.a and 7.b present the model performance when different risk indicators are used 

to classify the countries into high and low risk groups, namely reported case counts 

and incidence rate, respectively. The mean ACC is reported for a fixed 4-week 

prediction window, and each by classification scheme. The expected ACC value is 

averaged over all countries, and the error bars indicate the variability in expected 

ACC across model runs. The short error bars indicate, critically, the robustness of the 

model predictions. The model is also demonstrated to perform consistently throughout 

the course of the epidemic, with the exception of week 30, at which time there was 

limited information available to train the model, e.g., the outbreak was not yet 

reported in a majority of the affected countries. Comparing Fig 7.a and 7.b reveals 

relatively similar performance for both risk indicators, demonstrating the model’s 

flexibility and adaptability with respect to the metric used to classify outbreak risk, 

i.e., number of cases or incidence rate in a region. Additionally, for both risk 

indicators, the model accuracy is highest for the more precise classification schemes 

(R < 20), which is consistent with the aggregate model performance illustrated in Fig 

5. 
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Fig 7.  Model performance and variability for selected epidemiological weeks 

when risk indicator (a) case counts and (b) incidence rate. ACC is averaged over 

all locations. Combinations of Epi week and classification schemes (i.e., R = 10, 20, 

30, 40 and 50), with a fixed forecast windows (i.e., N = 4) are shown. The error bars 

represent the variability in expected ACC across runs.  

 

We further explore the model performance at a regional level by dividing the 

countries and territories in the Americas into three groups, namely Caribbean, South 

America and Central America, as in [10]. For each group the average performance of 

the model in terms of ACC was evaluated and compared.  The results in Fig 8 reveals 

a similar trend at the regional level as was seen at the global level, with a decrease in 

predictive accuracy as the forecast window increases in length, and the and high risk 

group increases in size. The results reveal the predictive accuracy is best for the 

Caribbean region, while predictions for Central America were consistently the worst; 

the discrepancy in performance between these groups increases as the forecast 

(a)

(b)
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window increases. The difference in performance across regions can be attributed to 

the high spatial heterogeneity of the outbreak patterns, the relative ability of air travel 

to accurately capture connectivity between locations, and errors in case reporting that 

may vary by region. For example, the Caribbean, which consists of more than twice 

as many locations as any other group, first reported cases around week 25, and 

remained affected throughout the epidemic. In contrast, Central America experienced 

a slow start to the outbreak (at least according to case reports) with two exceptions, 

namely Honduras and El Salvador. The large number of affected region in the 

Caribbean, with more reported cases distributed over a longer time period contributed 

to the training of the model, thus improving the predictive capability for these regions. 

Additionally, the geographically isolated nature of Caribbean islands enables air 

travel to more accurately capture incoming travel risk, unlike countries in Central and 

South America, where individuals can also move about using alternative modes, 

which are not accounted for in this study.  These factors combined explain the higher 

predictive accuracy of the model for the Caribbean region, and importantly, helps to 

identify the critical features and types of settings under which this model is expected 

to perform best. 

 

Conclusions 

We have introduced a flexible, predictive modelling framework to forecast outbreak 

risk in real-time. An application of the model was applied to the Zika epidemic in the 

Americas at a weekly temporal resolution, and country-level spatial resolution, using 

population, socioeconomic, epidemiological, travel patterns and vector suitability 

data. The model performance was evaluated for various risk classification schemes, 

forecast windows and risk indicators, and illustrated to be accurate and robust across a 

broad range of these features. First, the model is more accurate for shorter prediction 

windows and restrictive risk classification schemes. Secondly, regional analysis 

reveals superior predictive accuracy for the Caribbean, suggesting the model to be 

best suited to geographically isolated locations that are predominantly connected via 

air travel. Predicting the spread to areas that are relatively isolated has previously 

been shown to be difficult due to the stochastic nature of infectious disease spread 

[77]. Thirdly, the model performed consistently well at various stages throughout the 

course of the outbreak, indicating it’s potential value at the early stages of an 

epidemic. The outcomes from the model can be used to better guide outbreak resource 

allocation decisions, and can be easily adapted to model other vector-borne 

epidemics. 

 

There are several limitations of this work. The underlying data on case reporting vary 

by country and may not represent the true transmission patterns [78]. However, the 

framework presented was flexible enough to account for these biases and we 

anticipate will only be improved as data become more robust. Additionally, 2015 

travel data was used in place of 2016 data, as has been done previously [43, 58, 59], 

which may not be fully representative of travel behaviour.  Lastly, due to the lack of 

spatial resolution of case reports, we were limited to make country to country spread 

estimates. We do however appreciate that there is considerable spatial variation within 

countries (i.e., northern vs. southern Brazil) and that this may influence the weekly 

covariates used in this study. We again hypothesise that models will become better as 

spatial resolution increases. 
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Fig 8. Regional prediction accuracy for varying (a) risk classification schemes 

and (b) forecast windows. In (a) the forecast window is fixed to N=4, and in (b) the 

classification scheme is fixed to R=20. ACC shown for each classification scheme is 

averaged for the subset of countries in each region over all weeks. The risk indicator 

used is case counts.  
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