Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Inference of Differential Gene Regulatory Networks Based on Gene Expression and Genetic Perturbation Data

Xin Zhou, Xiaodong Cai
doi: https://doi.org/10.1101/466623
Xin Zhou
1Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida 33146, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaodong Cai
1Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida 33146, United States
2Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida 33136, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Motivation Gene regulatory networks (GRNs) of the same organism can be different under different conditions, although the overall network structure may be similar. Understanding the difference in GRNs under different conditions is important to understand condition-specific gene regulation. When gene expression and other relevant data under two different conditions are available, they can be used by an existing network inference algorithm to estimate two GRNs separately, and then to identify the difference between the two GRNs. However, such an approach does not exploit the similarity in two GRNs, and may sacrifice inference accuracy.

Results In this paper, we model GRNs with the structural equation model (SEM) that can integrate gene expression and genetic perturbation data, and develop an algorithm named fused sparse SEM (FSSEM), to jointly infer GRNs under two conditions, and then to identify difference of the two GRNs. Computer simulations demonstrate that the FSSEM algorithm outperforms the approach that estimates two GRNs separately. Analysis of a gene expression and SNP dataset of lung cancer and normal lung tissues with FSSEM inferred a GRN largely agree with the known lung GRN reported in the literature, and it identified a differential GRN, whose genes with largest degrees were reported to be implicated in lung cancer. The FSSEM algorithm provides a valuable tool for joint inference of two GRNs and identification of the differential GRN under two conditions.

Availability The software package for the FSSEM algorithm is available at https://github.com/Ivis4ml/FSSEM.git

Contact x.cai{at}miami.edu

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted November 09, 2018.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Inference of Differential Gene Regulatory Networks Based on Gene Expression and Genetic Perturbation Data
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Inference of Differential Gene Regulatory Networks Based on Gene Expression and Genetic Perturbation Data
Xin Zhou, Xiaodong Cai
bioRxiv 466623; doi: https://doi.org/10.1101/466623
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Inference of Differential Gene Regulatory Networks Based on Gene Expression and Genetic Perturbation Data
Xin Zhou, Xiaodong Cai
bioRxiv 466623; doi: https://doi.org/10.1101/466623

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (2235)
  • Biochemistry (4302)
  • Bioengineering (2958)
  • Bioinformatics (13483)
  • Biophysics (5959)
  • Cancer Biology (4633)
  • Cell Biology (6641)
  • Clinical Trials (138)
  • Developmental Biology (3939)
  • Ecology (6240)
  • Epidemiology (2053)
  • Evolutionary Biology (9181)
  • Genetics (6883)
  • Genomics (8803)
  • Immunology (3918)
  • Microbiology (11286)
  • Molecular Biology (4458)
  • Neuroscience (25625)
  • Paleontology (183)
  • Pathology (722)
  • Pharmacology and Toxicology (1209)
  • Physiology (1776)
  • Plant Biology (3999)
  • Scientific Communication and Education (892)
  • Synthetic Biology (1194)
  • Systems Biology (3627)
  • Zoology (654)